1887

Chapter 16 : Gene Transfer in Escherichia coli

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Gene Transfer in Escherichia coli, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818180/9781555811518_Chap16-1.gif /docserver/preview/fulltext/10.1128/9781555818180/9781555811518_Chap16-2.gif

Abstract:

Recombination includes both the rearrangement of the genetic material in an individual genome and gene transfer, the incorporation of exogenous genetic material into an individual genome. While rearrangement and gene transfer share some molecular processes, their functions are different in most basic ways. Nevertheless, the rarity of phylogenetically distant gene transfer is occasionally compensated for by an increased likelihood of its retention. In bacteria there are three major categories of gene transfer mechanisms: conjugation, transduction, and transformation. All operate in . The organization of the chromosome can be seen in three perspectives: the arrangement of genes and basic chromosomal functions in an individual genome, the genetic and structural variation among strains of the species, and the dynamics of DNA exchange. The replacement's ancestry and therefore phylogenetic relationships will be different from those of its unreplaced neighbor. So gene transfer would result in new local phylogenies. In the hypervariable regions, the diversifying selection dominates the local scene: only the most recently separated lines remain identical. This diversification must be due to the new complexes' relatively high frequency of occurrence and retention. The possibility of major recent changes in the rates of intraspecific gene transfer in seems contradicted by the presence of clonal segments.

Citation: Milkman R. 1999. Gene Transfer in Escherichia coli, p 291-309. In Charlebois R (ed), Organization of the Prokaryotic Genome. ASM Press, Washington, DC. doi: 10.1128/9781555818180.ch16

Key Concept Ranking

Restriction Fragment Length Polymorphism
0.4106216
0.4106216
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Phenogram of the 72 ECOR strains (after Herzer et al. [ ]). The Big Ten group comprises the 10 ECOR strains (branches in boldface) and their close relative, K-12 (not shown).

Citation: Milkman R. 1999. Gene Transfer in Escherichia coli, p 291-309. In Charlebois R (ed), Organization of the Prokaryotic Genome. ASM Press, Washington, DC. doi: 10.1128/9781555818180.ch16
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Diagram of a 2-min region of the chromosome in four ECOR strains. Modified (see the text) after Guttman and Dykhuizen ( ). The open bars represent the common clonal background. The other symbols represent regions introduced by recombination. The locations of the breakpoints are approximate.

