1887

Chapter 14 : Mobile Elements, Phages, and Genomic Islands of Staphylococci and Streptococci

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Mobile Elements, Phages, and Genomic Islands of Staphylococci and Streptococci, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818173/9781555811617_Chap14-1.gif /docserver/preview/fulltext/10.1128/9781555818173/9781555811617_Chap14-2.gif

Abstract:

The most important pathogenic species of the two genera, and , have been studied more extensively than most other bacterial pathogens by microbiologists and physicians. In staphylococci, accessory genetic elements contribute to resistance to antibiotics, antiseptics, and disinfectants and are involved in genetic rearrangements and formation of virulence traits. Interestingly, the 3' region of in also has a high homology to the corresponding region of . The presence of one or more copies of IS431 within and directed repeats at the ends of , as well as open reading frames within that may encode recombinases, suggests that and its associated DNA are mobile elements. The mechanism of maintenance of genetic diversity by natural transformation of which enables intraspecies and interspecies horizontal gene transfer differs fundamentally from that described for the region in staphylococci. Staphylococcal phages are also involved in the expression of virulence determinants by mediating both positive and negative lysogenic conversion. Temperate phages of are of particular interest because one class of major virulence factors, the streptococcal pyrogenic toxins, reside on their genomes. Of the virulence regulators, only the regulon occurs in all strains, which highlights its exceptional role in pathogenicity. In contrast to , does develop natural competence, and it has become known as the first microorganism with the capacity to take up free DNA experimentally from the environment.

Citation: Ohlsen K, Ziebuhr W, Hacker J, Reichardt W, Witte W, Götz F. 1999. Mobile Elements, Phages, and Genomic Islands of Staphylococci and Streptococci, p 265-287. In Kaper J, Hacker J (ed), Pathogenicity Islands and Other Mobile Virulence Elements. ASM Press, Washington, DC. doi: 10.1128/9781555818173.ch14

Key Concept Ranking

Toxic Shock Syndrome Toxin 1
0.50877196
0.50877196
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Molecular organization of the region in R155. Chromosomal sequences flanking this region are shown as hatched boxes. The gene encodes the additional PBP2a. The regulatory genes are designated and . Tn is a transposon carrying , encoding inducible MLS resistance. IS (the same as IS) elements flank the kanamycin-tobramycin resistance plasmid pUBl 10. The directions of transcription for the genes are indicated by arrows.

Citation: Ohlsen K, Ziebuhr W, Hacker J, Reichardt W, Witte W, Götz F. 1999. Mobile Elements, Phages, and Genomic Islands of Staphylococci and Streptococci, p 265-287. In Kaper J, Hacker J (ed), Pathogenicity Islands and Other Mobile Virulence Elements. ASM Press, Washington, DC. doi: 10.1128/9781555818173.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Physical map of the 15.2-kb SaPIl region. Chromosomal sequences flanking this region are shown as hatched boxes, and the 17-bp direct repeats at left and right are shown as open boxes labelled att. The open reading frames encoding TSST-1 (), a homolog to VapE of (), a putative superantigen (), and an integrase () are shown as grey boxes. The directions of transcription for the genes are indicated by arrows.

Citation: Ohlsen K, Ziebuhr W, Hacker J, Reichardt W, Witte W, Götz F. 1999. Mobile Elements, Phages, and Genomic Islands of Staphylococci and Streptococci, p 265-287. In Kaper J, Hacker J (ed), Pathogenicity Islands and Other Mobile Virulence Elements. ASM Press, Washington, DC. doi: 10.1128/9781555818173.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Genetic organization of the operon and target sites for 1S insertions. (A) Overview of the operon and the adjacent gene. The number and positions of IS insertions are marked by arrows. (B) Detailed representation of IS insertions detected in the nucleotide sequence of RPG2A and 229 ( ). IS target sites are underlined. Double lines mark identical target sequences identified in different insertional mutants. The designations above the targets indicate the individual names of the variants. Numbering of the nucleotide sequence corresponds to that of the published sequence (accession no. U43366).

Citation: Ohlsen K, Ziebuhr W, Hacker J, Reichardt W, Witte W, Götz F. 1999. Mobile Elements, Phages, and Genomic Islands of Staphylococci and Streptococci, p 265-287. In Kaper J, Hacker J (ed), Pathogenicity Islands and Other Mobile Virulence Elements. ASM Press, Washington, DC. doi: 10.1128/9781555818173.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

virulence locus of . Genes controlled by the Mga regulator ( regulon) are indicated by arrows. The genes (M-related), , and form the core regulon. Genes are transcribed monocistronically from promoters P positively regulated by Mga. The interrupted line indicates unknown direct or indirect regulation of the genes by the Mga regulator, tt indicates transcriptional terminators, and at indicates attenuator sites. The genes encode the following products: , virulence gene regulator; , M-related protein; , M protein; , IgA-binding protein; , streptococcal C5a peptidase; , streptococcal inhibitor of complement; , serum opacity factor; , streptococcic , regulator of proteinase; , cysteine proteinase; and , oligopeptide peptidase; , streptolysin S-associated gene (for details, see the text). Genes unaffected by Mga are indicated in the box.

