1887

Chapter 11 : DNA Supercoiling and Its Consequences for Chromosome Structure and Function

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

DNA Supercoiling and Its Consequences for Chromosome Structure and Function, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818180/9781555811518_Chap11-1.gif /docserver/preview/fulltext/10.1128/9781555818180/9781555811518_Chap11-2.gif

Abstract:

Gyrase was the first type II enzyme discovered, and it remains unique for its ability to introduce negative supercoils into relaxed, positively or negatively supercoiled DNA at the expense of ATP binding and hydrolysis. An essential enzyme in bacteria, gyrase is critical for nearly all complex transactions that involve DNA, including recombination, replication, transcription, and chromosome segregation. The homeostatic supercoil regulation model was inspired by two observations. First, many promoters sense supercoiling levels. Second, expression of gyrase increases when the chromosome becomes relaxed, whereas the expression of topo I requires high supercoiling levels. Chromosome replication has three critical stages (initiation, elongation, and segregation), each with different supercoiling problems. For initiation, the two strands of must separate to allow assembly of the replication machinery (the replisome). Transcription encompasses supercoiling problems similar in two respects to those of replication. First, transcription initiation requires unpairing of the DNA duplex, and supercoiling can influence this step as it does in initiation of DNA replication. Second, transcription is similar to replication in that movement of RNA polymerase generates temporary positive supercoiling ahead of, and negative supercoiling behind, the DNA segment that is being transcribed. The torsional effects of transcription have been studied with supercoil-sensitive promoters by measuring the formation of Z-DNA and by monitoring the extrusion of cruciforms. Homologous and site-specific genetic recombination, adaptive mutation, "supercoil regulated" gene transcription, gene order on chromosomes, and plasmid-chromosome replication segregation are all phenomena that are likely to be influenced by DNA dynamics.

Citation: Higgins N. 1999. DNA Supercoiling and Its Consequences for Chromosome Structure and Function, p 189-202. In Charlebois R (ed), Organization of the Prokaryotic Genome. ASM Press, Washington, DC. doi: 10.1128/9781555818180.ch11

Key Concept Ranking

DNA Synthesis
0.5364512
Genetic Recombination
0.5364512
Outer Membrane Proteins
0.45864764
Bacterial DNA Replication
0.43624917
Sodium Dodecyl Sulfate
0.43624917
0.5364512
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

The difference between plectonemic and paranemic helices is that strand separation of a plectonemic molecule requires twisting about the long axis.

Citation: Higgins N. 1999. DNA Supercoiling and Its Consequences for Chromosome Structure and Function, p 189-202. In Charlebois R (ed), Organization of the Prokaryotic Genome. ASM Press, Washington, DC. doi: 10.1128/9781555818180.ch11
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Plectonemic movement required for δ resolution. At the top, the organization of the γδ resolvase binding site is given along with three sub-sites labeled , and . Each subsite binds a dimer of resolvase, but only resolvase dimers bound at the subsite can catalyze DNA strand exchange. Following binding, the two sites must form a precise synapse, which tangles the six subsites into three interwound supercoils. Two movements of DNA allow this juxtapositioning: slithering, in which DNA moves like a conveyor belt and all points along the chain move relative to all other points, and supercoil branch migration, in which extrusion and résorption of supercoil branches cause sites to become plectonemically interwound. The recombination products include a deletion (shown as a shaded circle), which is initially catenated with the chromosome but which is released by the activity of topo IV.

Citation: Higgins N. 1999. DNA Supercoiling and Its Consequences for Chromosome Structure and Function, p 189-202. In Charlebois R (ed), Organization of the Prokaryotic Genome. ASM Press, Washington, DC. doi: 10.1128/9781555818180.ch11
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

The domain size distribution of exponentially growing cultures of in the 43-to 45-min () segment of the chromosome. The curve is a right skewed distribution, with a median size of 40 kb; less than 10% of the cells have domains under 2 kb, and about 5% of the cells have 80-kb domains. Below the graph is an illustration of how the domains might be cordoned off by barriers. For a 20-kb domain with 60 to 75 interwound supercoils, all sites in the red zone communicate and sequences in the blue zone do not. A 40-kb domain has at least one less barrier, and the 80-kb domain has no barriers, so all sites can communicate through slithering and supercoil branch migration.