Citation: Milkman R. 1999. Gene Transfer in Escherichia coli, p 291-309. In Charlebois R (ed), Organization of the Prokaryotic Genome. ASM Press, Washington, DC. doi: 10.1128/9781555818180.ch16
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818180.chap16
1. Achtman, M. 1994. Clonal spread of serogroup A meningococci: a paradigm for the analysis of microevolution in bacteria. Mol. Microbiol. 11: 1522.
2. Allaby, M. 1985. The Oxford Dictionary of Natural History. Oxford University Press, New York, N.Y..
3. Ankenbauer, R. G., 1997 Reassessing forty years of genetics doctrine; retro transfer and conjugation. Genetics 145:543549.
4. Atwood, K. C.,, L. K. Schneider,, and F. J. Ryan. 1951. Selective mechanisms in bacteria. Cold Spring Harbor Symp. Quant. Biol. 16:345355.
5. Avise, J. 1989. Gene trees and organismal histories: a phylogenetic approach to population biology. Evolution 43:11921208.
6. Bachmann, B. J., 1996. Derivations and genotypes of some mutant derivatives of Escherichia coli K-12, p. 24602488. In F. C. Neidhardt,, R. Curtiss III,, J. L. Ingraham,, E. C. C. Lin,, K. B. Low,, B. Magasanik,, W. S. Reznikoff,, M. Riley,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd ed. American Society for Microbiology, Washington, D.C., [See p. 2470.].
7. Barcus, V. A.,, and N. E. Murray,. 1995. Barriers to recombination: restriction, p. 3158. In R. Bishop (ed.), Population Genetics of Bacteria. Cambridge University Press, Cambridge, United Kingdom.
8. Barcus, V. A.,, J. B. Titheradge,, and N. E. Murray. 1995. The diversity of alleles at the hsd locus in natural populations of Escherichia coli. Genetics 140:11871197.
9. Bastin, D. A.,, G. Stevenson,, P. K. Brown,, A. Haase,, and P. R. Reeves. 1993. Repeat unit polysaccharides of bacteria: a model for polymerization resembling that of ribosomes and fatty acid synthetase, with a novel mechanism for determining chain length. Mol. Microbiol. 7:725734.
10. Baur, B.,, K. Hanselmann,, W. Schlimme,, and B. Jenni. 1996. Genetic transformation in freshwater: Escherichia coli is able to develop natural competence. Appl. Environ. Microbiol. 62: 36733678.
11. Berlyn, M. K. B.,, K. B. Low,, K. E. Rudd,, and M. Singer,. 1996. Linkage map of Escherichia coli K-12, edition 9, p. 17151902. In F. C. Neidhardt,, R. Curtiss III,, J. L. Ingraham,, E. C. C. Lin,, K. B. Low,, B. Magasanik,, W. S. Reznikoff,, M. Riley,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd ed. American Society for Microbiology, Washington, D.C..
12. Bickle, T. A.,, and D. H. Krüger. 1993. Biology of DNA restriction. Microbiol. Rev. 57:434450.
13. Bisercic, M.,, J. Feutrier,, and P. R. Reeves, 1991. Nucleotide sequences of gnd genes from nine natural isolates of Escherichia coli: evidence of intragenic recombination as a contributing factor in the evolution of the polymorphic gnd locus. J. Bacteriol. 173:38943900.
14. Blattner, F. R. G. Plunkett III,, C. A. Bloch,, N. T. Perna,, V. Burland,, M. Riley,, J. Col-lado-Vides,, J. D. Glasner,, C. K. Rode,, G. F. Mayhew,, J. Gregor,, N. W. Davis,, H. A. Kirkpatrick,, M. A. Goeden,, D. J. Rose,, B. Mau,, and Y. Shao. 1997. The complete genome sequence of Escherichia coli. Science 211: 14531474.
15. Boyd, E. F.,, K. Nelson,, F.-S. Wang,, T. S. Whittam,, and R. K. Selander. 1994. Molecular genetic basis of allelic polymorphism in malate dehydrogenase (mdh) in natural populations of Escherichia coli and Salmonella enterica. Proc. Natl. Acad. Sci. USA 91:12801284.
16. Crameri, A.,, S.-A. Raillard,, E. Bermudez,, and W. P. C. Stemmer. 1998. DNA shuffling of a family of genes from diverse species accelerates directed evolution. Nature 391:288291.
17. Crow, J. F. 1986. Basic Concepts in Population, Quantitative and Evolutionary Genetics, p. 185186. W. H. Freeman & Co., New York, N.Y..
18. Crow, J. F.,, and M. Kimura. 1970. An Introduction to Population Genetics Theory, p. 418430. Harper and Row, New York, N.Y..
