1887

Chapter 16 : The hrp Cluster of Pseudomonas syringae: aPathogenicity Island Encoding a Type III Protein Translocation Complex?

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

The hrp Cluster of Pseudomonas syringae: aPathogenicity Island Encoding a Type III Protein Translocation Complex?, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818173/9781555811617_Chap16-1.gif /docserver/preview/fulltext/10.1128/9781555818173/9781555811617_Chap16-2.gif

Abstract:

This chapter focuses on the pathogenicity determinants of as a paradigm for microbial pathogenesis in plants. It focuses specifically upon genetic determinants of strains necessary for colonization of plant tissue. As in mammalian pathogens, essential pathogenicity determinants of several plant-pathogenic bacteria are localized in apparent pathogenicity islands (PAIs). Proteins translocated by a type III protein translocation complex (PTC) similar to that of its mammalian counterparts mediate both the pathogenicity and host range of strains. Hybridization analysis indicates that all strains carry a homolog to HrpW and that a homolog is present in the closely related cluster. The pectate lyase-like domain was the most highly conserved region of the protein from two strains. The genetic organization of clusters and regulatory mechanisms controlling environmental regulation are clearly distinct between the two groups of clusters. For example, the primary regulatory factor for the and clusters is an AraC homolog (HrpX and HrpB, respectively. By analogy to mammalian pathogens, pathogenesis by plant pathogenic bacteria, such as , probably involves (i) adhesion of the bacteria to plant cells, (ii) activation of a type III PTC, (iii) translocation of pathogenicity determinants into plant cells, (iv) physiological changes in the host cells to stimulate the release of nutrients, (v) production of virulence factors to facilitate the growth of the bacteria, and (vi) growth and spread of the bacteria to surrounding cells in the tissue.

Citation: Hutcheson S. 1999. The hrp Cluster of Pseudomonas syringae: aPathogenicity Island Encoding a Type III Protein Translocation Complex?, p 309-329. In Kaper J, Hacker J (ed), Pathogenicity Islands and Other Mobile Virulence Elements. ASM Press, Washington, DC. doi: 10.1128/9781555818173.ch16

Key Concept Ranking

Mobile Genetic Elements
0.46722764
Type III Secretion System
0.43858114
0.46722764
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Organization of the cluster. Shaded polygons or boxes represent genes. The arrowhead indicates the deduced direction of transcription for the operon. Operon designations are indicated below the figure, and gene designations are given above their respective component. Gene designations are segregated into and according to the terminology of Bogdanove et al. ( ). genes are indicated by medium gray shading. The dashed lines connect the variable-host-range and semiconserved pathogenicity regions to the central conserved region. In the host range region, the operon of Pss61 ( ) and the locus of pv. phaseolicola 1302A ( ) are shown to indicate the variability of the region. HrmA and AvrPphE do not show homology to each other. pv. tomato DC3000 lacks either locus. A key to the deduced functions of the gene products is included. See Table 1 for references.

Citation: Hutcheson S. 1999. The hrp Cluster of Pseudomonas syringae: aPathogenicity Island Encoding a Type III Protein Translocation Complex?, p 309-329. In Kaper J, Hacker J (ed), Pathogenicity Islands and Other Mobile Virulence Elements. ASM Press, Washington, DC. doi: 10.1128/9781555818173.ch16
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Comparison of group I and group II clusters. The clusters off. ,and are represented. Conserved genes are indicated by the medium gray boxes as in Fig. 1 and are labeled above the corresponding gene. Selected genes referred to in the text are labeled below the corresponding gene. The labeled black arrows in the group I clusters represent conserved operons. For group I clusters, note similarities in the organization of genes within individual operons. In ,the and operons are merged into a single operon. The designations for homologs, when different, are indicated in parentheses. Only the central region of group II clusters encoding apparent components of the PTC is shown. The clusters of and are colinear except for the difference in the position of HrpX. designations for selected genes are shown in parentheses. Note the difference in the organization of genes between the two groups of clusters. See the text for references and Fig. 1 for fill pattern codes.