Citation: Higgins N. 1999. DNA Supercoiling and Its Consequences for Chromosome Structure and Function, p 189-202. In Charlebois R (ed), Organization of the Prokaryotic Genome. ASM Press, Washington, DC. doi: 10.1128/9781555818180.ch11
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818180.chap11
1. Adachi, T.,, K. Mizuuchi,, R. Menzel,, and M. Gellert. 1984. DNA sequence and transcription of the region upstream of the E. coli gyrB gene. Nucleic Acids Res. 12: 6389 6395.
2. Adams, D. E.,, E. M. Shekhtman,, E. L. Zechiedrich,, M. B. Schmid,, and N. R. Cozzarelli. 1992. The role of topoisomerase IV in partitioning bacterial replicons and the structure of catenated intermediates in DNA replication. Cell 71: 277 288.
3. Albert, A.-C.,, A.-M. Roman,, G. Bouche,, M. Leng,, and A. R. Rahmouni. 1994. Gradual and oriented B-Z transition in 5' -untranscribed region of mouse ribosomal DNA. J. Biol. Chem. 269: 19238 19244.
4. Alfano, C.,, and R. McMacken. 1988. The role of template superhelicity in the initiation of bacteriophage 1 DNA replication. Nucleic Acids Res. 16: 9611 9630.
5. Baker, T.,, K. Sekimizu,, B. E. Funnell,, and A. Kornberg. 1986. Extensive unwinding of the plasmid template during staged enzymatic initiation of DNA replication from the origin of the Escherichia coli chromosome. Cell 45: 53 64.
6. Bauer, W. R. 1978. Structure and reactions of closed duplex DNA. Annu. Rev. Biophys. Bioeng. 7: 287 313.
7. Benjamin, H. W.,, M. M. Matzuk,, M. A. Krasnow,, and N. R. Cozzarelli. 1985. Recombination site selection by Tn3 resolvase: topological tests of a tracking mechanism. Cell 40: 147 158.
8. Biek, D. P.,, and J. Strings. 1995. Partition functions of mini-F affect plasmid DNA topology in Escherichia coli. J. Mol. Biol. 246: 388 400.
9. Bliska, J. B.,, and N. R. Cozzarelli. 1987. Use of site-specific recombination as a probe of DNA structure and metabolism in vivo. J. Mol. Biol. 194: 205 218.
10. Chalker, A. F.,, D. R. Leach,, and R. G. Lloyd. 1988. Escherichia coli sbcC mutants permit stable propagation of DNA replicons containing a long palindrome. Gene 71: 201 205.
11. Chen, D.,, S. Bachellier,, and D. M. Lilley. 1998. Activation of the leu-500 promoter by a reversed polarity tetA gene. Response to global plasmid supercoiling. J. Biol. Chem. 273: 653 659.
12. Chen, D.,, R. Bowater,, and D. M. J. Lilley. 1993. Activation of the leu-500 promoter; a topological domain generated by divergent transcription in a plasmid. Biochemistry 32: 13162 13170.
13. Condemine, G.,, and C. L. Smith. 1990. Transcription regulates oxolinic acid-induced DNA gyrase cleavage at specific sites on the E. coli chromosome. Nucleic Acids Res. 18: 7389 7396.
14. Cornet, F.,, J. Louarn,, J. Patte,, and J.-M. Louarn. 1996. Restriction of the activity of the recombination site dij to a small zone of the Escherichia coli chromosome. Genes Dev. 10: 1152 1161.
15. Corre, J.,, F. Cornet,, J. Patte,, and J.-M. Louarn. 1997. Unraveling a region-specific hyperrecombination phenomenon: genetic control and modalities of terminal recombination in Escherichia coli. Genetics 147: 979 989.
16. Cozzarelli, N. R. 1980. DNA gyrase and the supercoiling of DNA. Science 207: 953 960.
17. Craigie, R.,, and K. Mizuuchi. 1986. Role of DNA topology in Mu transposition: mechanism of sensing the relative orientation of two DNA segments. Cell 45: 793 800.
18. Critchlow, S. E.,, and A. Maxwell. 1996. DNA cleavage is not required for the binding of quinolone drugs to the DNA gyrase-DNA complex. Biochemistry 35: 7387 7393.
19. DiGate, R. J.,, and K. J. Marians. 1988. Identification of a potent decatenating enzyme from Escherichia coli. J. Biol. Chem. 263: 13366 13373.
20. DiGate, R. J.,, and K. J. Marians. 1989. Molecular cloning and DNA sequence analysis of Escherichia coli topB, the gene encoding topoisomerase III. J. Biol. Chem. 264: 17924 17930.
