1887

Chapter 5 : The High-Pathogenicity Island of Yersiniae

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

The High-Pathogenicity Island of Yersiniae, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818173/9781555811617_Chap05-1.gif /docserver/preview/fulltext/10.1128/9781555818173/9781555811617_Chap05-2.gif

Abstract:

species are gram-negative rods that belong to the family of . According to biochemical and metabolic characteristics, DNA-DNA hybridization, and 16S rRNA sequencing results, the genus comprises 11 different species. , , and are pathogens for humans, and is known as a fish pathogen. , the bacterial agent of bubonic plague, has been responsible for devastating epidemics throughout human history. This pathogen persists among certain wild rodent populations in many parts of the world (except Australia) and is transmitted by the bite of infected fleas. Deletion of a 102-kb chromosomal fragment that results in nonpigmented yersiniae might be mediated by homologous recombination between two IS700 sequences flanking the locus. Such instability of the 102- kb chromosomal fragment, which is associated with virulence of , was the reason for denoting it a pathogenicity island. Survival and proliferation within the host depend on the ability of a pathogen to scavenge essential nutrients such as iron, which is bound by the host molecules ferritin, transferrin, and lactoferrin. The promoter contains a consensus Fur iron-repressor binding site and a putative binding site for the yersiniabactin AraC-type transcriptional regulator YbtA. Recently, the high-pathogenicity island (HPI) was detected in other members of the family , e.g., in variety of pathotypes of , , , and .

Citation: Rakin A, Schubert S, Pelludat C, Brem D, Heesemann J. 1999. The High-Pathogenicity Island of Yersiniae, p 77-90. In Kaper J, Hacker J (ed), Pathogenicity Islands and Other Mobile Virulence Elements. ASM Press, Washington, DC. doi: 10.1128/9781555818173.ch5

Key Concept Ranking

16s rRNA Sequencing
0.43718484
Peyer's Patches
0.4350098
Urinary Tract Infections
0.41169095
Genetic Elements
0.40197527
0.43718484
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Phylogenetic tree calculated by neighbor-joining analysis ( ) of 16S rRNA sequences with the rRNA sequence as the outgroup. The distance matrix values were corrected by the Jukes-Cantor algorithm ( ). The scale represents an evolutionary distance of 0.1 K ( ).

Citation: Rakin A, Schubert S, Pelludat C, Brem D, Heesemann J. 1999. The High-Pathogenicity Island of Yersiniae, p 77-90. In Kaper J, Hacker J (ed), Pathogenicity Islands and Other Mobile Virulence Elements. ASM Press, Washington, DC. doi: 10.1128/9781555818173.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Pigmentation locus () and the HPI in ( ). The graph above the locus depicts the G+C content along the HPI sequence. Arrows show the positions of the genes and direction of transcription, , genes for hemin storage; to irp9, iron-repressible genes involved in synthesis and uptake of the yersiniabactin; tRNA, asparagine-tRNA gene; , putative integrase gene; , yersiniabactin transcriptional activator gene; , yersiniabactin receptor gene; , phosphatase gene inactivated by IS insertion; rDR, 17-bp direct repeat of the 3′ end of the tRNA.

Citation: Rakin A, Schubert S, Pelludat C, Brem D, Heesemann J. 1999. The High-Pathogenicity Island of Yersiniae, p 77-90. In Kaper J, Hacker J (ed), Pathogenicity Islands and Other Mobile Virulence Elements. ASM Press, Washington, DC. doi: 10.1128/9781555818173.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Comparison of the tRNA locus of the chromosome in HPI-negative K-12 strain MG1655 and HPI-positive uropathogenic 536. Arrows show the positions and directions of transcription of the tRNA genes. The shaded boxes indicate the positions of the HPI. Broken lines show the deletion of the chromosome (for abbreviations, see the legend to Fig. 2 ).

Citation: Rakin A, Schubert S, Pelludat C, Brem D, Heesemann J. 1999. The High-Pathogenicity Island of Yersiniae, p 77-90. In Kaper J, Hacker J (ed), Pathogenicity Islands and Other Mobile Virulence Elements. ASM Press, Washington, DC. doi: 10.1128/9781555818173.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Structure of the HPI in different bacterial hosts. Black arrows show the positions of the genes and the directions of transcription. Open arrows depict the positions and orientations of the IS elements in HPIs. Yen HPI, HPI; Yps HPI, / HPI; Ec HPI, Yps-type HPI found in ; ERIC, position of integration of the ERIC sequence into the promoter in Yen HPI; , inactivation of a putative integrase gene in Yen HPI. For other abbreviations, see the legend to Fig. 2 .

