1887

Chapter 10 : , the Pathogenicity Island of , Triggers Host Responses

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

, the Pathogenicity Island of , Triggers Host Responses, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818173/9781555811617_Chap10-1.gif /docserver/preview/fulltext/10.1128/9781555818173/9781555811617_Chap10-2.gif

Abstract:

was isolated by accidental extended incubation. It is a spiral-shaped, gram-negative, microaerophilic microorganism that colonizes and survives in the hostile environment of the human stomach, in an equilibrium that permanently links the parasite to the host. Strains isolated from patients with peptic ulcer disease (PUD) contain the cagA gene (cytotoxin-associated gene A) and express the immunodominant CagA antigen. CagA and VacA are frequently coexpressed; however, their genes are 300 kb apart and VacA expression does not require the presence of the cagA gene, since null mutants still produce the VacA protein. In most industrialized countries, 70 to 80% of the clinical isolates express CagA. Clinical isolates have been grouped into two broad families, type I and type II, in which type I strains possess the pathogenicity island (PAI). As with the related Cag proteins of , the Icm/Dot proteins act as an exporters for the virulence factor(s) targeted to the intracellular environment to enhance survival and to kill host macrophages. The existence of 30 different proteins all encoded within underscores the functional importance of specialized chaperones in macromolecular export. Recent data suggest that VirB4, VirB7, VirB9, VirBlO, and VirB 11 assemble as a complex and form the core of the transporter. The diffusion of entails the spread of a population's culture. This was influenced by the history of parasitic association of the bacterium with the human species and the migratory expansion.

Citation: Covacci A, Rappuoli R. 1999. , the Pathogenicity Island of , Triggers Host Responses, p 189-202. In Kaper J, Hacker J (ed), Pathogenicity Islands and Other Mobile Virulence Elements. ASM Press, Washington, DC. doi: 10.1128/9781555818173.ch10

Key Concept Ranking

Type III Secretion System
0.4315093
Type IV Secretion Systems
0.4315093
Type III Secretion System
0.4315093
Type IV Secretion Systems
0.4315093
0.4315093
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

(a) Map of the region, genes marked with letters (A or B, for example) refer to the nomenclature suggested by Censini et al. ( ); numbers refer to the list of open reading frames compiled by Tomb et al. ( ) that is based on the complete genome sequence. Proteins with leader sequences are identified with letters and/or numbers above the arrows, homologs of the and regions of are listed. Squares with triangles represent the 31 direct repeats, (b) i, ii, and iii are recombinational events mediated by an 1S605 insertion that generates the intervening sequence found in strain CCUG 17874.

Citation: Covacci A, Rappuoli R. 1999. , the Pathogenicity Island of , Triggers Host Responses, p 189-202. In Kaper J, Hacker J (ed), Pathogenicity Islands and Other Mobile Virulence Elements. ASM Press, Washington, DC. doi: 10.1128/9781555818173.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Evolution of type I, intermediate, and type II strains, acquisition is indicated by an arrow. The white circle indicates the IS insertion. The type I and type II lineages show little divergence. Intermediate strains branch from type I, and the level of fragmentation is progressively increasing (top to bottom). All intermediate strains are positive for IS. A tentative bar scale is indicated and was obtained by computer simulation calculated on the basis of DNA amelioration rates.

Citation: Covacci A, Rappuoli R. 1999. , the Pathogenicity Island of , Triggers Host Responses, p 189-202. In Kaper J, Hacker J (ed), Pathogenicity Islands and Other Mobile Virulence Elements. ASM Press, Washington, DC. doi: 10.1128/9781555818173.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Model illustrating cycles of contraction and expansion of the population during a chronic infection. Open circles represent bacteria, and solid circles represent bacteria. Loss of the PAI is the most frequent event in vivo, (a) After infection with a type I strain, the acute phase is dominated by bacteria, (b and c) During the remission phase, clones, originated by selective pressure, expanded, (d and e) After remission, another wave of clonal expansion of bacteria starts. This model was originally proposed by J. Hacker to explain chronic urinary infections by 536.