Citation: Ohlsen K, Ziebuhr W, Hacker J, Reichardt W, Witte W, Götz F. 1999. Mobile Elements, Phages, and Genomic Islands of Staphylococci and Streptococci, p 265-287. In Kaper J, Hacker J (ed), Pathogenicity Islands and Other Mobile Virulence Elements. ASM Press, Washington, DC. doi: 10.1128/9781555818173.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818173.chap14
1. Akeson, P.,, A. G. Sjöholm,, and L. Björck. 1996. Protein SIC, a novel extracellular protein of Streptococcus pyogenes interfering with complement function. J. Biol. Chem. 271: 1081 1088.
2. Archer, G. L.,, and D. M. Niemeyer. 1994. Origin and evolution of DNA associated with resistance to methicillin in staphylococci. Trends Microbiol. 2: 343 347.
3. Archer, G. L.,, D. M. Niemeyer,, and J. A. Thanassi. 1994. Dissemination among staphylococci of DNA sequences associated with methicillin resistance. Antimicrob. Agents Chemother. 38: 447 454.
4. Avery, O. T.,, C. M. McLeod,, and M. McCarthy. 1944. Studies on the chemical nature of the substance inducing transformation of pneumococcal phenotypes. Induction of transformation by a deoxyribonucleic acid fraction isolated from pneumococcus type III. J. Exp Med. 79: 137 158.
5. Baker, C. J.,, and M. S. Edwards,. 1995. Group B streptococcal infections, p. 980 1054. In J. S. Remington, and J. D. Klein (ed.), Infectious Diseases of the Fetus and Newborn Infant. The W. B. Saunders Co., Philadelphia, Pa.
6. Barberis-Maino, L.,, B. Berger-Bächi,, H. Weber,, W. D. Beck,, and F. H. Kayser. 1987. IS 431, a staphylococcal insertion sequence-like element related to IS 26 from Proteus mirabilis. Gene 59: 107 113.
7. Barberis-Maino, L.,, C. Ryffel,, F. H. Kayser,, and B. Berger-Bächi. 1990. Complete nucleotide sequence of IS 431 mec in Staphylococcus aureus. Nucleic Acids Res. 18: 5548.
8. Bastos, M. C. F.,, and E. Murphy. 1988. Transposon Tn554 encodes three products required for transposition. EMBO J. 7: 2935 2941.
9. Berg, T.,, N. Firth,, S. Apisiridej,, A. Hettiaratchi,, A. Leelaporn,, and R. A. Skurray. 1998. Complete nucleotide sequence of pSK41: evolution of staphylococcal conjugative multiresistance plasmids. J. Bacteriol. 180: 4350 4359.
10. Berger-Bächi, B. 1980. Physical mapping of the Bgll, Bglll, Pstl and EcoRI restriction fragments of staphylococcal phage 11 DNA. Mol. Gen. Genet. 180: 391 398.
11. Bessen, D. E.,, and S. K.. Hollingshead. 1994. Allelic polymorphism of emm loci provides evidence for horizontal gene spread in group A streptococci. Proc. Natl. Acad. Sci. USA 91: 3280 3284.
12. Bessen, D. E.,, and V. A. Fischetti. 1990. Differentiation between two distinct classes of group A streptococci by limited substitution of amino acids within the shared region of M protein-like molecules. J. Exp. Med. 172: 1757 1764.
13. Betley, M.,, and J. J. Mekalanos. 1985. Staphylococcal enterotoxin A is encoded by phage. Science 229: 185 187.
14. Borecka, P.,, S. Rosypal,, R. Pantucek,, and J. Doskar. 1996. Localization of prophages of serological group B and F on restriction fragments defined in the restriction map of Staphylococcus aureus NCTC 8325. FEMS Microbiol. Lett. 143: 203 210.
15. Byrne, M. E.,, D. A. Rouch,, and R. A. Skurray. 1989. Nucleotide sequence analysis of IS 256 from the Staphylococcus aureus gentamicin-tobramycin-kanamycin-resistance transposon Tn400I. Gene 81: 361 367.
16. Carroll, D.,, M. Kehoe,, D. Cavanagh,, and D. Coleman. 1995. Novel organization of the site-specific integration and excision recombination functions of the Staphylococcus aureus phi 13 and phi42. Mol. Microbiol. 16: 877 893.
17. Chambers, H. 1997. Methicillin resistance in staphylococci: molecular and biochemical basis and clinical implications. Clin. Microbiol. Rev. 10: 781 791.
18. Chen, C.,, and P. P. Cleary. 1990. Complete nucleotide sequence of the streptococcal C5a peptidase gene of Streptococcus pyogenes. J. Biol. Chem. 265: 3161 3167.
19. Cheung, A. L.,, J. M. Koomey,, C. A. Butler,, S. J. Projan,, and V. A. Fischetti. 1992. Regulation of exoprotein expression in Staphylococcus aureus by a locus ( sar) distinct from agr. Proc. Natl. Acad. Sci. USA 89: 6462 6466.
20. Claverys, J.-P.,, and B. Martin. 1998. Competence régulons, genomics and streptococci. Mol. Microbiol. 29: 1125 1127.
21. Cleary, P. P.,, D. LaPenta,, D. Heath,, E. J. Haanes,, and C. Chen,. 1991. A virulence regulon in Streptococcus pyogenes, p. 147 151. In G. M. Dunny,, P. P. Cleary,, and L. L. McKay (ed.), Genetics and Molecular Biology of Streptococci, Lactococci, and Enterococci. American Society for Microbiology, Washington, DC.