Citation: Hutcheson S. 1999. The hrp Cluster of Pseudomonas syringae: aPathogenicity Island Encoding a Type III Protein Translocation Complex?, p 309-329. In Kaper J, Hacker J (ed), Pathogenicity Islands and Other Mobile Virulence Elements. ASM Press, Washington, DC. doi: 10.1128/9781555818173.ch16
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818173.chap16
1. Agrios, G. N. 1988. Plant Pathology, 3rd ed. Academic Press, Inc., New York, N.Y.
2. Alfano, J. R.,, D. W. Bauer,, T. M. Milos,, and A. Collmer. 1996. Analysis of the role of the Pseudomonas syringae pv. syringae HrpZ harpin in elicitation of the hypersensitive response in tobacco using functionally nonpolar deletion mutations, truncated HrpZ fragments and hrmA mutations. Mol. Microbiol. 19: 715 728.
3. Alfano, J. R.,, and A. Collnier. 1996. Bacterial pathogens in plants: life up against the wall. Plant Cell 8: 1683 1698.
4. Alfano, J. R.,, and A. Collmer. 1997. The type III (Hrp) secretion pathway of plant pathogenic bacteria: trafficking hatpins, Avr proteins, and death. J. Bacteriol. 179: 5655 5662.
5. Alfano, J. R.,, H.-S. Kim,, T. P. Delaney,, and A. Collmer. 1997. Evidence that the Pseudomonas syringae pv. syringae hrp-linked hrmA gene encodes an hrp-like protein that acts in a hrp-dependent manner within tobacco cells. Mol. Plant-Microbe Interact. 10: 580 588.
6. Arlat, M.,, C. L. Gough,, C. Boucher,, and M. J. Daniels. 1991. Xanthomonas campestris contains a cluster of hrp genes related to the larger hrp cluster of Pseudomonas solanacearum. Mol. Plant-Microbe Interact. 4: 593 601.
7. Arlat, M.,, F. Van Gijsegem,, J. C. Huet,, J. C. Pernollet,, and C. A. Bouncher. 1994. PopA1, a protein which induces a hypersensitivity-like response on specific Petunia genotypes, is secreted via the Hrp pathway of Pseudomonas solanacearum. EMBO J. 13: 543 553.
8. Atkinson, M. M.,, and C. J. Baker. 1987. Alteration of plasmalemma sucrose transport in bean leaves by Pseudomonas syringae pv. syringae and its association with K +H ++ exchange. Phytopathology 77: 1573 1578.
9. Atkinson, M. M.,, J.-S. Huang,, and C. G. Van Dyke. 1981. Adsorption of pseudomonads to tobacco cell walls and its significance to bacterium-host interactions. Physiol. Plant Pathol. 18: 1 5.
10. Bauer, D. W.,, A. J. Bogdanove,, S. V. Beer,, and A. Collmer. 1994. Erwinia chrysanthemi hrp genes and their involvement in soft rot pathogenesis and elicitation of the hypersensitive response. Mol. Plant-Microbe Interact. 7: 573 581.
11. Bender, C. L., 1997. Phytotoxin production in Pseudomonas syringae, p. 124 144. In G. Stacey, and N. T. Keen (ed.), Plant-Microbe Interactions, vol. 3. Chapman & Hall, New York, N.Y.
12. Bogdanove, A.,, Z.-M. Wei,, L. Zhao,, and S. V. Beer. 1996. Erwinia amylovora secretes harpin via a type III pathway and contains a homolog of yopN of Yersinia spp. J. Bacteriol. 178: 1720 1730.
13. Bogdanove, A. J.,, S. V. Beer,, U. Bonas,, C. A. Boucher,, A. Collmer,, D. L. Coplin,, G. R. Cornelis,, H. C. Huang,, S. W. Hutcheson,, N. J. Panopoulos,, and F. VanGijsegem. 1996. Unified nomenclature for broadly conserved hrp genes of phytopathogenic bacteria. Mol. Microbiol. 20: 681 683.
14. Bogdanove, A. J.,, J. F. Kim,, Z.-M. Wei,, P. Kolchinsky,, A. O. Charkowski,, A. K. Conlin,, A. Collmer,, and S. V. Beer. 1998. Homology and functional similarity of an hrp-linked pathogenicity locus, dspEF,of Erwinia amylovora and the avirulence locus avrE of Pseudomonas syringae pathovar tomato. Proc. Natl. Acad. Sci. USA 95: 1325 1330.
15. Boucher, C.,, A. Martinel,, P. Barberis,, G. Alloing,, and C. Zischek. 1986. Virulence genes are carried by a megaplasmid of the plant pathogen Pseudomonas solanacearum. Mol. Gen. Genet. 205: 270 275.