Citation: Covacci A, Rappuoli R. 1999. , the Pathogenicity Island of , Triggers Host Responses, p 189-202. In Kaper J, Hacker J (ed), Pathogenicity Islands and Other Mobile Virulence Elements. ASM Press, Washington, DC. doi: 10.1128/9781555818173.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Evolutionary relationships between members of the type IV secretion apparatuses. Boxes indicate individual gene products, and the order reflects their relative position within the operons. Functions and localization are provided for each member. The shaded areas refer to the minimal set of Vir homologs present within .

Citation: Covacci A, Rappuoli R. 1999. , the Pathogenicity Island of , Triggers Host Responses, p 189-202. In Kaper J, Hacker J (ed), Pathogenicity Islands and Other Mobile Virulence Elements. ASM Press, Washington, DC. doi: 10.1128/9781555818173.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

Chain of events following attachment of type I to an epithelial cell in culture, (a) Pedestal induction, (b) Growth of the Pseudopodium and triggering of intracellular reactions, (c) Resulting tyrosine phosphorylation of the 145-kDa protein localized in the membrane fraction, (d) Resulting activation of NF-B and IL-8 secretion.

Citation: Covacci A, Rappuoli R. 1999. , the Pathogenicity Island of , Triggers Host Responses, p 189-202. In Kaper J, Hacker J (ed), Pathogenicity Islands and Other Mobile Virulence Elements. ASM Press, Washington, DC. doi: 10.1128/9781555818173.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818173.chap10
1. Akopyanz, N.,, N. O. Bukanov,, T. U. Westblom,, and D. E. Berg. 1992. PCR-based RFLP analysis of DNA sequence diversity in the gastric pathogen Helicobacter pylori. Nucleic Acids Res. 20:62216225.
2. Akopyanz, N. S.,, S. W. Clifton,, D. Kersulyte,, J. E. Crabtree,, B. E. Youree,, C. A. Reece,, N. O. Bukanov,, E. S. Drazek,, B. A. Roe,, and D. E. Berg. 1998. Analyses of the cag pathogenicity island of Helicobacter pylori. Mol. Microbiol. 28:3753.
3. Aim, R. A.,, L. L. Lo-See,, D. T. Moir,, B. L. King,, E. D. Brown,, P. C. Doig,, D. R. Smith,, B. Noonan,, B. C. Guild,, B. L. Dejonge,, C. Carmel,, P. J. Tummino,, A. Caruso,, M. Uria-Nickelsen,, D. M. Mills,, C. Ives,, R. Gibson,, D. Merberg,, S. D. Mills,, Q. Jiang,, D. E. Taylor,, G. F. Vovis,, and T. J. Trust. 1999. Genomic-sequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori. Nature 397:176180.
4. Andersson, S. G.,, A. Zomorodipour,, J. O. Andersson,, T. Sicheritz-Ponten,, U. C. Alsmark,, R. M. Podowski,, A. K. Naslund,, A. S. Ericksson,, H. H. Winkler,, and C. G. Kurland. 1998. The genome sequence of Rickettsia prowazekii and the origin of mitochondria. Nature 396:133140.
5. Atherton, J. C.,, P. Cao,, R. M. PeekJr.,, M. K. Tummuru,, M. J. Blaser,, and T. L. Cover. 1995. Mosaicism in vacuolating cytotoxin alleles of Helicobacter pylori. Association of specific vacA types with cytotoxin production and peptic ulceration. J. Biol. Chem. 270:1777117777.
6. Atherton, J. C.,, K. T. Tham,, R. M. PeekJr.,, T. L. Cover,, and M. J. Blaser. 1996. Density of Helicobacter pylori infection in vivo as assessed by quantitative culture and histology. J. Infect. Dis. 174:552556.
7. Baker, B.,, P. Zambryski,, B. Staskawicz,, and S. P. Dinesh-Kumar. 1997. Signaling in plant-microbe interactions. Science 276:726733.
8. Blaser, M. J. 1998. Helicobacter pylori and gastric diseases. Br. Med. J. 316:15071510.