19. Dabert, P.,, and G. R. Smith. 1997. Gene replacement with linear DNA fragments in wild-type Escherichia coli: enhancement by chi sites. Genetics 145:877889.
20. Daniel, A. S.,, F. V. Fuller-Pace,, D. M. Legge,, and N. E. Murray. 1988. Distribution and diversity of hsd genes in Escherichia coli and other enteric bacteria. J. Bacteriol. 170:17751782.
21. Dila, D.,, E. Sutherland,, L., Moran,, B. Slatko,, and E. A. Raleigh. 1990. Genetic and sequence organization of the mcrBC locus of Escherichia coli K-12. J. Bacteriol. 172:48884900.
22. Drake, J. W. 1991. A constant rate of spontaneous mutation in DNA-based microbes. Proc. Natl. Acad. Sci. USA 88:71607164.
23. DuBose, R. F.,, D. E. Dykhuizen,, and D. L. Hard. 1988. Genetic exchange among natural isolates of bacteria: recombination within the phoA gene of Escherichia coli. Proc. Natl. Acad. Sci. USA 85:70367040.
24. Dykhuizen, D. E.,, and L. Green. 1991. Recombination in Escherichia coli and the definition of biological species. J. Bacteriol. 173:72577268.
25. Firth, N.,, K., Ippen-Ihler,, and R. A. Skurray,. 1996. Structure and function of the F factor and mechanism of conjugation, p. 23772401. In F. C. Neidhardt,, R. Curtiss III,, J. L. Ingraham,, E. C. C. Lin,, K. B. Low,, B. Magasanik,, W. S. Reznikoff,, M. Riley,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd ed. American Society for Microbiology, Washington, D.C..
26. Graupner, S.,, and W. Wackernagel. 1996. Identification of multiple plasmids released from recombinant genomes of Hansenula polymorpha by transformation of Escherichia coli. Appl. Environ. Microbiol. 62:18391841.
27. Guttman, D. S.,, and D. E. Dykhuizen. 1994. Clonal divergence in Escherichia coli as a result of recombination, not mutation. Science 266:13801383.
28. Guttman, D. S.,, and D. E. Dykhuizen. 1994. Detecting selective sweeps in naturally occurring Escherichia coli. Genetics 138:9931003.
29. Hanahan, D.,, and F. R. Bloom,. 1996. Mechanisms of DNA transformation, p. 24492459. In F. C. Neidhardt,, R. Curtiss III,, J. L. Ingraham,, E. C. C. Lin,, K. B. Low,, B. Magasanik,, W. S. Reznikoff,, M. Riley,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd ed. American Society for Microbiology, Washington, D.C..
30. Heinemann, J.,, and G. Sprague. 1989. Bacterial conjugative plasmids mobilize DNA transfer between bacteria and yeast. Nature (London) 340: 205209.
31. Heinemann, J. A.,, H. E. Scott,, and M. Williams. 1996. Doing the conjugative two-step: evidence of recipient autonomy in retrotransfer. Genetics 143:14251435.
32. Herzer, P. J.,, S. Inouye,, M. Inouye,, and T. Whittam. 1990. Phylogenetic distribution of branched RNA-linked multicopy single-stranded DNA among natural isolates of Escherichia coli. J. Bacteriol. 172:61756181.
33. Hobbs, M.,, and P. R. Reeves. 1994. The JUMPstart sequence: a 39 bp element common to several polysaccharide gene clusters. Mol. Microbiol. 12:855856.
34. Holloway, B. W.,, and K. B. Low,. 1987. F-prime and R-prime factors, p. 11451153. In F. C. Neidhardt,, J. L. Ingraham,, K. B. Low,, B. Magasanik,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology. American Society for Microbiology, Washington, D.C..
35. Holloway, B. W.,, and K. B. Low,. 1996. F-prime and R-prime factors, p. 24132420. In F. C. Neidhardt,, R. Curtiss III,, J. L. Ingraham,, E. C. C. Lin,, K. B. Low,, B. Magasanik,, W. S. Reznikoff,, M. Riley,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd ed. American Society for Microbiology, Washington, D.C..
36. Keenleyside, W. J.,, and C. Whitfield. 1995. Lateral transfer of rfb genes: a mobilizable ColE1-type plasmid carries the rfbO:54 (0:54 antigen biosynthesis) gene cluster from Salmonella enterica serovar Borreze. J. Bacteriol. 177:52475253.
37. Kröger, M.,, and R. Wahl. 1997. Compilation of DNA sequences of Escherichia coli K12; description of the interactive databases ECD and ECDC (update 1996). Nucleic Acids Res. 25:3942.