16. Boyes, D. C.,, J. Nam,, and J. L. Dangl. 1998. The Arabidopsis thaliana RPM1 disease resistance gene product is a peripheral plasma membrane protein that is degraded coincident with the hypersensitive response. Proc. Natl. Acad. Sci. USA 95: 15849 15854.
17. Brito, B.,, M. Marenda,, P. Barberis,, C. Boucher,, and S. Genin. 1999. prhJ and hrpG,two new components of the plant signal-dependent regulatory cascade controlled by PrhA in Ralstonia solanacearum. Mol. Microbiol. 31: 237 251.
18. Brown, J. R.,, and J. W. Mansfield. 1988. An ultrastructural study, including cytochemistry and quantitative analyses, of the interactions between pseudomonads and leaves of Phaseolus vulgaris L. Physiol. Mol. Plant Pathol. 33: 351 361.
19. Charkowski, A. O.,, J. R. Alfano,, G. Preston,, J. Yuan,, S. Y. He,, and A. Collmer. 1998. The Pseudomonas syringae pv. tomato HrpW protein has domains similar to harpins and pectate lyases and can elicit the plant hypersensitive response and bind to pectate. J. Bacteriol. 180: 5211 5217.
20. Charkowski, A. O.,, H. C. Huang,, and A. Collmer. 1997. Altered localization of HrpZ in Pseudomonas syringae pv. syringae hrp mutants suggests that different components of the type III secretion pathway control protein translocation across the inner and outer membrane of gram-negative bacteria. J. Bacteriol. 179: 3866 3874.
21. Coplin, D. L.,, R. D. Frederick,, D. R. Majerczak,, and L. D. Tuttle. 1992. Characterization of a gene cluster that specifies pathogenicity in Erwinia stewartii. Mol. Plant-Microbe Interact. 5: 81 88.
22. Dangl, J. Personal communication.
23. Dangl, J. L.,, R. A. Dietrich,, and M. H. Richberg. 1996. Death don't have no mercy: cell death programs in plant-microbe interactions. Plant Cell 8: 1793 1807.
24. Deng, W. L.,, G. Preston,, A. Collmer,, C.-J. Chang,, and H.-C. Huang. 1998. Characterization of the hrpC and hrpRS operons of Pseudomonas syringae pathovars syringae, tomato and glycinea and analysis of the ability of hrpF, hrpG, hrcC, hrpT,and hrpV mutants to elicit the hypersensitive response and disease in plants. J. Bacteriol. 180: 4523 4531.
25. Dye, D. W.,, J. F. Bradbury,, M. Goto,, A. C. Hay ward,, R. A. Lelliott,, and M. N. Schroth. 1980. International standards for naming pathovars of phytopathogenic bacteria and a list of pathovar names and pathotype strains. Rev. Plant Pathol. 59: 153 168.
26. Fenselau, S.,, and U. Bonas. 1995. Sequence and expression analysis of the hrpB pathogenicity operon of Xanthomonas campestris pv. vesicatoria which encodes eight proteins with similarity to components of the Hrp, Ysc, Spa and Fli secretion systems. Mol. Plant-Microbe Interact. 8: 845 859.
27. Fouts, D. E.,, and A. Collmer. Personal communication.
28. Gabriel, D. W. 1997. Targeting of protein signals from Xanthomonas to the plant nucleus. Trends Plant Sci. 2: 204 206.
29. Galan, J. 1998. "Avirulence genes" in animal pathogens? Trends Microbiol. 6: 3 6.
30. Genin, S.,, C. L. Gough,, C. Zischek,, and C. A. Boucher. 1992. Evidence that the hrpB gene encodes a positive regulator for pathogenicity genes of Pseudomonas solanacearum. Mol. Microbiol. 6: 3065 3076.
31. Glickman, E.,, L. Gardan,, S. Jacquet,, S. Hussain,, M. Elasi,, A. Petit,, and Y. Dessaux. 1998. Auxin production is a common feature of most pathovars of Pseudomonas syringae. Mol. Plant-Microbe Interact. 11: 156 162.