Citation: Rakin A, Schubert S, Pelludat C, Brem D, Heesemann J. 1999. The High-Pathogenicity Island of Yersiniae, p 77-90. In Kaper J, Hacker J (ed), Pathogenicity Islands and Other Mobile Virulence Elements. ASM Press, Washington, DC. doi: 10.1128/9781555818173.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

Distribution of the yersiniabactin gene cluster (HPI) among different members of the

Citation: Rakin A, Schubert S, Pelludat C, Brem D, Heesemann J. 1999. The High-Pathogenicity Island of Yersiniae, p 77-90. In Kaper J, Hacker J (ed), Pathogenicity Islands and Other Mobile Virulence Elements. ASM Press, Washington, DC. doi: 10.1128/9781555818173.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818173.chap5
1. Aparicio, J. F.,, I. Molnar,, T. Schwecke,, A. Konig,, S. F. Haydock,, L. E. Khaw,, J. Staunton,, and P. F. Leadlay. 1996. Organization of the biosynthetic gene cluster for rapamycin in Streptomyces hygroscopicus: analysis of the enzymatic domains in the modular polyketide synthase. Gene 169:916.
2. Autenrieth, I. B.,, E. Bonn,, J. H. Ewald,, and J. Hcesemann. 1995. Deferoxamine B but not deferoxamine Gl inhibits cytokine production in murine bone marrow macrophages. J. Infect. Dis. 172:490496.
3. Bearden, S. W.,, J. D. Fetherston,, and R. D. Perry. 1997. Genetic organization of the yersiniabactin biosynthesis region and construction of avirulent mutants in Yersinia pestis. Infect. Immun. 65:16591668.
4. Bercovier, H.,, and H. H. Mollaret,. 1984. Yersinia, p. 498506. In N. R. Krieg, and J. G. Holt (ed.), Bergey's Manual of Systematic Bacteriology, vol. 1. The Williams & Wilkins, Co., Baltimore, Md.
5. Bibikova, V. A. 1977. Contemporary views on the interrelationships between fleas and the pathogens of human and animal diseases. Annu. Rev. Entomol. 22:2332.
6. Bottone, E. J. 1997. Yersinia enterocolitica: the charisma continues. Clin. Microbiol. Rev. 10:257276.
7. Buchrieser, C.,, R. Brosch,, S. Bach,, A. Guiyoule,, and E. Carniel. 1998. The high-pathogenicity island of Yersinia pseudotuberculosis can be inserted into any of the three chromosomal asn tRNA genes. Mol. Microbiol. 30:965978.
8. Buchrieser, C.,, M. Prentice,, and E. Carniel. 1998. The 102-kilobase unstable region of Yersinia pestis comprises a high-pathogenicity island linked to a pigmentation segment which undergoes internal rearrangement. J. Bacteriol. 180:23212329.
9. Burland, V.,, G. Plunkett III,, H. J. Sofia,, D. L. Daniels,, and F. R. Blattner. 1995. Analysis of the Escherichia coli genome VI: DNA sequence of the region from 92.8 through 100 minutes. Nucleic Acids Res. 23:21052119.
10. Campbell, A. M. 1992. Chromosomal insertion sites for phages and plasmids. J. Bacteriol. 174:74957499.
11. Carniel, E.,, I. Guilvout,, and M. Prentice. 1996. Characterization of a large chromosomal "high-pathogenicity island" in biotype IB Yersinia enterocolitica. J. Bacteriol. 178:67436751.
12. Carniel, E.,, A. Guiyoule,, I. Guilvout,, and O. Mercereau Puijalon. 1992. Molecular cloning, iron-regulation and mutagenesis of the irp2 gene encoding HMWP2, a protein specific for the highly pathogenic Yersinia. Mol. Microbiol. 6:379388.
13. Carter, P. B. 1975. Pathogenicity of Yersinia enterocolitica for mice. Infect. Immun. 11:164170.
14. Cornells, G. R.,, and H. Wolf-Watz. 1997. The Yersinia Yop virulon: a bacterial system for subverting eukaryotic cells. Mol. Microbiol. 23:861867.
15. Crosa, J. H. 1989. Genetics and molecular biology of siderophore-mediated iron transport in bacteria. Microbiol. Rev. 53:517530.