21. DiNardo, S.,, K. A. Voelkel,, R. Sternglanz,, A. E. Reynolds,, and A. Wright. 1982. Escherichia coli DNA topoisomerase I mutants have compensatory mutations in DNA gyrase genes. Cell 31: 43 51.
22. Dorman, C. J.,, G. C. Barr,, N. N. Bhriain,, and C. F. Higgins. 1988. DNA supercoiling and the anaerobic growth phase regulation of tonB gene expression. J. Bacteriol. 170: 2816 2826.
23. Drlica, K. 1992. Control of bacterial supercoiling. Mol. Microbiol. 6: 425 433.
24. Drlica, K.,, and X. Zhao. 1997. DNA gyrase, topoisomerase IV, and the 4-quinolones. Microbiol. Mol. Biol. Rev. 61: 377 392.
25. Drolet, M.,, P. Phoenix,, R. Menzel,, E. Masse,, L. F. Liu,, and R. J. Crouch. 1995. Overexpression of RNase H partially complements the growth defect of an Escherichia coli delta top A mutant: R-loop formation is a major problem in the absence of DNA topoisomerase I. Proc. Natl. Acad. Sci. USA 92: 3526 3530.
26. Espeli, O.,, and F. Boccard. 1997. In vivo cleavage of Escherichia coli BIME-2 repeats by DNA gyrase: genetic characterization of the target and identification of the cut site. Mol. Microbiol. 26: 767 777.
27. Figueroa, N.,, and L. Bossi. 1988. Transcription induces gyration of the DNA template in Escherichia coli. Proc. Natl. Acad. Sci. USA 85: 9416 9420.
28. Franco, R. J.,, and K. Drlica. 1988. DNA gyrase on the bacterial chromosome. Oxolinic acid-induced DNA cleavage in the dnaA-gyrB region. J. Mol. Biol. 201: 229 233.
29. Frank-Kamenetskii, M. D.,, and S. M. Mirkin. 1995. Triplex DNA structures. Annu. Rev. Biochem. 64: 65 96.
30. Froelich-Ammon, S. J.,, and N. Osheroff. 1995. Topoisomerase poisons: harnessing the dark side of enzyme mechanism. J. Biol. Chem. 270: 21429 21432.
31. Gampar, H. B.,, and J. E. Hearst. 1982. A topological model for transcription based on unwinding angle analysis of E. coli RNA polymerase binary, initiation and ternary complexes. Cell 29: 81 90.
32. GanglofT, S.,, J. P. McDonald,, C. Bendixen,, L. Arthur,, and R. Rothstein. 1994. The yeast type I topoisomerase Top3 interacts with Sgsl, a DNA helicase homolog: a potential eukaryotic reverse gyrase. Mol. Cell. Biol. 14: 8391 8398.
33. Gasser, S. M.,, and U. K. Laemmli. 1987. A glimpse at chromosomal order. Trends Genet. 3: 16 21.
34. Gellert, M.,, K. Mizuuchi,, M. H. O'Dea,, and H. A. Nash. 1976. DNA gyrase: an enzyme that introduces superhelical turns into DNA. Proc. Natl. Acad. Sci. USA 73: 3872 3876.
35. Gellert, M.,, and H. Nash. 1987. Communication between segments of DNA during site-specific recombination. Nature 325: 401 404.
36. Goldstein, E.,, and K. Drlica. 1984. Regulation of bacterial DNA supercoiling: plasmid Unking numbers vary with growth temperature. Proc. Natl. Acad. Sci. USA 81: 4046 4050.
37. Heichman, K. A.,, and R. C. Johnson. 1990. The Hin invertasome: protein-mediated joining of distant recombination sites at the enhancer. Science 249: 511 517.
38. Herbert, A.,, and A. Rich. 1996. The biology of left-handed Z-DNA. J. Biol. Chem. 271: 11595 11598.
39. Hiasa, H.,, R. J. DiGate,, and K. J. Marians. 1994. Decatenating activity of Escherichia coli DNA gyrase and topoisomerases I and HI during oriC and pBR322 DNA replication in vitro. J. Biol. Chem. 269: 2093 2099.
40. Hiasa, H.,, and K. J. Marians. 1994. Topoisomerase III, but not topoisomerase I, can support nascent chain elongation during theta-type DNA replication. J. Biol. Chem. 269: 32655 32659.