32. Gopalan, S.,, D. W. Bauer,, J. R. Alfano,, A. O. Loniello,, S. Y. He,, and A. Collmer. 1996. Expression of the Pseudomonas syringae avirulence protein AvrB in plant cells alleviates its dependence on the hypersensitive response and pathogenicity (Hrp) secretion system in eliciting genotype-specific hypersensitive cell death. Plant Cell 8: 1095 1105.
33. Grimm, C.,, W. Aufsatz,, and N. J. Panopoulos. 1995. The hrpRS locus of Pseudomonas syringae pv. phaseolicola constitutes a complex regulatory unit. Mol. Microbiol. 15: 155 165.
34. Grimm, C.,, and N. J. Panopoulos. 1989. The predicted protein product of a pathogenicity locus from Pseudomonas syringae pv. phaseolicola is homologous to a highly conserved domain of several prokaryotic regulatory proteins. J. Bacteriol. 171: 5031 5038.
35. Gross, D. C. 1991. Molecular and genetic analysis of toxin production by pathovars of Pseudomonas syringae. Annu. Rev. Phytopathol. 29: 247 278.
36. Hammond-Kosack, K. E.,, and J. D. G. Jones. 1997. Plant disease resistance genes. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48: 575 607.
37. Hardt, W.-D.,, and J. E. Galan. 1997. A secreted Salmonella protein with homology to an avirulence determinant of plant pathogenic bacteria. Proc. Natl. Acad. Sci. USA 94: 9887 9892.
38. He, S. Y.,, H. C. Huang,, and A. Collmer. 1993. Pseudomonas syringae pv. syringae HarpinPss: a protein that is secreted via the Hrp pathway and elicits the hypersensitive response in plants. Cell 73: 1255 1266.
39. Heu, S.,, and S. W. Hutcheson. 1993. Nucleotide sequence and properties of the hrmA locus associated with the P. syringae pv. syringae 61 hrp gene cluster. Mol. Plant-Microbe Interact. 6: 553 564.
40. Hildebrand, D. C.,, M. C. Alosi,, and M. N. Schroth. 1980. Physical entrapment of pseudomonads in bean leaves by films formed at air-water interfaces. Phytopathology 70: 98 109.
41. Hirano, S. S.,, and C. D. Upper. 1990. Population biology and epidemiology of Pseudomonas syringae. Annu. Rev. Phytopathol. 28: 155 177.
42. Huang, H. C.,, S. W. Hutcheson,, and A. Collmer. 1991. Characterization of the hrp cluster from Pseudomonas syringae pv. syringae 61 and TnphoA tagging of exported or membrane-spanning Hrp proteins. Mol. Plant-Microbe Interact. 4: 469 476.
43. Huang, H. C.,, R. H. Lin,, C. J. Chang,, A. Collmer,, and W. L. Deng. 1995. The complete hrp gene cluster of Pseudomonas syringae pv. syringae 61 includes two blocks of genes required for harpin Pss secretion that are arranged colinearly with Yersinia ysc homologs. Mol. Plant-Microbe Interact. 8: 733 746.
44. Huang, H. C.,, R. Schuurink,, T. P. Denny,, M. M. Atkinson,, C. J. Baker,, I. Yucel,, S. W. Hutcheson,, and A. Collmer. 1988. Molecular cloning of a Pseudomonas syringae pv. syringae gene cluster that enables Pseudomonas fluorescens to elicit the hypersensitive response in tobacco. J. Bacteriol. 170: 4748 4756.
45. Huang, H. C.,, Y. Xiao,, R.-H. Lin,, Y. Lu,, S. W. Hutcheson,, and A. Collmer. 1993. Characterization of the Pseudomonas syringae pv. syringae 61 hrpJ and hrpI genes: homology of HrpI to a superfamily of proteins associated with protein translocation. Mol. Plant-Microbe Interact. 6: 515 520.
46. Hueck, C. J. 1998. Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol. Mol. Biol. Rev. 62: 379 433.
47. Hughes, K. T.,, K. L. Gillen,, M. J. Semon,, and J. E. Karlinsky. 1993. Sensing structural intermediates in bacterial flagellar assembly by export of a negative regulator. Science 262: 1277 1280.
48. Hutcheson, S. W. 1998. Current concepts of active defense in plants. Annu. Rev. Phytopathol. 36: 59 90.
49. Hutcheson, S. W., 1997. The hrp-encoded protein export systems of Pseudomonas syringae and other plant pathogenic bacteria and their role in pathogenicity, p. 145 179. In G. Stacey, and N. Keen (ed.), Plant-Microbe Interactions, vol. 3. Chapman & Hall, New York, N.Y.