16. Emody, L.,, J. Heesemann,, H. Wolf-Watz,, M. Skurnik,, G. Kapperud,, P. O'Toole,, and T. Wadstrom. 1989. Binding to collagen by Yersinia enterocolitica and Yersinia pseudotuberculosis: evidence for yopA-mediated and chromosomally encoded mechanisms. J. Bacteriol. 171:66746679.
17. Ewald, J. H.,, J. Heesemann,, H. Rüdiger,, and I. B. Autenrieth. 1994. Interaction of polymorphonuclear leukocytes with Yersinia enterocolitica: role of the yersinia virulence plasmid and modulation by the iron-chelator desferrioxamine B. J. Infect. Dis. 170:140150.
18. Farrell, D. H.,, P. Mikesell,, L. A. Actis,, and J. H. Crosa. 1990. A regulatory gene, angR, of the iron uptake system of Vibrio anguillarum: similarity with phage P22 cro and regulation by iron. Gene 86:4551.
19. Ferber, D. M.,, J. M. Fowler,, and R. R. Brubaker. 1981. Mutations to tolerance and resistance to pesticin and colicins in Escherichia coli phi. J. Bacteriol. 146:506511.
20. Fetherston, J. D.,, S. W. Bearden,, and R. D. Perry. 1996. YbtA, an AraC-type regulator of the Yersinia pestis pesticin/yersiniabactin receptor. Mol. Microbiol. 22:315325.
21. Fetherston, J. D.,, J. W. LillardJr.,, and R. D. Perry. 1995. Analysis of the pesticin receptor from Yersinia pestis: role in iron-deficient growth and possible regulation by its siderophore. J. Bacteriol. 177:18241833.
22. Fetherston, J. D.,, and R. D. Perry. 1994. The pigmentation locus of Yersinia pestis KIM6+ is flanked by an insertion sequence and includes the structural genes for pesticin sensitivity and HMWP2. Mol. Microbiol. 13:697708.
23. Gehring, A. M.,, E. DeMoll,, J. D. Fetherston,, I. Mori,, G. F. Mayhew,, F. R. Blattner,, C. T. Walsh,, and R. D. Perry. 1998. Iron acquisition in plague: modular logic in enzymatic biogenesis of yersiniabactin by Yersinia pestis. Chem. Biol. 5:573586.
24. Haag, H.,, K. Hantke,, H. Drechsel,, I. Stojiljkovic,, G. Jung,, and H. Zahner. 1993. Purification of yersiniabactin: a siderophore and a possible virulence factor of Yersinia enterocolitica. J. Gen. Microbiol. 139: 21592165.
25. Hacker, J.,, G. Blum Oehler,, I. Muhldorfer,, and H. Tschape. 1997. Pathogenicity islands of virulent bacteria: structure, function and impact on microbial evolution. Mol. Microbiol. 23:10891097.
26. Hare, J. M.,, A. K. Wagner,, and K. A. McDonough. 1999. Independent acquisition and insertion into different chromosomal locations of the same pathogenicity island in Yersinia pestis and Yersinia pseudotuberculosis. Mol. Microbiol. 31:291303.
27. Heesemann, J. 1987. Chromosomal-encoded siderophores are required for mouse virulence of enteropatho-genic Yersinia species. FEMS Microbiol. Lett. 48:229233.
28. Heesemann, J.,, K. Hantke,, T. Vocke,, E. Saken,, A. Rakin,, I. Stojiljkovic,, and R. Berner. 1993. Virulence of Yersinia enterocolitica is closely associated with siderophore production, expression of an iron-repressible outer membrane protein of 65000 Da and pesticin sensitivity. Mol. Microbiol. 8:397408.
29. Hinnebusch, B. J.,, R. D. Perry,, and T. G. Schwan. 1996. Role of the Yersinia pestis hemin storage (hms) locus in the transmission of plague by fleas. Science 273:367370.
30. Hornung, J. M.,, H. A. Jones,, and R. D. Perry. 1996. The hmu locus of Yersinia pestis is essential for utilization of free haemin and haem-protein complexes as iron sources. Mol. Microbiol. 20:725739.
31. Hulton, C. S.,, C. F. Higgins,, and P. M. Sharp. 1991. ERIC sequences: a novel family of repetitive elements in the genomes of Escherichia coli, Salmonella typhimurium and other enterobacteria. Mol. Microbiol. 5: 825834.
32. Jukes, T. H.,, and C. R. Cantor,. 1969. Evolution of protein molecules, p. 32132. In H. N. Munro (ed.), Mammalian Protein Metabolism. Academic Press, Inc., New York, N.Y.
33. Kimura, M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16:111120.