9. Blum, G.,, M. Ott,, A. Lischewski,, A. Ritter,, H. Imrich,, H. Tschape,, and J. Hacker. 1994. Excision of large DNA regions termed pathogenicity islands from tRNA-specific loci in the chromosome of an Escherichia coli wild-type pathogen. Infect. Immun. 62:606614.
10. Campbell, S.,, A. Fraser,, B. Holliss,, J. Schmid,, and P. W. O'Toole. 1997. Evidence for ethnic tropism of Helicobacter pylori. Infect. Immun. 65:37083712.
11. Cavalli-Sforza, L. L.,, P. Menozzi,, and A. Piazza. 1993. Demic expansions and human evolution. Science 259:639646.
12. Censini, S.,, C. Lange,, Z. Xiang,, J. E. Crabtree,, P. Ghiara,, M. Borodovsky,, R. Rappuoli,, and A. Covacci. 1996. cag, a pathogenicity island of Helicobacter pylori, encodes type I-specific and disease-associated virulence factors. Proc. Natl. Acad. Sci. USA 93:1464814653.
13. Christie, P. 1997. Agrobacterium tumefaciens T-complex transport apparatus: a paradigm for a new family of multifunctional transporters in eubacteria. J. Bacteriol. 179:30853094.
14. Christie, P. J. 1997. The cag pathogenicity island: mechanistic insights. Trends Microbiol. 5:264265.
15. Cirillo, D. M.,, R. H. Valdivia,, D. M. Monack,, and S. Falkow. 1998. Macrophage-dependent induction of the Salmonella pathogenicity island 2 type III secretion system and its role in intracellular survival. Mol. Microbiol. 30:175188.
16. Cormack, B. P.,, R. H. Valdivia,, and S. Falkow. 1996. FACS-optimized mutants of the green fluorescent protein (GFP). Gene 173:3338.
17. Covacci, A.,, and R. Rappuoli. 1993. Pertussis toxin export requires accessory genes located downstream from the pertussis toxin operon. Mol. Microbiol. 8:429434.
18. Covacci, A.,, S. Censini,, M. Bugnoli,, R. Petracca,, D. Burroni,, G. Macchia,, A. Massone,, E. Papini,, Z. Xiang,, N. Figura,, and R. Rappuoli. 1993. Molecular characterization of the 128-kDa immunodominant antigen of Helicobacter pylori associated with cytotoxicity and duodenal ulcer. Proc. Natl. Acad. Sci. USA 90:57915795.
19. Covacci, A.,, S. Falkow,, D. E. Berg,, and R. Rappuoli. 1997. Did the inheritance of a pathogenicity island modify the virulence of Helicobacter pylori? Trends Microbiol. 5:205208.
20. Covacci, A.,, and R. Rappuoli. 1998. Helicobacter pylori: molecular evolution of a bacterial quasi-species. Curr. Opin. Microbiol. 1:96102.
21. Cover, T. L.,, P. Cao,, C. D. Lin,, K. T. Tham,, and M. J. Blaser. 1993. Correlation between vacuolating cytotoxin production by Helicobacter pylori isolates in vitro and in vivo. Infect. Immun. 61:50085012.
22. Cover, T. L. 1996. The vacuolating cytotoxin of Helicobacter pylori. Mol. Microbiol. 20:241246.
23. Crabtree, J. E.,, Z. Xiang,, I. J. Lindley,, D. S. Tompkins,, R. Rappuoli,, and A. Covacci. 1995. Induction of interleukin-8 secretion from gastric epithelial cells by a cagA negative isogenic mutant of Helicobacter pylori. J. Clin. Pathol. 48:967969.
24. Deibel, C.,, S. Kramer,, T. Chakraborty,, and F. Ebel. 1998. EspE, a novel secreted protein of attaching and effacing bacteria, is directly translocated into infected host cells, where it appears as a tyrosine-phosphorylated 90 kDa protein. Mol. Microbiol. 30:147161.
25. Dundon, W. G.,, S. M. Beesley,, and C. J. Smyth. 1998. Helicobacter pylori—a conundrum of genetic diversity. Microbiology 144:29252939.
26. Ebel, F.,, T. Podzadel,, M. Rohde,, A. U. Kresse,, S. Kramer,, C. Deibel,, C. A. Guzman,, and T. Chakraborty. 1998. Initial binding of Shiga toxin-producing Escherichia coli to host cells and subsequent induction of actin rearrangements depend on filamentous EspA-containing surface appendages. Mol. Microbiol. 30: 147161.