50. Hutcheson, S. W.,, A. Collmer,, and C. J. Baker. 1989. Elicitation of the hypersensitive response by Pseudomonas syringae. Physiol. Plant. 76: 155 163.
51. Hutcheson, S. W.,, S. Heu,, S. Jin,, M. C. Lidell,, M. U. Pirhonen,, and D. L. Rowley,. 1996. Function and regulation of Pseudomonas syringae hrp genes, p. 512 521. In T. Nakazawa,, K. Furukawa,, D. Haas,, and S. Silver (ed.), Molecular Biology of Pseudomonads. American Society for Microbiology, Washington, D.C.
52. Hutcheson, S. W.,, S. Jin,, M. C. Lidell,, and X. Fu,. 1996. Pseudomonas syringae hrp genes: regulation and role in avirulence phenotypes, p. 153 158. In G. Stacey,, B. Mullin,, and P. M. Gresshoff (ed.), Biology of Plant-Microbe Interactions. International Society for Molecular Plant-Microbe Interactions, St. Paul, Minn.
53. Huynh, T.,, D. Dahlbeck,, and B. J. Staskawicz. 1989. Bacterial blight of soybean: regulation of a pathogen gene determining host cultivar specificity. Science 245: 1374 1377.
54. Innes, R. W.,, A. F. Bent,, B. N. Kunkel,, S. R. Bisgrove,, and B. J. Staskawicz. 1993. Molecular analysis of avirulence gene avrRpt2 and identification of a putative regulatory sequence common to all known Pseudomonas syringae avirulence genes. J. Bacteriol. 175: 4859 4869.
55. Kearney, B.,, and B. J. Staskawicz. 1990. Widespread distribution and fitness contribution of Xanthomonas campestris avirulence gene avrBs2. Nature (London) 346: 385 386.
56. Kim, J. F.,, and S. V. Beer. 1998. HrpW of Erwinia amylovora,a new harpin that contains a domain homologous to pectate lyases of a distinct class. J. Bacteriol. 180: 5203 5210.
57. Kim, J. F.,, A. O. Charkowski,, J. R. Alfano,, A. Collmer,, and S. V. Beer. 1998. Sequences related to transposable elements and bacteriophages flank avirulence genes of Pseudomonas syringae. Mol. Plant-Microbe Interact. 11: 1247 1252.
58. Kim, J. F.,, J. H. Ham,, D. W. Bauer,, A. Collmer,, and S. V. Beer. 1998. The hrcC and hrpN operons of Erwinia chrysanthemi EC 16 are flanked by pic A and homologs of hemoly sin/adhesion genes and accompanying activator/transporter genes. Mol. Plant-Microbe Interact. 11: 563 567.
59. Laby, R. J.,, and S. V. Beer. 1992. Hybridization and functional complementation of the hrp gene cluster from Erwinia amylovora strain Ea321 with DNA of other bacteria. Mol. Plant-Microbe Interact. 5: 412 419.
60. Leach, J. E.,, and F. F. White. 1996. Bacterial avirulence genes. Annu. Rev. Phytopathol. 34: 153 179.
61. Leigh, J. A.,, and D. L. Coplin. 1992. Exopolysaccharides in plant-bacterial interactions. Annu. Rev. Microbiol. 46: 307 346.
62. Leister, R. T.,, F. M. Ausubel,, and F. Katagiri. 1996. Molecular recognition of pathogen attack occurs inside of plant cells in plant disease resistance specified by the Arabidopsis genes RPS2 and RPMI. Proc. Natl. Acad. Sci. USA 93: 3459 3464.
63. Lidell, M.,, and S. W. Hutcheson. 1994. Characterization of the hrpJ and U operons of Pseudomonas syringae pv. syringae Pss61: similarity with components of enteric bacteria involved in flagellar biogenesis and demonstration of their role in harpinPss translocation. Mol. Plant-Microbe Interact. 7: 488 497.
64. Lidell, M. C. 1998. Ph.D. thesis. University of Maryland, College Park.
65. Lindgren, P. B. 1997. The role of hrp genes during plant-bacterial interactions. Annu. Rev. Phytopathol. 35: 129 152.
66. Lindgren, P. B.,, R. C. Peet,, and N. J. Panopoulos. 1986. Gene cluster of Pseudomonas syringae pv. phaseolicola controls pathogenicity on bean plants and hypersensitivity on nonhost plants. J. Bacteriol. 168: 512 522.