34. Kutyrev, V. V.,, A. A. Filippov,, O. S. Oparina,, and O. A. Protsenko. 1992. Analysis of Yersinia pestis chromosomal determinants Pgm+ and Psts associated with virulence. Microb. Pathog. 12:177186.
35. Lillard, J. W.Jr.,, J. D. Fetherston,, L. Pedersen,, M. L. Pendrak,, and R. D. Perry. 1997. Sequence and genetic analysis of the hemin storage (hms) system of Yersinia pestis. Gene 193:1321.
36. Mietzner, T. A.,, and S. A. Morse. 1994. The role of iron-binding proteins in the survival of pathogenic bacteria. Annu. Rev. Nutr. 14:471493.
37. Miller, V. L.,, B. B. Finlay,, and S. Falkow. 1988. Factors essential for the penetration of mammalian cells by Yersinia. Curr. Top. Microbiol. Immunol. 138:1539.
38. Pelludat, C.,, A. Rakin,, C. A. Jacobi,, S. Schubert,, and J. Heesemann. 1998. The yersiniabactin biosynthetic gene cluster of Yersinia enterocolitica: organization and siderophore-dependent regulation. J. Bacteriol. 180:538546.
39. Perry, R. D.,, and R. R. Brubaker. 1979. Accumulation of iron by yersiniae. J. Bacteriol. 137:12901298.
40. Perry, R. D.,, and J. D. Fetherston. 1997. Yersinia pestis—etiologic agent of plague. Clin. Microbiol. Rev. 10:3566.
41. Rakin, A.,, and J. Heesemann. 1995. Yersiniabactin/pesticin receptor: a component of an iron uptake system of highly pathogenic Yersinia. Contrib. Microbiol. Immunol. 13:244247.
42. Rakin, A.,, E. Saken,, D. Harmsen,, and J. Heesemann. 1994. The pesticin receptor of Yersinia enterocolitica: a novel virulence factor with dual function. Mol. Microbiol. 13:253263.
43. Rakin, A.,, P. Urbitsch,, and J. Heesemann. 1995. Evidence for two evolutionary lineages of highly pathogenic Yersinia species. J. Bacteriol. 177:22922298.
44. Reiter, W. D.,, P. Palm,, and S. Yeats. 1989. Transfer RNA genes frequently serve as integration sites for prokaryotic genetic elements. Nucleic Acids Res. 17:19071914.
45. Saitou, N.,, and M. Nei. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4:406425.
46. Schubert, S.,, A. Rakin,, H. Karch,, E. Carniel,, and J. Heesemann. 1998. Prevalence of the "high-pathogenicity island" of Yersinia species among Escherichia coli strains that are pathogenic to humans. Infect. Immun. 66:480485.
47. Sharpies, G. J.,, and R. G. Lloyd. 1990. A novel repeated DNA sequence located in the intergenic regions of bacterial chromosomes. Nucleic Acids Res. 18:65036508.
48. Staab, J. F.,, M. F. Elkins,, and C. F. Earhart. 1989. Nucleotide sequence of the Escherichia coli entE gene. FEMS Microbiol. Lett. 50:1519.
49. Trebesius, K.,, D. Harmsen,, A. Rakin,, J. Schmelz,, and J. Heesemann. 1998. Development of rRNA-targeted PCR and in situ hybridization with fluorescently labelled oligonucleotides for detection of Yersinia species. J. Clin. Microbiol. 36:25572564.
50. Wake, A.,, M. Misawa,, and A. Matsui. 1975. Siderochrome production by Yersinia pestis and its relation to virulence. Infect. Immun. 12:12111213.

Tables

Generic image for table
TABLE 1

Table 1 . Virulence-related genes of

Citation: Rakin A, Schubert S, Pelludat C, Brem D, Heesemann J. 1999. The High-Pathogenicity Island of Yersiniae, p 77-90. In Kaper J, Hacker J (ed), Pathogenicity Islands and Other Mobile Virulence Elements. ASM Press, Washington, DC. doi: 10.1128/9781555818173.ch5
Generic image for table
Table 2

Genes of the HPI

Citation: Rakin A, Schubert S, Pelludat C, Brem D, Heesemann J. 1999. The High-Pathogenicity Island of Yersiniae, p 77-90. In Kaper J, Hacker J (ed), Pathogenicity Islands and Other Mobile Virulence Elements. ASM Press, Washington, DC. doi: 10.1128/9781555818173.ch5

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error