22. Coleman, D. C.,, D. J. Sullivan,, R. J. Rüssel,, J. P. Arbuthnott,, B. F. Carey,, and H. M. Pomeroy. 1989. Staphylococcus aureus bacteriophages mediating simultaneous lysogenic conversion of beta-lysin, staphylokinase and enterotoxin A: molecular mechanism of triple conversion. J. Gen. Microbiol. 135: 1679 1697.
23. Coleman, D. C.,, J. P. Arbuthnott,, H. M. Pomeroy,, and T. H. Birkbeck. 1986. Cloning and expression in Escherichia coli and Staphylococcus aureus of the beta-lysin-determinant from Staphylococcus aureus: evidence that bacteriophage conversion of beta-lysin activity is caused by insertional inactivation of the beta-lysin determinant. Microb. Pathog. 1: 549 564.
24. Cone, L. A.,, D. A. Woodward,, P. M. Schlievert,, and G. S. Tomory. 1987. Clinical and bacteriologie observations of a toxic shock-like syndrome due to Streptococcus pyogenes. N. Engl. J. Med. 317: 146 149.
25. Courvalin, P.,, and C. Carlier. 1986. Transposable multiple-antibiotic resistance in Streptococcus pneumoniae. Mol. Gen. Genet. 205: 291 297.
26. Couto, L.,, H. de Lencastre,, E. Severine,, W. Kloos,, J. Webster,, I. Santos Sanches,, and A. Tomasz. 1996. Ubiquitous presence of a mecA homologue in natural isolates of Staphylococcus sciuri. Microb. Drug Resist. 2: 377 391.
27. Derbise, A.,, K. G. H. Dyke,, and N. El Solh. 1994. Isolation and characterization of 1S 1181, an insertion sequence from Staphylococcus aureus. Plasmid 31: 252 264.
28. Derbise, A.,, K. G. H. Dyke,, and N. El Solh. 1996. Characterization of a Staphylococcus aureus transposon, Tn 5405, located within Tn 5404 and carrying the aminoglycoside resistance genes, aphA-3 and aadE. Plasmid 35: 174 188.
29. Dowson, C. G.,, A. Hutchison,, and B. G. Spratt 1989. Extensive re-modelling of the transpeptidase domain of penicillin binding protein 2B of a penicillin-resistant South African isolate of Streptococcus pneumoniae. Mol. Microbiol. 3: 95 102.
30. Dowson, C. G.,, T. J. Coffey,, and B. G. Spratt. 1994. Origin and molecular epidemiology of penicillin-binding-protein-mediated resistance to β -lactam antibiotics. Trends Microbiol. 10: 361 366.
31. Dyke, K. G. H.,, S. Aubert,, and N. El Solh. 1992. Multiple copies of IS 256 in staphylococci. Plasmid 28: 235 246.
32. Eisen, J. A.,, M. J. Benito,, and V. Walbot. 1994. Sequence similarity of putative transposases links the Mutator autonomous element and a group of bacterial insertion sequences. Nucleic Acids Res. 22: 2634 2636.
33. El Kharrhoubi, A.,, P. Jaques,, G. Piras,, J. Van Breumen,, J. Coyette,, and J. M. Ghuysen. 1991. The Enterococcus hirae R40 penicillin-binding protein 5 and the methicillin-resistant Staphylococcus aureus penicillin-binding protein 2' are similar. Biochem. J. 280: 463 469.
34. El Solh, N.,, J. Allignet,, V. Loncle,, and P. Mazodier,. 1990. Nucleotide sequence of a staphylococcal plasmid gene vgb encoding a hydrolase that inactivates the B components of virginiamycin-like antibiotics, p. 617 622. In R. P. Novick (ed.), Molecular Biology of the Staphylococci. VCH, New York, N.Y.
35. Ferretti, J. J.,, S. Clifton,, B. Roe,, and W. M. McShan. 1998. Temperate bacteriophages of Streptococcus pyogenes: comparative studies, p. 47. In ASM Conference on Streptococcal Genetics. Genetics of the Streptococci, Enterococci, and Lactococci. American Society for Microbiology, Washington, D.C.
36. Fischetti, V. A. 1989. Streptococcal M protein: molecular design and biological behavior. Clin. Microbiol. Rev. 2: 285 314.
37. Fleischer, B. 1994. Superantigens produced by infectious pathogens: molecular mechanism of action and biological significance. Int. J. Clin. Lab. Res. 24: 193 197.
38. Fogg, G. C.,, C. M. Gibson,, and M. G. Caparon. 1994. The identification of rofA, a positive-acting regulatory component of prtF expression: mgd-based shuttle mutagenesis strategy in Streptococcus pyogenes. Mol. Microbiol. 11: 671 684.
39. Gemmel, C. G. 1995. Antibiotics and the expression of staphylococcal virulence. J. Antimicrob. Chemother. 36: 283 291.
40. Gerke, C.,, A. Kraft,, R. Sussmuth,, O. Schweitzer,, and F. Götz. 1998. Characterization of the N-acetylglu-cosaminyltransferase activity involved in the biosynthesis of the Staphylococcus epidermidis polysaccharide intercellular adhesin. J. Biol. Chem. 273: 18586 18593.
41. Gillespie, M. T.,, B. R. Lyon,, L. S. L. Loo,, P. R. Matthews,, P. R. Stewart,, and R. A. Skurray. 1987. Homologous direct repeat sequences associated with mercury, methicillin, tetracycline and trimethoprim resistance determinants in Staphylococcus aureus. FEMS Microbiol. Lett. 43: 165 171.
42. Götz, F.,, F. Popp,, and K.-H. Schleifer. 1984. Isolation and characterization of a virulent bacteriophage from Staphylococcus carnosus. FEMS Microbiol. Lett. 23: 303 307.