41. Hiasa, H.,, and K. J. Marians. 1994. Topoisomerase IV can support oriC DNA replication in vitro. J. Biol. Chem. 269: 16371 16375.
42. Hiasa, H.,, and K. J. Marians. 1996. Two distinct modes of strand unlinking during q-type DNA replication. J. Biol. Chem. 271: 21529 21535.
43. Higgins, C. F., 1994. The bacterial chromosome: DNA topology, chromatin structure and gene expression, p. 11 23. In J. S. Heslop-Harrison, and R. Flavel (ed.), The Chromosome. Bios, Oxford, England.
44. Higgins, C. F.,, C. J. Dorman,, D. A. Stirling,, L. Waddell,, I. R. Booth,, G. May,, and E. Bremer. 1988. A physiological role for DNA supercoiling in the osmotic regulation of gene expression in S. typhimurium and E. coli. Cell 52: 569 584.
45. Higgins, N. P.,, X. Yang,, Q. Fu,, and J. R. Roth. 1996. Surveying a supercoil domain by using the γ δ resolution system in Salmonella typhimurium. J. Bacteriol. 178: 2825 2835.
46. Hiraga, S.,, C. Ichinose,, N. Hironori,, and M. Yamazoe. 1998. Cell cycle-dependent duplication and bidirectional migration of SeqA-associated DNA-protein complexes in E. coli. Mol. Cell. 1: 381 387.
47. Holmes, F. L. 1998. The DNA replication problem, 1953-1958. Trends Biochem. Sci. 23: 117 120.
48. Htun, H.,, and J. E. Dahlberg. 1989. Topology and formation of triple-stranded H-DNA. Science 243: 1571 1576.
49. Jacob, F.,, S. Brenner,, and F. Cuzin. 1963. On the regulation of DNA replication in bacteria. Cold Spring Harbor Symp. Quant. Biol. 28: 329 348.
50. Jaworski, A.,, N. P. Higgins,, R. D. Wells,, and W. Zacharias. 1991. Topoisomerase mutants and physiological conditions control super-coiling and Z-DNA formation in vivo. J. Biol. Chem. 266: 2576 2581.
51. Jaworski, A.,, W.-T. Hsieh,, J. A. Blaho,, J. E. Larson,, and R. D. Wells. 1987. Left handed DNA in vivo. Science 238: 773 777.
52. Johnson, R. C.,, A. C. Glasgow,, and M. I. Simon. 1987. Spatial relationship of the Fis binding sites for Hin recombinational enhancer activity. Nature 329: 462 465.
53. Kanaar, R.,, A. Klippel,, E. Shekhtman,, J. M. Dungan,, R. Kahmann,, and N. R. Cozzarelli. 1990. Processive recombination by the phage Mu Gin system: implications for the mechanisms of DNA strand exchange, DNA site alignment, and enhancer action. Cell 62: 353 366.
54. Kato, J.,, Y. Nishimura,, R. Imamura,, H. Niki,, S. Hiraga,, and H. Suzuki. 1990. New topoisomerase essential for chromosome segregation in E. coli. Cell 63: 393 404.
55. KavenofF, R.,, and B. Bowen. 1976. Electron microscopy of membrane-free folded chromosomes from Escherichia coli. Chromosoma 59: 89 101.
56. Kim, R. A.,, P. R. Caron,, and J. C. Wang. 1995. Effects of yeast DNA topoisomerase III on telomere structure. Proc. Natl. Acad. Sci. USA 92: 2667 2671.
57. Kornberg, A.,, and T. Baker. 1991. DNA Replication. W. H. Freeman & Co., New York, N.Y.
58. Krause, H. M.,, and N. P. Higgins. 1986. Positive and negative regulation of the Mu operator by Mu repressor and Escherichia coli integration host factor. J. Biol. Chem. 261: 3744 3752.
59. Kuempel, P.,, J. Henson,, L. Dircks,, M. Tecklenburg,, and D. Lim. 1991. dif, recA -independent recombination site in the terminus region of the chromosome of Escherichia coli. New Biol. 3: 799 811.
60. Kuempel, P.,, A. Hogaard,, M. Nielsen,, O. Nagappan,, and M. Tecklenburg. 1996. Use of a transposon (Tn dif) to obtain suppressing and nonsuppressing insertions of the dij resolvase site of Escherichia coli. Genes Dev. 10: 1162 1171.