38. Lan, R.,, and P. R. Reeves. 1996. Gene transfer is a major factor in bacterial evolution. Mol. Biol. Evol. 13:4755.
39. Lawrence, J. G.,, and H. Ochman. 1997. Amelioration of bacterial genomes: rates of change and exchange. J. Mol. Evol. 44:383397.
40. Lawrence, J. G.,, and J. R. Roth. 1996. Selfish operons: horizontal transfer may drive the evolution of gene clusters. Genetics 143:18431860.
41. Levin, B. R., 1986. Restriction-modification immunity and the maintenance of genetic diversity in bacterial populations, p. 669688. In S. Karlin, and E. Nevo (ed.), Evolutionary Processes and Theory. Academic Press, New York, N.Y.
42. Li, W.-H. 1997. Molecular Evolution. Sinauer Associates, Sunderland, Mass..
43. Liu, D.,, and P. R. Reeves. 1994. Presence of different O antigen forms in three isolates of one clone of Escherichia coli. Genetics 138:610.
44. Lloyd, R. G., and C. Buckman. 1995. Conjugational recombination in Escherichia coli: genetic analysis of recombinant formation in Hfr X F crosses. Genetics 139:11231148.
45. Lorenz, M. G.,, and W. Wackernagel. 1994. Bacterial gene transfer by natural genetic transformation in the environment. Microbiol. Rev. 58: 563602.
46. Louarn, J.,, F. Cornet,, V. Francois,, J. Patte,, and J. M. Louarn. 1994. Hyperrecombination in the terminus region of the Escherichia coli chromosome: possible relation to nucleoid organization. J. Bacteriol. 176:75247531.
47. Low, K. B., 1996. Hfr strains of Escherichia coli K-12, p. 24022405. In F. C. Neidhardt,, R. Curtiss III,, J. L. Ingraham,, E. C. C. Lin,, K. B. Low,, B. Magasanik,, W. S. Reznikoff,, M. Riley,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd ed. American Society for Microbiology, Washington, D.C..
48. Masters, M., 1996. Generalized transduction, p. 24212441. In F. C. Neidhardt,, R. Curtiss III,, J. L. Ingraham,, E. C. C. Lin,, K. B. Low,, B. Magasanik,, W. S. Reznikoff,, M. Riley,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd ed. American Society for Microbiology, Washington, D.C..
49. McKane, M. L.,, and R. Milkman. 1995. Transduction, restriction and recombination patterns in Escherichia coli. Genetics 139:3543.
50. Milkman, R. 1973. Electrophoretic variation in Escherichia coli from natural sources. Science 182: 10241026.
51. Milkman, R., 1996. Recombinational exchange among clonal populations, p. 26632684. In F. C. Neidhardt,, R. Curtiss III,, J. L. Ingraham,, E. C. C. Lin,, K. B. Low,, B. Magasanik,, W. S. Reznikoff,, M. Riley,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd ed. American Society for Microbiology, Washington, D.C..
52. Milkman, R., 1997. Recombination and DNA sequence variation in E. coli, p. 177189. In B. A. M. van der Zeijst,, W. P. M. Hoekstra,, J. D. A. Van Embden,, and A. J. W. van Alphen (ed.), Ecology of Pathogenic Bacteria, Molecular and Evolutionary Aspects. North-Holland, Amsterdam, The Netherlands.
53. Milkman, R. 1997. Recombination and population structure in Escherichia coli. Genetics 146: 745750.
54. Milkman, R.,, and I. P. Crawford. 1983. Clustered third-base substitutions among wild strains of Escherichia coli. Science 221:378380.
55. Milkman, R.,, D. Cryderman,, M. McKane,, K. McWeeny,, and E. A. Raleigh,. 1998. Evolutionary evidence for recombination among bacteria in nature: E. coli, p. 226240. In M. Syvanen, and C. Kado (ed.), Horizontal Gene Transfer. Chapman and Hall, London, United Kingdom.
56. Milkman, R.,, and M. McKane,. 1995. DNA sequence variation and recombination in E. coli. p. 127142. In S. Baumberg,, J. P. W. Young,, E. M. H. Wellington,, and J. R. Saunders (ed.), Population Genetics of Bacteria. Cambridge University Press, Cambridge, United Kingdom.
57. Milkman, R.,, and M. McKane Bridges. 1990. Molecular evolution of the Escherichia coli chromosome. III. Clonal frames. Genetics 126: 505517.