67. Lorang, J. M.,, and N. T. Keen. 1995. Characterization of avrE from Pseudomonas syringae pv. tomato: a hrp-linked avirulence locus consisting of at least two transcriptional units. Mol. Plant-Microbe Interact. 8: 49 57.
68. Lorang, J. M.,, H. Shen,, D. Kobayashi,, D. Cooksey,, and N. T. Keen. 1994. avr A and avrE in Pseudomonas syringae pv. tomato PT23 play a role in virulence on tomato plants. Mol. Plant-Microbe Interact. 7: 508 515.
69. Macnab, R. M., 1996. Flagella and motility, p. 123 145. In F. C. Neidhardt,, R. Curtiss III,, J. L. Ingraham,, E. C. C. Lin,, K. B. Low,, B. Magasanik,, W. S. Reznikoff,, M. Riley,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd ed., vol. 1. ASM Press, Washington, D.C.
70. Mansfield, J.,, I. Brown,, and A. Maroofi,. 1994. Bacterial pathogenicity and the plant's response: ultrastructure, biochemical and physiological perspectives, p. 85 106. In D. D. Bills, and S. D. Kung (ed.). Biotechnology and Plant Protection: Bacterial Pathogenesis and Disease Resistance. World Scientific Publishing, Singapore.
71. Mansfield, J.,, C. Jenner,, R. Hockenhull,, M. A. Bennett,, and R. Stewart. 1994. Characterization of avrPphE,a gene for cultivar-specific avirulence from Pseudomonas syringae pv. phaseolicola which is physically linked to hrpY,a new hrp gene identified in the halo-blight bacterium. Mol. Plant-Microbe Interact. 7: 726 739.
72. Marenda, M.,, B. Brito,, D. Callard,, S. Genin,, P. Barberis,, C. A. Boucher,, and M. Arlat. 1998. PrhA controls a novel regulatory pathway required for the specific induction of Ralstonia solanacearum hrp genes in the presence of plant cells. Mol. Microbiol. 27: 437 454.
73. Mills, S. D.,, A. Boland,, M.-P. Sory,, P. Van Der Smissen,, C. Kerbourch,, B. B. Finlay,, and G. R. Cornells. 1997. Yersinia enterocolitica induces apoptosis in macrophages by a process requiring functional type III secretion and translocation mechanisms and involving YopP, presumably acting as an effector protein. Proc. Natl. Acad. Sci. USA 94: 12638 12643.
74. Mudgett, M. B.,, and B. J. Staskawicz. 1997. Protein signaling via type II secretion pathways in phytopathogenic bacteria. Curr. Opin. Microbiol. 1: 109 114.
75. Mukherjee, A.,, Y. Cui,, Y. Liu,, C. K. Dumenyo,, and A. K. Chatterjee. 1997. Molecular characterization and expression of the Erwinia carotovora hrpNEcc gene, which encodes an elicitor of the hypersensitive response. Mol. Plant-Microbe Interact. 10: 462 471.
76. Nizan, R.,, I. Barash,, L. Valinsky,, A. Lichter,, and S. Manulis. 1997. The presence of hrp genes on the pathogenicity-associated plasmid of the tumorigenic bacterium Erwinia herbicola pv. gypsophilae. Mol. Plant-Microbe Interact. 11: 763 771.
77. Olsen, G. J.,, C. R. Woese,, and R. Overbeek. 1994. The winds of (evolutionary) change: breathing new life into microbiology. J. Bacteriol. 176: 1 6.
78. Pallaroni, N. I., 1984. Pseudomonaceae, p. 141 210. In N. R. Krieg, and J. G. Holt (ed.), Bergey's Manual of Systematic Bacteriology, vol. 1. The Williams & Wilkins Co., Baltimore, Md.
79. Panopoulos, N. J.,, and M. N. Schroth. 1974. Role of flagellar motility in the invasion of bean leaves by Pseudomonas phaseolicola. Phytopathology 64: 1389 1397.
80. Peuppke, S. G.,, and D. A. Kluepfel,. 1985. Responses of plant cells to absorbed bacteria, p. 404 435. In D. C. Savage, and M. Fletcher (ed.), Bacterial Adhesion. Mechanisms and Physiological Significance. Plenum Press, New York, N.Y.