61. Leach, D.,, J. Lindsey,, and E. Okely. 1987. Genome interactions which influence DNA palindrome mediated instability and inviability in Escherichia coli. J. Cell Sci. 7: 33 40.
62. Leach, D. R.,, E. A. Okely,, and D. J. Pinder. 1997. Repair by recombination of DNA containing a palindromic sequence. Mol. Microbiol. 26: 597 606.
63. Leibowitz, P. J.,, and M. Schaechter. 1975. The attachment of the bacterial chromosome to the cell membrane. Int. Rev. Cytol. 41: 1 28.
64. Li, T.,, Y. A. Panchenko,, M. Drolet,, and L. F. Liu. 1997. Incompatibility of the Escherichia coli rho mutants with plasmids is mediated by plasmid-specific transcription. J. Bacteriol. 179: 5789 5794.
65. Lilley, D. M. J.,, R. M. Clegg,, S. Diekmann,, N. C. Seeman,, E. von Kitzing,, and P. J. Hagerman. 1995. A nomenclature of junctions and branchpoints in nucleic acids. Nucleic Acids Res. 23: 3363 3364.
66. Lin, D. C.-H.,, P. A. Levin,, and A. D. Grossman. 1998. Bipolar localization of a chromosome partition protein in Bacillus subtilis. Proc. Natl. Acad. Sci. USA 94: 4721 4726.
67. Liu, L. F.,, and J. C. Wang. 1987. Supercoiling of the DNA template during transcription. Proc. Natl. Acad. Sci. USA 84: 7024 7027.
68. Lockshon, D.,, and D. R. Morris. 1983. Positively supercoiled plasmid DNA is produced by treatment of Escherichia coli with DNA gyrase inhibitors. Nucleic Acids Res. 11: 2999 3017.
69. Lockshon, D.,, and D. R. Morris. 1985. Sites of reaction of Escherichia coli DNA gyrase on pBR322 in vivo as revealed by oxolinic acid-induced plasmid linearization. J. Mol. Biol. 181: 63 74.
70. Lodge, J. K.,, T. Kazic,, and D. E. Berg. 1989. Formation of supercoiling domains in plasmid pBR322. J. Bacteriol. 171: 2181 2187.
71. Louarn, J.-M.,, J. Louarn,, V. Francois,, and J. Patte. 1991. Analysis and possible role of hyperrecombination in the termination region of the Escherichia coli chromosome. J. Bacteriol. 173: 5097 5104.
72. Luttinger, A. L.,, A. L. Springer,, and M. B. Schmid. 1991. A cluster of genes that affects nucleoid segregation in Salmonella typhimurium. New Biol. 3: 687 697.
73. Lydersen, B. K.,, and D. E. Pettijohn. 1977. Interactions stabilizing DNA tertiary structure in Escherichia coli chromosome investigated with ionizing radiation. Chromosoma 62: 199 215.
74. Lynch, A. S.,, and J. C. Wang. 1993. Anchoring of DNA to the bacterial cytoplasmic membrane through cotranscriptional synthesis of polypeptides encoding membrane proteins or proteins for export: a mechanism of plasmid hypernegative supercoiling in mutants déficient in DNA topoisomerase I. J. Bacteriol. 175: 1645 1655.
75. Marians, K. J., 1992. Prokaryotic DNA replication, p. 673 719. In C. Richardson,, J. Abelson,, A. Meister,, and C. Walsh (ed.), Annual Review of Biochemistry. Annual Reviews Inc., Palo Alto, Calif.
76. Marians, K. J.,, and H. Hiasa. 1997. Mechanism of quinolone action. A drug-induced structural perturbation of the DNA precedes strand cleavage by topoisomerase IV. J. Biol. Chem. 272: 9401 9409.
77. Maxwell, A.,, and M. Gellert. 1984. The DNA dependence of the ATPase activity of DNA gyrase. J. Biol. Chem. 259: 14472 14480.
78. McClellan, J. A.,, P. Boublikova,, E. Palecek,, and D. M. J. Lilley. 1990. Superhelical torsion in cellular DNA responds directly to environmental and genetic factors. Proc. Natl. Acad. Sci. USA 87: 8373 8377.
79. McClure, W. 1985. Mechanism and control of transcription initiation in prokaryotes. Annu. Rev. Biochem. 54: 171 204.
80. McNairn, E.,, N. Ni Bhriain,, and C. J. Dorman. 1995. Overexpression of the Shigellaflexneri genes coding for DNA topoisomerase IV compensates for loss of DNA topoisomerase I: effect on virulence gene expression. Mol. Microbiol. 15: 507 517.