58. Milkman, R.,, and M. McKane Bridges. 1993. Molecular evolution of the Escherichia coli chromosome. IV. Sequence comparisons. Genetics 133:455468.
59. Milkman, R.,, R. Melvin,, E. Jaeger,, and R. McBride. Unpublished data.
60. Milkman, R.,, E. A. Raleigh,, M. McKane,, D. Cryderman,, P. Fiscus,, and K. McWeeny. Molecular evolution of the Escherichia coli chromosome. V. Recombination patterns among strains of diverse origin. Genetics, in press.
61. Miller, J. H. 1992. A Short Course in Bacterial Genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y..
62. Modrich, P. 1991. Mechanisms and biological effects of mismatch repair. Annu. Rev. Genet. 25:229253.
63. Modrich, P.,, and R. Lahue. 1996. Mismatch repair in replication fidelity, genetic recombination and cancer biology. Annu. Rev. Biochem. 65: 101133.
64. Ochman, H.,, and R. K. Selander. 1984. Standard reference strains of Escherichia coli from natural populations. J. Bacteriol. 157:690693.
65. Ochman, H.,, and A. C. Wilson,. 1987. Evolutionary history of enteric bacteria, p. 16491654. In F. C. Neidhardt,, J. L. Ingraham,, K. B. Low,, B. Magasanik,, M. Riley,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology. American Society for Microbiology, Washington, D.C..
66. Oh, S. H.,, and K. F. Chater. 1997. Denatur-ation of circular or linear DNA facilitates targeted integrative transformation of Streptomyces coelicolor A3(2): possible relevance to other organisms. J. Bacteriol. 179:122127.
67. Povilionis, P. I.,, A. A. Lubys,, R. I. Vaisvila,, S. T. Kulakauskas,, and A. A. Janulaitis. 1989. Investigation of methyl-cytosine specific restriction in Escherichia coli K-12. Genetika 25: 753755. (In Russian.)
68. Price, C.,, and T. A. Bickle. 1986. A possible role for DNA restriction in bacterial evolution. Microbiol. Sci. 3:296299.
69. Raleigh, E. A. 1992. Organization and function of the mcrBC genes of E. coli K-12. Mol. Microbiol. 6:10791086.
70. Reeves, P. 1993. Evolution of Salmonella O-antigen variation by interspecific gene transfer on a large scale. Trends Genet. 9:1722.
71. Reeves, P., 1997. Specialised clones and lateral transfer in pathogens, p. 237254. In B. A. M. van der Zeijst,, W. P. M. Hoekstra,, J. D. A. van Embden,, and A. J. W. van Alphen (ed.), Ecology of Pathogenic Bacteria, Molecular and Evolutionary Aspects. North-Holland, Amsterdam, The Netherlands.
72. Roberts, R. J.,, and D. Macelis. 1998. RE-BASE—restriction enzymes and methylases. Nucleic Acids Res. 26:338350.
73. Savageau, M. A. 1983. Escherichia coli habitats, cell types and mechanisms of gene control. Am. Nat. 122:732744.
74. Selander, R. K.,, D. A. Caugant,, H. Ochman,, J. M. Musser,, and T. S. Whittam. 1986. Methods of multilocus enzyme electrophoresis for bacterial population genetics and systematics. Appl. Environ. Miaobiol. 51:873884.
75. Selander, R. K.,, D. A. Caugant,, and T. S. Whittam,. 1987. Genetic structure and variation in natural populations of Escherichia coli, p. 16251648. In F. C. Neidhardt,, J. L. Ingraham,, K. B. Low,, B. Magasanik,, M. Riley,, M. Schaechter,, and H. E. Umbarger (éd.), Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, American Society for Microbiology, Washington, D.C..
76. Selander, R. K.,, J. Li,, and K. Nelson,. 1996. Evolutionary genetics of Salmonella enterica. p. 26912707. In F. C. Neidhardt,, R. Curtiss III,, J. L. Ingraham,, E. C. C. Lin,, K. B. Low,, B. Magasanik,, W. S. Reznikoff,, M. Riley,, M. Schaechter,, and H. E. Umbarger (éd.), Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd ed. American Society for Microbiology, Washington, D.C. [See p. 2695.].
77. Selander, R. K.,, and B. R. Levin. 1980. Genetic diversity and structure in Escherichia coli populations. Science 210:545547.
78. Sharp, P.,, and W.-H. Li. 1986. An evolutionary perspective on synonymous codon usage in unicellular organisms. J. Mol. Evol. 24:2838.