43. Hacker, J.,, G. Blum-Oehler,, I. Mühldorfer,, and H. Tschäpe. 1997. Pathogenicity islands of virulent bacteria: structure, function and impact on microbial evolution. Mol. Microbiol. 23: 1089 1097.
44. Hakenbeck, R.,, T. Briese,, L. Chalkley,, H. Ellerbrok,, R. Kalliakosi,, R. Latorre,, C. Leimonen,, and C. Martin. 1991. Antigenic variation of penicillin binding proteins from penicillin-resistant clinical strains of Streptococcus pneumoniae. J. Infect. Dis. 164: 313 319.
45. Havarstein, L. S.,, P. Gaustad,, and I. F. Nes. 1996. Identification of the streptococcal competence pheromone receptor. Mol. Microbiol. 21: 863 869.
46. Havarstein, L. S.,, R. Hakenbeck,, and P. Gaustad. 1997. Natural competence in the genus Streptococcus: evidence that streptococci can change pherotype by interspecies recombinational events. J. Bacteriol. 179: 6589 6594.
47. Heilmann, C.,, C. Gerke,, F. Perdreau-Remington,, and F. Götz. 1996. Characterization of Tn 917 insertion mutants of Staphylococcus epidermidis affected in biofilm formation. Infect. Immun. 64: 277 282.
48. Heilmann, C.,, O. Schweitzer,, C. Gerke,, N. Vanittanakom,, D. Mack,, and F. Götz. 1996. Molecular basis of intercellular adhesion in the biofilm-forming Staphylococcus epidermidis. Mol. Microbiol. 20: 1083 1091.
49. Hiramatsu, K. 1995. Molecular evolution of MRSA. Microbiol. Immunol. 39: 531 543.
50. Hollingshead, S. K.,, J. Arnold,, T. L. Readdy,, and D. E. Bessen. 1994. Molecular evolution of a multigene family in group A streptococci. Mol. Biol. Evol. 11: 208 219.
51. Inglis, B.,, H. Waldron,, and R. P. Stewart. 1987. Molecular relatedness of Staphylococcus aureus typing phages measured by DNA hybridization and high resolution thermal denaturation analysis. Arch. Virol. 93: 69 80.
52. Ji, G.,, R. Beavis,, and R. Novick. 1997. Bacterial interference caused by autoinducing peptide variants. Science 276: 2027 2030.
53. Ji, G.,, R. C. Beavis,, and R. P. Novick. 1995. Cell density control of staphylococcal virulence mediated by an octapeptide pheromone. Proc. Natl. Acad. Sci. USA 92: 12055 12059.
54. Johnson, L. P.,, and P. M. Schlievert. 1984. Group A streptococcal phage T12 carries the structural gene for pyrogenic exotoxin type A. Mol. Gen. Genet. 194: 52 56.
55. Johnson, L. P.,, P. M. Schlievert,, and D. W. Watson. 1980. Transfer of group A streptococcal pyrogenic exotoxin production to nontoxigenic strains by lysogenic conversion. Infect. Immun. 28: 254 257.
56. Jones, J.,, S. Yost,, and P. A. Pattee. 1987. Transfer of the conjugative tetracycline resistance transposon Tn 916 from Streptococcus faecalis to Staphylococcus aureus and identification of some insertion sites in the staphylococcal chromosome. J. Bacteriol. 169: 2121 2131.
57. Kass, E. H.,, M. I. Kendrick,, Y.-C. Tsai,, and J. Parsonnet. 1987. Interaction of magnesium ion, oxygen tension, and temperature in the production of toxic shock syndrome toxin-1 by Staphylococcus aureus. J. Infect. Dis. 155: 812 814.
58. Khan, S.,, and R. P. Novick. 1980. Terminal nucleotide sequence of Tn 551, a transposon specifying erythromycin resistance in Staphylococcus aureus: homology with Tn3. Plasmid 4: 148 154.
59. Kihlberg, B. M.,, J. Cooney,, M. G. Caparon,, A. Olsen,, and L. Björck. 1995. Biological properties of a Streptococcus pyogenes mutant generated by Tn916 insertion in mga. Microb. Pathog. 19: 299 315.
60. Köhler, W. 1990. Streptococcal toxic shock syndrome. Zentbl. Bakteriol. 272: 257 264.
61. Kondo, I. 1985. Genetic study on staphylokinase. Zentbl. Bakteriol. Suppl. 14: 11 29.
62. Kreiswirth, B. N.,, S. Lofdahl,, M. J. Betley,, M. O'Reilly,, and P. M. Schlievert. 1983. The toxic shock syndrome exotoxin structural gene is not detectably transmitted by a prophage. Nature 305: 709 712.
63. Laible, G.,, and R. Hakenbeck. 1991. Five independent combinations of mutations can result in low affinity penicillin-binding protein 2x of Streptococcus pneumoniae. J. Bacteriol. 173: 6986 6999.
64. Lee, C. Y.,, and J. J. Iandolo. 1986. Integration of staphylococcal phage L54a occurs by site-specific recombination: structural analysis of the attachment sites. Proc. Natl. Acad. Sci. USA 83: 5474 5478.
65. Lee, C. Y.,, and J. J. Iandolo. 1986. Lysogenic conversion of staphylococcal lipase is caused by insertion of bacteriophage L54a genome into the lipase structural genes. J. Bacteriol. 166: 385 391.
66. Leelaporn, A.,, N. Firth,, I. T. Paulsen,, and R. A. Skurray. 1996. IS257-mediated cointegration in the evolution of a family of staphylococcal trimethoprim resistance plasmids. J. Bacteriol. 178: 5070 5073.