81. Menzel, R.,, and M. Gellert. 1983. Regulation of the genes for E. coli DNA gyrase: homeostatic control of DNA supercoiling. Cell 34: 105 113.
82. Menzel, R.,, and M. Gellert. 1987. Fusions of the Escherichia coli gyrA and gyrB control regions to the galactokinase gene are inducible by coumermycin treatment. J. Bacteriol. 169: 1272 1278.
83. Miller, H. I.,, A. Kikuchi,, H. A. Nash,, R. A. Weisberg,, and D. I. Friedman. 1981. Site-specific recombination of bacteriophage 1: the role of host gene products. Cold Spring Harbor Symp. Quant. Biol. 45: 1121 1126.
84. Miller, W. G.,, and R. W. Simons. 1993. Chromosomal supercoiling in Escherichia coli. Mol. Microbiol. 10: 675 684.
85. Mirkin, S. M.,, and M. D. Frank-Kamenetskii. 1994. H-DNA and related structures. Annu. Rev. Biophys. Biomol. Struct. 23: 541 576.
86. Mojica, F. J. M.,, and C. F. Higgins. 1997. In vivo supercoiling of plasmid and chromosomal DNA in an Escherichia coli hns mutant. J. Bacteriol. 179: 3528 3533.
87. Niki, H.,, and S. Hiraga. 1997. Subcellular distribution of actively partitioning F plasmid during the cell division cycle in E. coli. Cell 90: 951 957.
88. Ogura, T.,, H. Niki,, H. Mori,, M. Morita,, M. Hasegawa, C. Ichinose, and S. Hiraga. 1990. Identification and characterization of gyrB mutants of Escherichia coli that are defective in partitioning of mini-F plasmids. J. Bacteriol. 172: 1562 1568.
89. Orr, E.,, N. F. Fairweather,, I. B. Holland,, and R. H. Pritchard. 1979. Isolation and characterization of a strain carrying a conditional lethal mutation in the cou gene of Escherichia coli K12. Mol. Gen. Genet. 177: 103 112.
90. Palecek, E., 1992. Probing of DNA structure in cells with osmium tetroxide—2,2 ' -bipyridine, p. 305 318. In D. M. J. Lilley, and J. E. Dahlberg (ed.), Methods in Enzymology. Academic Press, Inc., San Diego, Calif.
91. Parker, C. N.,, and S. E. Halford. 1991. Dynamics of long-range interactions on DNA: the speed of synapsis during site-specific recombination by resolvase. Cell 66: 781 791.
92. Pato, M.,, and M. Banerjee. 1996. The Mu strong gyrase-binding site promotes efficient synapsis of the prophage termini. Mol. Miaobiol. 22: 283 292.
93. Pato, M.,, M. M. Howe,, and N. P. Higgins. 1990. A DNA gyrase binding site at the center of the bacteriophage Mu genome required for efficient replicative transposition. Proc. Natl. Acad. Sci. USA 87: 8716 8720.
94. Pato, M. L.,, and M. Karlock. 1994. Central location of the Mu strong gyrase binding site is obligatory for optimal rates of replicative transposition. Proc. Natl. Acad. Sci. USA 91: 7056 7060.
95. Pato, M. L.,, M. Karlock,, C. Wall,, and N. P. Higgins. 1995. Characterization of Mu prophage lacking the central strong gyrase binding site: location of the block in replication. J. Bacteriol. 177: 5937 5942.
96. Pavitt, G. D.,, and C. F. Higgins. 1993. Chromosomal domains of supercoiling in Salmonella typhimurium. Mol. Microbiol. 10: 685 696.
97. Peck, L. J.,, and J. C. Wang. 1983. Energetics of B-to-Z transition in DNA. Proc. Natl. Acad. Sci. USA 80: 6206 6210.
98. Pettijohn, D. E.,, and O. Pfenninger. 1980. Supercoils in prokaryotic DNA restrained in vivo. Proc. Natl. Acad. Sci. USA 77: 1331 1335.
99. Pruss, G. J.,, S. H. Manes,, and K. Drlica. 1982. Escherichia coli DNA topoisomerase I mutants: increased supercoiling is corrected by mutations near gyrase genes. Cell 31: 35 42.