27. Falkow, S. 1998. Who speaks for the microbes? Emerg. Infect. Dis. 4:495497.
28. Figura, N.,, C. Vindigni,, A. Covacci,, L. Presenti,, D. Burroni,, R. Vernillo,, T. Banducci,, F. Roviello,, D. Marrelli,, M. Biscontri,, S. Kristodhullu,, C. Gennari,, and D. Vaira. 1998. cagA positive and negative Helicobacter pylori strains are simultaneously present in the stomach of most patients with non-ulcer dyspepsia: relevance to histological damage. Gut 42:772778.
29. Finlay, B. B.,, and S. Falkow. 1997. Common themes in microbial pathogenicity revisited. Microbiol. Mol. Biol. Rev. 61:136169.
30. Finlay, B. B.,, and P. Cossart. 1997. Exploitation of mammalian host cell functions by bacterial pathogens. Science 276:718725.
31. Fullner, K. J.,, J. C. Lara,, and E. W. Nester. 1996. Pilus assembly by Agrobacterium T-DNA transfer genes. Science 273:11071109.
32. Glocker, E.,, C. Lange,, A. Covacci,, S. Bereswill,, M. Kist,, and H. L. Pahl. 1998. Proteins encoded by the cag pathogenicity island of Helicobacter pylori are required for NF-κ B activation. Infect. Immun. 66: 23462348.
33. Go, M. F.,, V. Kapur,, D. Y. Graham,, and J. M. Musser. 1996. Population genetic analysis of Helicobacter pylori by multilocus enzyme electrophoresis: extensive allelic diversity and recombinational population structure. J. Bacterial. 178:39343938.
34. Groisman, E. A.,, and H. Ochman. 1996. Pathogenicity islands: bacterial evolution in quantum leaps. Cell 87:791794.
35. Hacker, J.,, G. Blum-Oehler,, I. Muhldorfer,, and H. Tschape. 1997. Pathogenicity islands of virulent bacteria: structure, function and impact on microbial evolution. Mol. Microbiol. 23:10891097.
36. Hazell, S. L.,, R. H. Andrews,, H. M. Mitchell,, and G. Daskalopoulous. 1997. Genetic relationship among isolates of Helicobacter pylori: evidence for the existence of a Helicobacter pylori species-complex. FEMS Microbiol. Lett. 150:2732.
37. Jiang, Q.,, K. Hiratsuka,, and D. E. Taylor. 1996. Variability of gene order in different Helicobacter pylori strains contributes to genome diversity. Mol. Microbiol. 20:833842.
38. Kenny, B.,, R. DeVinney,, M. Stein,, D. J. Reinscheid,, E. A. Frey,, and B. B. Finlay. 1997. Enteropathogenic E. coli (EPEC) transfers its receptor for intimate adherence into mammalian cells. Cell 91:511520.
39. Kirby, J. E.,, and R. R. Isberg. 1998. Legionnaires' disease: the pore macrophage and the legion of terror within. Trends Microbiol. 6:256258.
40. Kubori, T.,, Y. Matsushima,, D. Nakamura,, J. Uralil,, M. Lara-Tejero,, A. Sukhan,, J. E. Galan,, and S. I. Aizawa. 1998. Supramolecular structure of the Salmonella typhimurium type III protein secretion system. Science 280:602605.
41. Lai, E. M.,, and C. I. Kado. 1998. Processed VirB2 is the major subunit of the promiscuous pilus of Agrobacterium tumefaciens. J. Bacteriol. 180:27112717.
42. Lange, C.,, A. Covacci,, and R. Rappuoli. The CagT of cag, the pathogenicity island of Helicobacter pylori, is a lipoprotein that assembles into a core system and requires CagM for stabilization. Submitted for publication.
43. Lee, C. A. 1996. Pathogenicity islands and the evolution of bacterial pathogens. Infect. Agents Dis. 5:17.
44. Lee, C. A. 1997. Type III secretion systems: machines to deliver bacterial proteins into eukaryotic cells? Trends Microbiol. 5:148156.