67. Lindsay, J. A.,, A. Ruzin,, H. F. Ross,, N. Kurepina,, and R. Novick. 1998. The gene for toxic shock toxin is carried by a family of mobile pathogenicity islands in Staphylococcus aureus. Mol. Microbiol. 29: 527 543.
68. Lyon, B. R.,, and R. A. Skurray. 1987. Antimicrobial resistance of Staphylococcus aureus: genetic basis. Microbiol. Rev. 31: 2281 2285.
69. Lyon, B. R.,, J. W. May,, and R. A. Skurray. 1984. Tn 4001: a gentamicin and kanamycin resistance transposon in Staphylococcus aureus. Mol. Gen. Genet. 193: 554 556.
70. Lyon, B. R.,, M. T. Gillespie,, and R. A. Skurray. 1987. Detection and characterization of IS 256, an insertion sequence in Staphylococcus aureus. J. Gen. Microbiol. 133: 3031 3038.
71. Mack, D.,, M. Nedelmann,, A. Krokotsch,, A. Schwarzkopf,, J. Heesemann,, and R. Laufs. 1994. Characterization of transposon mutants of biofilm-producing Staphylococcus epidermidis impaired in the accumulative phase of biofilm production: genetic identification of a hexosamine-containing polysaccharide intercellular adhesin. Infect. Immun. 62: 3244 3253.
72. Mack, D.,, W. Fischer,, A. Krokotsch,, K. Leopold,, R. Hartmann,, H. Egge,, and R. Laufs. 1996. The intercellular adhesin involved in biofilm accumulation of Staphylococcus epidermidis is a linear beta-1,6-linked glucosaminoglycan: purification and structural analysis. J. Bacteriol. 178: 175 183.
73. Manillon, J.,, and M. Chandler. 1998. Insertion sequences. Microbiol. Mol. Biol. Rev. 62: 725 774.
74. Malke, H. 1974. Genetics of resistance to macrolide antibiotics and lincomycine in natural isolates of Streptococcus pyogenes. Mol. Gen. Genet. 135: 349 367.
75. Malke, H.,, and W. Köhler. 1973. Transduction among group A streptococci: transducibility of strains representative of thirty different M types. Zentbl. Bakteriol. Mikrobiol. Hyg. I Abt. Orig. A 224: 194 201.
76. Malke, H.,, R. Starke,, W. Köhler,, T. K. Kolesnichenko,, and A. A. Totolian. 1975. Bacteriophage P12334mo-mediated intra- and intergroup transduction of antibiotic resistance among streptococci. Zentbl. Bakteriol. Mikrobiol. Hyg. I Abt. Orig. A 233: 24 34.
77. Marrack, P.,, and J. Kappler. 1990. The staphylococcal enterotoxins and their relatives. Science 248: 705 711.
78. Martin, C.,, C. Sibold,, and R. Hakenbeck. 1992. Relatedness of penicillin binding protein la genes from different clones of penicillin-resistant Streptococcus pneumoniae isolated in South Africa and Spain. EMBO J. 11: 3831 3836.
79. Mclver, K. S.,, A. S. Heath,, and J. R. Scott. 1995. Regulation of virulence by environmental signals in group A streptococci: influence of osmolality, temperature, gas exchange, and iron limitation in emm transcription. Infect. Immun. 63: 4540 4542.
80. Mclver, K.,, and J. R. Scott. 1997. Role of mga in growth phase regulation of virulence genes of the group A streptococcus. J. Bacteriol. 179: 5178 5187.
81. McShan, W. M.,, Y.-F. Tang,, and J. J. Ferretti. 1997. Bacteriophage T12 of Streptococcus pyogenes integrates into the gene encoding a serine tRNA. Mol. Microbiol. 23: 719 728.
82. Mempel, M.,, H. Feucht,, W. Ziebuhr,, M. Endres,, R. Laufs,, and L. Griiter. 1994. Lack of mecA transcription in slime-negative phase variants of methicillin-resistant Staphylococcus epidermidis. Antimi-crob. Agents Chemother. 38: 1251 1255.
83. Musser, J. M.,, A. R. Hauser,, M. H. Kim,, P. M. Schlievert,, K. Nelson,, and R. K. Selander. 1991. Streptococcus pyogenes causing toxic shock-like syndrome and other invasive diseases: clonal diversity and pyrogenic exotoxin expression. Proc. Natl. Acad. Sci. USA 89: 2668 2672.
84. Needham, C.,, M. Rahman,, K. G. H. Dyke,, and W. C. Noble. 1994. An investigation of plasmids from Staphylococcus aureus that mediate resistance to mupirocin and tetracycline. Microbiology 140: 2577 2583.
85. Nida, S. K.,, and J. J. Ferretti. 1982. Phage influence on the synthesis of extracellular toxins in group A streptococci. Infect. Immun. 36: 745 750.
86. Noble, W. C.,, M. Rahman,, T. Karadec,, and S. Schwarz. 1996. Gentamicin resistance gene transfer from Enterococcus faecalis and E. faecium to Staphylococcus aureus, S. intermedius and S. hyicus. Vet. Microbiol. 52: 143 152.
87. Novick, R. P. 1989. Staphylococcal plasmids and their replication. Annu. Rev. Microbiol. 43: 537 565.
88. Novick, R. P.,, H. F. Ross,, S. J. Projan,, J. Kornblum,, B. Kreiswirth,, and S. Moghazeh. 1993. Synthesis of staphylococcal virulence factors is controlled by a regulatory RNA molecule. EMBO J. 12: 3967 3975.
89. Ohlsen, K.,, K.-P. Koller,, and J. Hacker. 1997. Analysis of expression of the alpha-toxin gene ( hla) of Staphylococcus aureus by using a chromosomally encoded hla::lacZ gene fusion. Infect. Immun. 65: 3606 3614.