81. Pirhonen, M. U.,, M. C. Lidell,, D. Rowley,, S. W. Lee,, S. Silverstone,, Y. Liang,, N. T. Keen,, and S. W. Hutcheson. 1996. Phenotypic expression of Pseudomonas syringae avr genes in E. coli is linked to the activities of the /irp-encoded secretion system. Mol. Plant-Microbe Interact. 9: 252 260.
82. Preston, G.,, W.-L. Deng,, H.-C. Huang,, and A. Collmer. 1998. Negative regulation of hrp genes in Pseudomonas syringae by Hrp V. J. Bacteriol. 180: 4532 4537.
83. Preston, G.,, H. C. Huang,, S. Y. He,, and A. Collmer. 1995. The HrpZ proteins of Pseudomonas syringae pvs. syringae, glycinea, and tomato are encoded by an operon containing Yersinia ysc homologs and elicit the hypersensitive response in tomato but not soybean. Mol. Plant-Microbe Interact. 8: 717 732.
84. Rahme, L. G.,, M. N. Mindronos,, and N. J. Panopoulos. 1992. Plant and environmental sensory signals control the expression of hrp genes in Pseudomonas syringae pv. phaseolicola. J. Bacteriol. 174: 3499 3507.
85. Roine, E.,, D. M. Raineri,, M. Romantschuk,, M. Wilson,, and D. N. Nunn. 1998. Characterization of type IV pilus genes in Pseudomonas syringae pv. tomato DC3000. Mol. Plant-Microbe Interact. 11: 1048 1056.
86. Roine, E.,, J. Saarinen,, N. Kalkkinen,, and M. Romantshuk. 1997. Purified HrpA of Pseudomonas syringae pv. tomato DC3000 reassembles into pili. FEBS Lett. 417: 168 172.
87. Roine, E.,, W. Wei,, J. Yuan,, E.-L. Nurmiaho-Lassila,, N. Kalkkinen,, M. Romantschuk,, and S.-Y. He. 1997. Hrp pilus: an A/p-dependent bacterial surface appendage produced by Pseudomonas syringae pv. tomato DC3000. Proc. Natl. Acad. Sci. USA 94: 3459 3464.
88. Romantschuk, M.,, E. Roine,, and K. Bjorklof,. 1997. Attachment of Pseudomonas syringae to plant surfaces, p. 3 10. In K. Rudolph,, T. J. Burr,, J. W. Mansfield,, D. Stead,, A. Vivian,, and J. von Kietzell (ed.), Pseudomonas syringae Pathovars and Related Pathogens. Kluwer Academic Publishers, Dordrecht, The Netherlands.
89. Ruckdeschel, K.,, A. Roggenkamp,, V. Lafont,, P. Mangeat,, J. Heeseman,, and B. Rouot 1997. Interaction of Yersinia enterocolitica with macrophages leads to macrophage cell death through apoptosis. Infect. Immun. 65: 4813 4821.
90. Rudolph, K.,, and B. Sonnenberg,. 1997. Role of polysaccharides from Pseudomonas syringae pathovars in pathogenesis, p. 265 270. In K. Rudolph,, T. J. Burr,, J. W. Mansfield,, D. Stead,, A. Vivian,, and J. von Kietzell (ed.), Pseudomonas syringae Pathovars and Related Pathogens. Kluwer Academic Publishers, Dordrecht, The Netherlands.
91. Rudolph, K. W. E.,, M. Gross,, F. Ebrahim-Nesbat,, M. Nollenburg,, A. Zomorodian,, K. Wydra,, M. Neugebauer,, U. Hettwer,, W. El-Shouny,, B. Sonnenberg,, and Z. Klement 1994,. Role of extracellular polysaccharides as virulence factors for phytopathogenic pseudomonads and xanthomonads, p. 357 378. In C. I. Kado, and J. H. Crosa (ed.). Molecular Mechanisms of Bacterial Virulence. Kluwer Academic Publishers, Dordrecht, The Netherlands.
92. Salmeron, J. M.,, and B. J. Staskawicz. 1993. Molecular characterization and hrp-dependence of the avirulence gene avrPto from Pseudomonas syringae pv. tomato. Mol. Gen. Genet. 239: 6 10.
93. Scofield, S. R.,, C. M. Tobias,, J. P. Rathjen,, J. H. Chang,, D. T. Lavelle,, R. W. Michelmore,, and B. J. Staskawicz. 1996. Molecular basis of gene-for-gene specificity in bacterial speck disease of tomato. Science 274: 2063 2065.
94. Shen, H.,, and N. T. Keen. 1993. Characterization of the promoter of avirulence gene D from Pseudomonas syringae pv. tomato. J. Bacteriol. 175: 5916 5924.
95. Stall, R. E.,, and A. A. Cook. 1979. Evidence that bacterial contact with the plant cell is necessary for the hypersensitive reaction but not the susceptible reaction. Physiol. Plant Pathol. 14: 77 84.