45. Macnab, R. M. 1992. Genetics and biogenesis of bacterial flagella. Annu. Rev. Genet. 26:131158.
46. Menard, R.,, C. Dehio,, and P. J. Sansonetti. 1996. Bacterial entry into epithelial cells: the paradigm of Shigella. Trends Microbiol. 4:220226.
47. Mitchell, H. M.,, T. Bohane,, R. A. Hawkes,, and A. Lee. 1993. Helicobacter pylori infection within families. Int. J. Med. Microbiol. Virol. Parasitol. Infect. Dis. 280:128136.
48. Mitchell, H. M.,, S. L. Hazell,, T. Kolesnikow,, J. Mitchell,, and D. Frommer. 1996. Antigen recognition during progression from acute to chronic infection with a cagA-positive strain of Helicobacter pylori. Infect. Immun. 4:11661172.
49. Molinari, M.,, C. Galli,, N. Norais,, J. L. Telford,, R. Rappuoli,, J. P. Luzio,, and C. Montecucco. 1997. Vacuoles induced by Helicobacter pylori toxin contain both late endosomal and lysosomal markers. J. Biol. Chem. 272:2533925344.
50. Munzenmaier, A.,, C. Lange,, E. Glocker,, A. Covacci,, A. Moran,, S. Bereswill,, P. A. Baeuerle,, M. Kist,, and H. L. Pahl. 1997. A secreted/shed product of Helicobacter pylori activates transcription factor nuclear factor-kappa B. J. Immunol. 159:61406147.
51. Pagliaccia, C.,, M. de Bernard,, P. Lupetti,, X. Ji,, D. Burroni,, T. L. Cover,, E. Papini,, R. Rappuoli,, J. L. Telford,, and J. M. Reyrat. 1998. The m2 form of the Helicobacter pylori cytotoxin has cell type-specific vacuolating activity. Proc. Natl. Acad. Sci. USA 95:1021210217.
52. Papini, E.,, B. Satin,, C. Bucci,, M. de Bernard,, J. L. Telford,, R. Manetti,, R. Rappuoli,, M. Zerial,, and C. Montecucco. 1997. The small GTP binding protein rab7 is essential for cellular vacuolation induced by Helicobacter pylori cytotoxin. EMBO J. 16:1524.
53. Parsonnet, J.,, G. D. Friedman,, N. Orentreich,, and H. Vogelman. 1997. Risk for gastric cancer in people with CagA positive or CagA negative Helicobacter pylori infection. Gut 40:297301.
54. Phadnis, S. H.,, D. liver,, L. Janzon,, S. Normark,, and T. U. Westblom. 1994. Pathological significance and molecular characterization of the vacuolating toxin gene of Helicobacter pylori. Infect. Immun. 62: 15571565.
55. Relman, D. A.,, and S. Falkow. 1992. Identification of uncultured microorganisms: expanding the spectrum of characterized microbial pathogens. Infect. Agents Dis. 1:245253.
56. Ritter, A.,, G. Blum,, L. Emody,, M. Kerenyi,, A. Bock,, B. Neuhierl,, W. Rabsch,, F. Scheutz,, and J. Hacker. 1995. tRNA genes and pathogenicity islands: influence on virulence and metabolic properties of uropathogenic Escherichia coli. Mol. Microbiol. 17:109121.
57. Rosenshine, I.,, S. Ruschkowski,, M. Stein,, D. J. Reinscheid,, S. D. Mills,, and B. B. Finlay. 1996. A pathogenic bacterium triggers epithelial signals to form a functional bacterial receptor that mediates actin pseudopod formation. EMBO J. 15:26132624.
58. Russel, M. 1995. Moving through the membrane with filamentous phages. Trends Microbiol. 3:223228.
59. Russel, M. 1998. Macromolecular assembly and secretion across the bacterial cell envelope: type II protein secretion systems. J. Mol. Biol. 279:485499.
60. Salmond, G. P.,, B. W. Bycroft,, G. S. Stewart,, and P. Williams. 1995. The bacterial 'enigma': cracking the code of cell-cell communication. Mol. Microbiol. 16:615624.
61. Schmitt, W.,, and R. Haas. 1994. Genetic analysis of the Helicobacter pylori vacuolating cytotoxin: structural similarities with the IgA protease type of exported protein. Mol. Microbiol. 12:307319.