79. Sharp, P.,, and W.-H. Li. 1987. The codon adaptation index—a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res. 15:12811295.
80. Sharp, P.,, J. E. Kelleher,, A. S. Daniel,, G. M. Cowan,, and N. E. Murray. 1992. Roles of selection and recombination in the evolution of type I restriction-modification systems in enterobacteria. Proc. Natl. Acad. Sci. USA 89:98369840.
81. Sikorski, J.,, S. Graupner,, M. G. Lorenz,, and W. Wackernagel. 1998. Natural transformation of Pseudomonas stutzeri in a non-sterile soil. Microbiology 144:569576.
82. Singer, M.,, T. A. Baker,, G. Schnitzler,, S. M. Deischel,, M. Goel,, W. Dove,, K. J. Jaacks,, A. D. Grossman,, J. W. Erickson,, and C. A. Gross. 1989. A collection of strains containing genetically linked alternating antibiotic resistance elements for genetic mapping of Escherichia coli. Microbiol. Rev. 53:124.
83. Smith, G. R. 1991. Conjugational recombination in E. coli: myths and mechanisms. Cell 64: 1927.
84. Smith, J. M.,, and N. H. Smith. 1996. Site specific codon bias in bacteria. Genetics 142: 10371043.
85. Stevenson, G.,, K. Andrianopoulos,, M. W. Hobbs,, and P. R. Reeves. 1996. Organization of the Escherichia coli K-12 gene cluster responsible for the extracellular polysaccharide colanic acid. J. Bacteriol. 178:48854893.
86. Titheradge, A. J. B.,, D. Ternent,, and N. E. Murray. 1996. A third family of allelic hsd genes in Salmonella enterica: sequence comparisons with related proteins identify conserved regions implicated in restriction of DNA. Mol. Microbiol. 22437447. (Corrigendum, 23:851.).
87. Vulic, L.,, F. Dionisio,, F. Taddei,, and M. Radman. 1997. Molecular keys to speciation: DNA polymorphism and the control of genetic exchange in enterobacteria. Proc. Natl. Acad. Sci. USA 94:97639767.
88. Weisberg, R. A., 1996. Specialized transduction, p. 24422448. In F. C. Neidhardt,, R. Curtiss III,, J. L. Ingraham,, E. C. C. Lin,, K. B. Low,, B. Magasanik,, W. S. Reznikoff,, M. Riley,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd ed. American Society for Microbiology, Washington, D.C..
89. Whittam, T. S.,, H. Ochman,, and R. K. Selander. 1983. Multilocus genetic structure in natural populations of Escherichia coli. Proc. Natl. Acad. Sci. USA 80:17511755.
90. Whittam, T. S., 1996. Genetic variation and evolutionary processes in natural populations of Escherichia coli, p. 27082720. In F. C. Neidhardt,, R. Curtiss III,, J. L. Ingraham,, E. C. C. Lin,, K. B. Low,, B. Magasanik,, W. S. Reznikoff,, M. Riley,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd ed. American Society for Microbiology, Washington, D.C..
91. Worth, L., Jr.,, S. Clark,, M. Radman,, and P. Modrich. 1994. Mismatch repair proteins MutS and MutL inhibit RecA-catalyzed strand transfer between diverged DNAs. Proc. Natl. Acad. Sci. USA 91:32383241.
92. Yin, X.,, and G. Stotzky. 1997. Gene transfer among bacteria in natural environments. Adv. Appl. Microbiol. 45:153212.

Tables

Generic image for table
TABLE 1

HAZ: ECOR 47 → K12 W3110 transconjugants selected on minimal medium

Citation: Milkman R. 1999. Gene Transfer in Escherichia coli, p 291-309. In Charlebois R (ed), Organization of the Prokaryotic Genome. ASM Press, Washington, DC. doi: 10.1128/9781555818180.ch16
Generic image for table
TABLE 2

JAZ: (ECOR 47 → K12W3110trpA33 transconjugant HAZ-12) → K12 W3110 trpA33 back-transconjugants

Citation: Milkman R. 1999. Gene Transfer in Escherichia coli, p 291-309. In Charlebois R (ed), Organization of the Prokaryotic Genome. ASM Press, Washington, DC. doi: 10.1128/9781555818180.ch16
Generic image for table
TABLE 3

Conjugation: K12 — ECOR 47

Citation: Milkman R. 1999. Gene Transfer in Escherichia coli, p 291-309. In Charlebois R (ed), Organization of the Prokaryotic Genome. ASM Press, Washington, DC. doi: 10.1128/9781555818180.ch16

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error