90. Ohlsen, K.,, W. Ziebuhr,, K.-P. Koller,, W. Hell,, T. A. Wichelhaus,, and J. Hacker. 1998. Effects of subinhibitory concentrations of antibiotics on alpha-toxin ( hla) gene expression of methicillin-sensitive and methicillin-resistant Staphylococcus aureus isolates. Antimicrob. Agents Chemother. 42: 2817 2823.
91. Pantucek, R.,, A. Rosypalova,, J. Doskar,, J. Kallerova,, V. Ruzickova,, P. Borecka,, S. Snopkova,, R. Horvath,, F. Götz,, and S. Rosy pal. 1998. The polyvalent staphylococcal phage phi812: its host-range mutants and related phages. Virology 246: 241 252.
92. Paoletti, L. C.,, M. R. Wessels,, A. K. Rodewald,, A. A. Shroff,, H. J. Jennings,, and D. L. Kasper. 1994. Neonatal mouse protection against infection with multiple group B streptococcal (GBS) serotypes by maternal immunization with tetravalent GBS polysaccharide-tetanus toxoid conjugate vaccine. Infect. Immun. 62: 3236 3243.
93. Paton, J. C.,, P. W. Andrew,, G. J. Boulnois,, and T. J. Mitchell. 1993. Molecular analysis of the pathogenicity of Streptococcus pneumoniae: the role of pneumococcal proteins. Annu. Rev. Microbiol. 47: 89 115.
94. Perez-Casal, J.,, M. G. Caparon,, and J. R. Scott. 1991. Mry, a trans-acting positive regulator of the M protein gene of Streptococcus pyogenes with similarity to the receptor proteins of two-component regulatory systems. J. Bacteriol. 173: 2617 2624.
95. Pestova, E. V.,, L. S. Havarstein,, and D. A. Morrison. 1996. Regulation of competence for genetic transformation in Streptococcus pneumoniae by an auto-induced peptide and two component regulatory system. Mol. Microbiol. 21: 1087 1099.
96. Podbielski, A. 1993. Three different types of organization of the vir regulon in group A streptococci. Mol. Gen. Genet. 237: 287 300.
97. Podbielski, A.,, B. Krebs,, and A. Kaufhold. 1994. Genetic variability of the emm-related genes of the large vir regulon of group A streptococci: potential intra- and intergenomic recombination events. Mol. Gen. Genet. 243: 691 698.
98. Podbielski, A.,, M. Woischnik,, B. A. B. Leonard,, and K. H. Schmidt 1999. Characterization of nra, a global negative regulator gene in group A streptococci. Mol. Microbiol. 31: 1051 1064.
99. Podbielski, A.,, M. Woischnik,, B. Pohl,, and K. H. Schmidt 1996. What is the size of the group A streptococcal vir regulon? The Mga regulator affects expression of secreted and surface virulence factors. Med. Microbiol. Immunol. 185: 171 181.
100. Polissi, A.,, A. Pontiggia,, G. Feger,, M. Altieri,, H. Motti,, L. Ferrari,, and D. Simon. 1998. Large-scale identification of virulence genes from Streptococcus pneumoniae. Infect. Immun. 66: 5620 5629.
101. Proft, T.,, S. L. Moffatt,, C. J. Berkahn,, and J. D. Frazer. 1999. Identification and characterization of novel superantigens from Streptococcus pyogenes. J. Exp. Med. 189: 89 101.
102. Rachid, S.,, K. Ohlsen,, J. Hacker,, and W. Ziebuhr. Unpublished data.
103. Rakonjak, J. V.,, J. C. Robbins,, and V. A. Fischetti. 1995. DNA sequence of the serum opacity factor of group A streptococci: identification of a fibronectin-binding repeat domain. Infect. Immun. 63: 622 631.
104. Reichardt, W.,, H. Müller-Alouf,, J. E. Alouf,, and W. Köhler. 1992. Erythrogenic toxins A, B, and C: occurrence of the genes and exotoxin formation from clinical Streptococcus pyogenes strains associated with streptococcal toxic shock-like syndrome. FEMS Microbiol. Lett. 100: 313 322.
105. Reichmann, P.,, A. König,, J. Linares,, F. Alcaide,, F. C. Tenover,, L. McDougal,, S. Swidsinski,, and R. Hakenbeck. 1997. A global gene pool for high level cephalosporin resistance in commensal Streptococcus species and Streptococcus pneumoniae. J. Infect. Dis. 176: 1001 1012.
106. Rice, L. B.,, and A. S. Thorisdottir. 1994. The prevalence of sequences homologous to IS 256 in clinical enterococcal isolates. Plasmid 32: 344 349.
107. Rouch, D. A.,, L. J. Messerotti,, L. S. Loo,, C. A. Jackson,, and R. A. Skurray. 1989. Trimethoprim resistance transposon Tn 4003 from Staphylococcus aureus encodes genes for a dihydrofolate reductase and thymidylate synthetase flanked by three copies of IS 257. Mol. Microbiol. 3: 161 175.
108. Rouch, D. A.,, M. E. Byrne,, Y. C. Kong,, and R. A. Skurray. 1987. The aacA-aphD gentamicin and kanamycin resistance determinant of 7n 4001 from Staphylococcus aureus: expression and nucleotide sequence analysis. J. Gen. Microbiol. 133: 3039 3052.
109. Rowland, S.-J.,, D. J. Sherratt,, W. M. Stark,, and H. R. Boocock. 1995. Tn 552 transposase purification and in vitro activities. EMBO J. 14: 196 205.
110. Rudin, L.,, J. E. Sjöström,, M. Lindberg,, and L. Philipson. 1974. Factors affecting competence for transformation in Staphylococcus aureus. J. Bacteriol. 118: 155 164.