62. Segal, E. D.,, S. Falkow,, and L. S. Tompkins. 1996. Helicobacter pylori attachment to gastric cells induces cytoskeletal rearrangements and tyrosine phosphorylation of host cell proteins. Proc. Natl. Acad. Sci. USA 93:12591264.
63. Segal, E. D.,, C. Lange,, A. Covacci,, L. S. Tompkins,, and S. Falkow. 1997. Induction of host signal transduction pathways by Helicobacter pylori. Proc. Natl. Acad. Sci. USA 94:75957599.
64. Segal, G.,, and H. A. Shuman. 1998. How is the intracellular fate of the Legionella pneumophila phagosome determined? Trends Microbiol. 6:253255.
65. Telford, J. L.,, P. Ghiara,, M. Dell'Orco,, M. Comanducci,, D. Burroni,, M. Bugnoli,, M. F. Tecce,, S. Censini,, A. Covacci,, Z. Xiang,, and R. Rappuoli. 1994. Gene structure of the Helicobacter pylori cytotoxin and evidence of its key role in gastric disease. J. Exp. Med. 179:16531658.
66. Tomb, J. F.,, O. Whith,, A. R. Kerlavage,, R. A. Clayton,, G. G. Sutton,, R. D. Fleischmann,, K. A. Ketchum,, H. P. Klenk,, S. Gill,, B. A. Dougherty,, K. Nelson,, J. Quackenbush,, L. Zhou,, E. F. Kirkness,, S. Peterson,, B. Loftus,, D. Richardson,, R. Dodson,, H. G. Khalak,, A. Glodek,, K. McKenney,, L. M. Fitzegerald,, N. Lee,, M. D. Adams,, and J. C. Venter. 1997. The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature 388:539547.
67. Tummuru, M.,, S. A. Sharma,, and M. J. Blaser. 1995. Helicobacter pylori picB, a homolog of the Bordetella pertussis toxin secretion protein, is required for induction of IL-8 in gastric epithelial cells. Mol. Microbiol. 18:867876.
68. Tummuru, M. K.,, T. L. Cover,, and M. J. Blaser. 1993. Cloning and expression of a high-molecular-mass major antigen of Helicobacter pylori: evidence of linkage to cytotoxin production. Infect. Immun. 61:17991809.
69. Tummuru, M. K.,, T. L. Cover,, and M. J. Blaser. 1994. Mutation of the cytotoxin-associated cagA gene does not affect the vacuolating cytotoxin activity of Helicobacter pylori. Infect. Immun. 62:26092613.
70. Valdivia, R. H.,, and S. Falkow. 1997. Fluorescence-based isolation of bacterial genes expressed within host cells. Science 277:20072011.
71. Valdivia, R. H.,, and S. Falkow. 1997. Probing bacterial gene expression within host cells. Trends Microbiol. 5:360363.
72. van der Ende, A.,, E. A. Rauws,, M. Feller,, C. J. Mulder,, G. N. Tytgat,, and J. Dankert. 1996. Heterogeneous Helicobacter pylori isolates from members of a family with a history of peptic ulcer disease. Gastroenterology 111:638647.
73. Weiss, A. A.,, F. D. Johnson,, and D. L. Burns. 1993. Molecular characterization of an operon required for pertussis toxin secretion. Proc. Natl. Acad. Sci. USA 90:29702974.
74. Winans, S. C.,, D. L. Burns,, and P. J. Christie. 1996. Adaptation of a conjugal transfer system for the export of pathogenic macromolecules. Trends Microbiol. 4:6468.
75. Xiang, Z.,, S. Censini,, P. F. Bayeli,, J. L. Telford,, N. Figura,, R. Rappuoli,, and A. Covacci. 1995. Analysis of expression of CagA and VacA virulence factors in 43 strains of Helicobacter pylori reveals that clinical isolates can be divided into two major types and that CagA is not necessary for expression of the vacuolating cytotoxin. Infect. Immun. 63:9498.
76. Zychlinsky, A.,, and P. J. Sansonetti. 1997. Apoptosis as a proinflammatory event: what can we learn from bacteria-induced cell death? Trends Microbiol. 5:201204.
77. Zychlinsky, A. 1999. Personal communication.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error