100. Rahmouni, A. R.,, and R. D. Wells. 1992. Direct evidence for the effect of transcription on local DNA supercoiling in vivo. J. Mol. Biol. 223: 131 144.
101. Raji, A.,, D. J. Zabel,, C. S. Laufer,, and R. E. Depew. 1985. Genetic analysis of mutations that compensate for loss of Escherichia coli DNA topoisomerase I. J. Bacteriol. 162: 1173 1179.
102. Razin, S. V.,, P. Petrov,, and R. Hancock. 1991. Precise localization of the globin gene cluster within one of the 20 to 300-kbp DNA fragments released by cleavage of chicken chromosomal DNA at topoisomerase II sites in vivo: evidence that the fragments are DNA loops or domains. Proc. Natl. Acad. Sci. USA 88: 8515 8519.
103. Richardson, S. M. H.,, C. F. Higgins,, and D. M. J. Lilley. 1984. The genetic control of DNA supercoiling in Salmonella typhimurium. EMBO J. 3: 1745 1752.
104. Richardson, S. M. H.,, C. F. Higgins,, and D. M. J. Lilley. 1988. DNA supercoiling and the leu-500 promoter mutation of Salmonella typhimurium. EMBOJ. 7: 1863 1869.
105. Rudd, K. E.,, and R. Menzel. 1987. his opérons of Escherichia coli and Salmonella typhimurium are regulated by DNA supercoiling. Proc. Natl. Acad. Sci. USA 84: 517 521.
106. Rybenkov, V.,, C. Ullsperger,, A. Vologodskii,, and N. R. Cozzarelli. 1997. Simplification of DNA topology below equilibrium values by type II topoisomerases. Science 277: 690 693.
107. Rybenkov, V. V.,, A. V. Vologodskii,, and N. R. Cozzarelli. 1997. The effect of ionic conditions on the conformations of supercoiled DNA. II. Equilibrium catenation. J. Mol. Biol. 267: 312 323.
108. Scheirer, K. E.,, and N. P. Higgins. 1997. The DNA cleavage reaction of DNA gyrase. Comparison of stable ternary complexes formed with enoxacin and CcdB protein. J. Biol. Chem. 272: 27202 27209.
109. Schmid, M. B. 1990. A locus affecting nucleoid segregation in Salmonella typhimurium. J. Bacteriol. 172: 5416 5424.
110. Schofield, M.,, R. Agbunag,, and J. Miller. 1992. DNA inversions between short inverted repeats in Escherichia coli. Genetics 132: 295 302.
111. Shapiro, L.,, and R. Losick. 1997. Protein localization and cell fate in bacteria. Science 276: 712 718.
112. Shishido, K.,, N. Komiyama,, and S. Ikawa. 1987. Increased production of a knotted form of plasmid pBR322 DNA in Escherichia coli DNA topoisomerase mutants. J. Mol. Biol. 195: 215 218.
113. Sinden, R. R.,, and D. E. Pettijohn. 1981. Chromosomes in living Escherichia coli cells are segregated into domains of supercoiling. Proc. Natl. Acad. Sci. USA 78: 224 228.
114. Spirito, F.,, and L. Bossi. 1996. Long-distance effect of downstream transcription on the activity of supercoiling-sensitive leu-500 promoter in a topA mutant of Salmonella typhimurium. J. Bacteriol. 178: 7129 7137.
115. Staczek, P.,, and N. P. Higgins. 1998. DNA gyrase and Topoisomerase IV modulate chromosome domain size in vivo. Mol. Microbiol. 29: 1435 1448.
116. Stark, M. W.,, D. J. Sherratt,, and M. R. Boocock. 1989. Site specific recombination by Tn3 resolvase: topological changes in the forward and reverse reactions. Cell 58: 779 790.
117. Stark, W. M.,, C. N. Parker,, S. E. Halford,, and M. R. Boocock. 1994. Stereoselectivity of DNA catenane fusion by resolvase. Nature 368: 76 78.
118. Steck, T. R.,, and K. Drlica. 1985. Involvement of DNA gyrase in bacteriophage T7 growth. J. Virol. 53: 296 298.
119. Steck, T. R.,, G. J. Pruss,, S. H. Manes,, L. Burg,, and K. Drlica. 1984. DNA supercoiling in gyrase mutants. J. Bacteriol. 158: 397 403.
120. Stewart, L.,, M. R. Redinbo,, X. Qiu,, W. G. J. Hoi,, and J. J. Champoux. 1998. A model for the mechanism of human topoisomerase I. Science 279: 1534 1541.