96. Staskawicz, B. J.,, D. Dahlbeck,, and N. T. Keen. 1984. Cloned avirulence gene of Pseudomonas syringae pv. glycinea determines race-specific incompatibility on Glycine max (L.) Merr. Proc. Natl. Acad. Sci. USA 81: 6024 6028.
97. Tang, X.,, R. D. Frederick,, J. Zhou,, D. A. Halterman,, Y. Jia,, and G. B. Martin. 1996. Initiation of plant disease resistance by physical interaction of AvrPto and Pto kinase. Science 274: 2060 2063.
98. Turner, J. G.,, and A. Novacky. 1974. The quantitative relation between plant and bacterial cells involved in the hypersensitive reaction. Phytopathology 64: 885 890.
99. Van den Ackerveken, G.,, E. Marois,, and U. Bonas. 1996. Recognition of the bacterial avirulence protein AvrBs3 occurs inside the host plant cell. Cell 87: 1307 1316.
100. VanGijsegem, F.,, C. Gough,, C. Zischek,, E. Niqueux,, M. Ariat,, S. Genin,, P. Barberis,, S. German,, P. Castello,, and C. Boucher. 1995. The hrp gene locus of Pseudomonas solanacearum,which controls the production of a type III secretion system, encodes eight proteins related to components of the bacterial flagellar biogenesis complex. Mol. Microbiol. 15: 1095 1114.
101. Vivian, A.,, and M. J. Gibbon. 1997. Avirulence genes in plant-pathogenic bacteria: signals or weapons. Microbiology 143: 693 704.
102. Wei, Z.-M.,, R. J. Laby,, C. H. Zumoff,, D. W. Bauer,, S. H. He,, A. Collmer,, and S. V. Beer. 1992. Harpin, elicitor of the hypersensitive response produced by the plant pathogen Erwinia amylovora. Science 257: 85 88.
103. Wei, Z. M.,, and S. V. Beer. 1995. hrpL activates Erwinia amylovora hrp gene transcription and is a member of the ECF subfamily of sigma factors. J. Bacteriol. 177: 6201 6210.
104. Wei, Z. M.,, and S. V. Beer. Personal communication.
105. Wengelnik, K.,, and U. Bonas. 1996. HrpXv, an AraC-type regulator, activates expression of five of six loci in the hrp cluster of Xanthomonas campestris pv. vesicatoria. J. Bacteriol. 178: 3462 3469.
106. Willis, D. K.,, J. J. Rich,, and E. M. Hrabak. 1991. The hrp genes of phytopathogenic bacteria. Mol. Plant-Microbe Interact. 4: 132 138.
107. Xiao, Y.,, S. Heu,, J. Yi,, Y. Lu,, and S. W. Hutcheson. 1994. Identification of a putative alternate sigma factor and characterization of a multicomponent regulatory cascade controlling the expression of Pseudomonas syringae pv. syringae Pss61 hrp and hrmA genes. J. Bacteriol. 176: 1025 1036.
108. Xiao, Y.,, and S. W. Hutcheson. 1994. A single promoter sequence recognized by a newly identified alternate sigma factor directs expression of pathogenicity and host range determinants in Pseudomonas syringae. J. Bacteriol. 176: 3089 3091.
109. Xiao, Y.,, Y. Lu,, S. Heu,, and S. W. Hutcheson. 1992. Organization and environmental regulation of the Pseudomonas syringae pv. syringae 61 hrp cluster. J. Bacteriol. 174: 1734 1741.
110. Yuan, J.,, and S. Y. He. 1996. The Pseudomonas syringae Hrp regulation and secretion system controls the production and secretion of multiple extracellular proteins. J. Bacteriol. 178: 6399 6402.
111. Zou, H.,, W. J. Henzel,, X. Liu,, A. Lutschg,, and X. Wang. 1997. Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 90: 405 413.

Tables

Generic image for table
Table 1

Properties of known gene products of the cluster

Citation: Hutcheson S. 1999. The hrp Cluster of Pseudomonas syringae: aPathogenicity Island Encoding a Type III Protein Translocation Complex?, p 309-329. In Kaper J, Hacker J (ed), Pathogenicity Islands and Other Mobile Virulence Elements. ASM Press, Washington, DC. doi: 10.1128/9781555818173.ch16

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error