111. Ryffel, C.,, R. Bucher,, F. H. Kayser,, and B. Berger-Bächi. 1991. The Staphylococcus aureus mec determinant comprises an unusual cluster of direct repeats and codes for a gene product similar to the Escherichia coli sn-glycerophosphoryl diester phosphodiesterase. J. Bacteriol. 173: 7416 7422.
112. Shalita, Z.,, E. Murphy,, and R. P. Novick. 1980. Penicillinase plasmids of Staphylococcus aureus: structural and evolutionary relationships. Plasmid 3: 291 311.
113. Sibold, C.,, J. Henrichsen,, A. König,, C. Martin,, L. Chalkley,, and R. Hakenbeck. 1994. Mosaic pbpX gene of major clones of penicillin resistant Streptococcus pneumoniae have evolved from pbpX genes of a penicillin sensitive Streptococcus oralis. Mol. Microbiol. 12: 1013 1023.
114. Skurray, R. A.,, and N. Firth,. 1997. Molecular evolution of multiple antibiotic-resistant staphylococci, p. 71 75. In S. B. Levy (ed.), Antibiotic Resistance: Origins, Evolution, Selection and Spread. John Wiley & Sons, Inc., New York, N.Y.
115. Smeltzer, M. S.,, M. E. Hart,, and J. J. Iandolo. 1994. The effect of lysogeny on the genomic organization of Staphylococcus aureus. Gene 138: 51 57.
116. Song, M. D.,, M. Wachi,, M. Doi,, F. Ishino,, and M. Matsuhashi. 1987. Evolution of an inducible penicillin-target protein in methicillin-resistant Staphylococcus aureus by gene fusion. FEBS Lett. 221: 167 171.
117. Stevens, D. L.,, M. H. Tanner,, J. Winship,, R. S warts,, K. M. Ries,, P. M. Schlievert,, and E. Kaplan. 1989. Severe group A streptococcal infections associated with a toxic shock-like syndrome and scarlet fever toxin A. N. Engl. J. Med. 321: 1 7.
118. Stewart, P. R.,, D. T. Dubin,, S. G. Chikramane,, B. Inglis,, P. R. Matthews,, and S. M. Poston. 1994. IS 257 and small plasmici insertions in the mec region of the chromosome of Staphylococcus aureus. Plasmid 31: 12 20.
119. Thumm, G.,, and F. Götz. 1997. Studies on prolysostaphin processing and characterization of the lyso-staphin immunity factor (Lif) of Staphylococcus simulons biovar staphylolyticus. Mol. Microbiol. 23: 1251 1265.
120. Trees, D. J.,, and J. J. Iandolo. 1988. Identification of a Staphylococcus aureus transposon (Tn 4291) that carries the methicillin resistance gene(s). J. Bacteriol. 170: 149 154.
121. Weeks, C. R.,, and J. J. Ferretti. 1984. The gene for type A streptococcal exotoxin (erythrogenic toxin) is located in bacteriophage T12. Infect. Immun. 52: 144 150.
122. Westh, H.,, P.M. Hongaard,, J. Vunst,, and V. Rosdahl. 1995. Prevalence of erm gene classes in erythromy-cin-resistant Staphylococcus aureus strains isolated between 1959 and 1988. Antimicrob. Agents Chemother. 39: 369 373.
123. Witte, W.,, and R. Hummel. 1986. Antibiotic resistance in Staphylococcus aureus isolated from man and animals. Banbury Rep. 24: 95 106.
124. Wu, S.,, C. Piscitelli,, H. de Lencastre,, and A. Tomasz. 1996. Tracking the evolutionary origin of the methicillin resistance gene: cloning and sequencing of a homologue of mecA from a methicillin susceptible strain of Staphylococcus sciuri. Microb. Drug Resist. 2: 435 441.
125. Wu, S.,, H. de Lencastre,, and A. Tomasz. 1998. Genetic organization of the mecA region in methicillin-susceptible and methicillin-resistant strains of Staphylococcus sciuri. J. Bacteriol. 180: 236 242.
126. Ye, Z. H.,, and C. Lee. 1993. Cloning, sequencing and genetic characterization of regulatory genes rinA and rinB required for activation of staphylococcal phage phi11 int expression. J. Bacteriol. 175: 1095 1102.
127. Ye, Z. H.,, S. Buranen,, and C. Lee. 1990. Sequence analysis and comparison of int and xis genes from staphylococcal bacteriophage L54a and phi 11. J. Bacteriol. 172: 2568 2575.
128. Yu, C. E.,, and J. J. Ferretti. 1991. Molecular characterization of new group A bacteriophages containing the gene for streptococcal erythrogenic toxin A ( speA). Mol. Gen. Genet. 231: 161 168.
129. Ziebuhr, W.,, C. Heilmann,, F. Götz,, P. Meyer,, K. Wilms,, E. Straube,, and J. Hacker. 1997. Detection of the intercellular adhesin gene cluster ( ica) and phase variation in Staphylococcus epidermidis blood culture strains and mucosal isolates. Infect. Immun. 65: 890 896.
130. Ziebuhr, W.,, I. Löβner,, and J. Hacker. Unpublished data.
131. Ziebuhr, W.,, V. Krimmer,, S. Rachid,, I. Löβner,, F. Götz,, and J. Hacker. 1999. A novel mechanism of phase variation of virulence in Staphylococcus epidermidis: evidence for control of the polysaccharide intercellular adhesin synthesis by alternating insertion and excision of the insertion sequence element IS 256. Mol. Microbiol. 32: 345 356.