121. Sugino, A.,, and N. R. Cozzarelli. 1980. The intrinsic ATPase of DNA gyrase. J. Biol. Chem. 255: 6299 6306.
122. Sugino, A.,, N. P. Higgins,, P. O. Brown,, C. L. Peebles,, and N. R. Cozzarelli. 1978. Energy coupling in DNA gyrase and the mechanism of action of novobiocin. Proc. Natl. Acad. Sci. USA 74: 4838 4842.
123. Tan, J.,, L. Shu,, and H.-Y. Wu. 1994. Activation of the leu-500 promoter by adjacent transcription. J Bacteriol. 176: 1077 1086.
124. Trucksis, M.,, E. I. Golub,, D. J. Zabel,, and R. E. Depew. 1981. Escherichia coli and Salmonella typhimurium supX genes specify DNA topoisomerase I. J. Bacteriol. 147: 679 681.
125. Tse-Dinh, Y.-C.,, and R. K. Beran. 1988. Multiple promoters for transcription of the Escherichia coli DNA topoisomerase I gene and their regulation by DNA supercoiling. J. Mol. Biol. 202: 735 742.
126. Ullsperger, C.,, and N. R. Cozzarelli. 1996. Contrasting enzymatic activities of topoisomerase IV and DNA gyrase from Escherichia coli. J. Biol. Chem. 271: 31549 31555.
127. Ullsperger, C. J.,, A. V. Vologodskii,, and N. R. Cozzarelli,. 1995. Unlinking of DNA by topoisomerases during DNA replication, p. 115 142. In F. Eckstein, and D. M. J. Lilley (ed.), Nucleic Acids and Molecular Biology. Springer-Verlag, Berlin, Germany.
128. Wahle, E.,, and A. Kornberg. 1988. The partition locus of plasmid pSC101 is a specific binding site for DNA gyrase. EMBO J. 7: 1889 1895.
129. Wang, J. C. 1971. Interaction between DNA and an Escherichia coli protein omega. J. Mol. Biol. 55: 523 533.
130. Wang, J. C. 1996. DNA topoisomerases. Annu. Rev. Biochem. 65: 635 692.
131. Watson, J. D.,, and F. H. C. Crick. 1953. Genetic implications of the structure of deoxy-ribonucleic acid. Nature 171: 964 967.
132. Webb, C. D.,, A. Teleman,, S. Gordon,, A. Straight,, A. Belmont,, D. C.-H. Lin,, A. D. Grossman,, A. Wright,, and R. Losick. 1997. Bipolar localization of the replication origin regions of chromosomes in vegetative and sporulating cells of B. subtilis. Cell 88: 667 674.
133. Wheeler, R. T.,, and L. Shapiro. 1997. Bacterial chromosome segregation: is there a mitotic apparatus? Cell 88: 577 579.
134. Worcel, A.,, and E. Burgi. 1972. On the structure of the folded chromosome of Escherichia coli. J. Mol. Biol 71: 127 147.
135. Wu, H.-Y.,, S. Shyy,, J. C. Wang,, and L. F. Liu. 1988. Transcription generates positively and negatively supercoiled domains in the template. Cell 53: 433 440.
136. Wu, H.-Y.,, J. Tan,, and M. Fang. 1995. Long-range interaction between two promoters: activation of the leu-500 promoter by a distant upstream promoter. Cell 82: 445 451.
137. Yang, Y.,, and G. F.-L. Ames. 1988. DNA gyrase binds to the family of prokaryotic repetitive extragenic palindromic sequences. Proc. Natl. Acad. Sci. USA 85: 8850 8854.
138. Zacharias, W.,, A. Jaworski,, J. E. Larson,, and R. D. Wells. 1988. The B- to Z-DNA equilibrium in vivo is perturbed by biological processes. Proc. Natl. Acad. Sci. USA 85: 7069 7073.
139. Zechiedrich, E. L.,, and N. R. Cozzarelli. 1995. Roles of topoisomerase IV and DNA gyrase in DNA unlinking during replication in Escherichia coli. Genes Dev. 9: 2859 2869.
140. Zechiedrich, E. L.,, A. B. Khodursky,, and N. R. Cozzarelli. 1997. Topoisomerase IV, not gyrase, decatenates products of site-specific recombination in Escherichia coli. Genes Dev. 11: 2580 2592.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error