Tables

Generic image for table
Table 1

Extracellular and surface-associated proteins of

Citation: Ohlsen K, Ziebuhr W, Hacker J, Reichardt W, Witte W, Götz F. 1999. Mobile Elements, Phages, and Genomic Islands of Staphylococci and Streptococci, p 265-287. In Kaper J, Hacker J (ed), Pathogenicity Islands and Other Mobile Virulence Elements. ASM Press, Washington, DC. doi: 10.1128/9781555818173.ch14
Generic image for table
Table 2

Extracellular and surface-associated proteins of

Citation: Ohlsen K, Ziebuhr W, Hacker J, Reichardt W, Witte W, Götz F. 1999. Mobile Elements, Phages, and Genomic Islands of Staphylococci and Streptococci, p 265-287. In Kaper J, Hacker J (ed), Pathogenicity Islands and Other Mobile Virulence Elements. ASM Press, Washington, DC. doi: 10.1128/9781555818173.ch14
Generic image for table
Table 3

Examples of IS elements

Citation: Ohlsen K, Ziebuhr W, Hacker J, Reichardt W, Witte W, Götz F. 1999. Mobile Elements, Phages, and Genomic Islands of Staphylococci and Streptococci, p 265-287. In Kaper J, Hacker J (ed), Pathogenicity Islands and Other Mobile Virulence Elements. ASM Press, Washington, DC. doi: 10.1128/9781555818173.ch14
Generic image for table
Table 4

Antibiotic resistance transposons in

Citation: Ohlsen K, Ziebuhr W, Hacker J, Reichardt W, Witte W, Götz F. 1999. Mobile Elements, Phages, and Genomic Islands of Staphylococci and Streptococci, p 265-287. In Kaper J, Hacker J (ed), Pathogenicity Islands and Other Mobile Virulence Elements. ASM Press, Washington, DC. doi: 10.1128/9781555818173.ch14
Generic image for table
Table 5

Examples of resistance plasmids

Citation: Ohlsen K, Ziebuhr W, Hacker J, Reichardt W, Witte W, Götz F. 1999. Mobile Elements, Phages, and Genomic Islands of Staphylococci and Streptococci, p 265-287. In Kaper J, Hacker J (ed), Pathogenicity Islands and Other Mobile Virulence Elements. ASM Press, Washington, DC. doi: 10.1128/9781555818173.ch14

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error