1887

Chapter 16 : Gene Transfer in Escherichia coli

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Gene Transfer in Escherichia coli, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818180/9781555811518_Chap16-1.gif /docserver/preview/fulltext/10.1128/9781555818180/9781555811518_Chap16-2.gif

Abstract:

Recombination includes both the rearrangement of the genetic material in an individual genome and gene transfer, the incorporation of exogenous genetic material into an individual genome. While rearrangement and gene transfer share some molecular processes, their functions are different in most basic ways. Nevertheless, the rarity of phylogenetically distant gene transfer is occasionally compensated for by an increased likelihood of its retention. In bacteria there are three major categories of gene transfer mechanisms: conjugation, transduction, and transformation. All operate in . The organization of the chromosome can be seen in three perspectives: the arrangement of genes and basic chromosomal functions in an individual genome, the genetic and structural variation among strains of the species, and the dynamics of DNA exchange. The replacement's ancestry and therefore phylogenetic relationships will be different from those of its unreplaced neighbor. So gene transfer would result in new local phylogenies. In the hypervariable regions, the diversifying selection dominates the local scene: only the most recently separated lines remain identical. This diversification must be due to the new complexes' relatively high frequency of occurrence and retention. The possibility of major recent changes in the rates of intraspecific gene transfer in seems contradicted by the presence of clonal segments.

Citation: Milkman R. 1999. Gene Transfer in Escherichia coli, p 291-309. In Charlebois R (ed), Organization of the Prokaryotic Genome. ASM Press, Washington, DC. doi: 10.1128/9781555818180.ch16

Key Concept Ranking

Restriction Fragment Length Polymorphism
0.4106216
0.4106216
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Phenogram of the 72 ECOR strains (after Herzer et al. [ ]). The Big Ten group comprises the 10 ECOR strains (branches in boldface) and their close relative, K-12 (not shown).

Citation: Milkman R. 1999. Gene Transfer in Escherichia coli, p 291-309. In Charlebois R (ed), Organization of the Prokaryotic Genome. ASM Press, Washington, DC. doi: 10.1128/9781555818180.ch16
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Diagram of a 2-min region of the chromosome in four ECOR strains. Modified (see the text) after Guttman and Dykhuizen ( ). The open bars represent the common clonal background. The other symbols represent regions introduced by recombination. The locations of the breakpoints are approximate.

Citation: Milkman R. 1999. Gene Transfer in Escherichia coli, p 291-309. In Charlebois R (ed), Organization of the Prokaryotic Genome. ASM Press, Washington, DC. doi: 10.1128/9781555818180.ch16
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818180.chap16
1. Achtman, M. 1994. Clonal spread of serogroup A meningococci: a paradigm for the analysis of microevolution in bacteria. Mol. Microbiol. 11: 15 22.
2. Allaby, M. 1985. The Oxford Dictionary of Natural History. Oxford University Press, New York, N.Y..
3. Ankenbauer, R. G., 1997 Reassessing forty years of genetics doctrine; retro transfer and conjugation. Genetics 145: 543 549.
4. Atwood, K. C.,, L. K. Schneider,, and F. J. Ryan. 1951. Selective mechanisms in bacteria. Cold Spring Harbor Symp. Quant. Biol. 16: 345 355.
5. Avise, J. 1989. Gene trees and organismal histories: a phylogenetic approach to population biology. Evolution 43: 1192 1208.
6. Bachmann, B. J., 1996. Derivations and genotypes of some mutant derivatives of Escherichia coli K-12, p. 2460 2488. In F. C. Neidhardt,, R. Curtiss III,, J. L. Ingraham,, E. C. C. Lin,, K. B. Low,, B. Magasanik,, W. S. Reznikoff,, M. Riley,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd ed. American Society for Microbiology, Washington, D.C., [See p. 2470.].
7. Barcus, V. A.,, and N. E. Murray,. 1995. Barriers to recombination: restriction, p. 31 58. In R. Bishop (ed.), Population Genetics of Bacteria. Cambridge University Press, Cambridge, United Kingdom.
8. Barcus, V. A.,, J. B. Titheradge,, and N. E. Murray. 1995. The diversity of alleles at the hsd locus in natural populations of Escherichia coli. Genetics 140: 1187 1197.
9. Bastin, D. A.,, G. Stevenson,, P. K. Brown,, A. Haase,, and P. R. Reeves. 1993. Repeat unit polysaccharides of bacteria: a model for polymerization resembling that of ribosomes and fatty acid synthetase, with a novel mechanism for determining chain length. Mol. Microbiol. 7: 725 734.
10. Baur, B.,, K. Hanselmann,, W. Schlimme,, and B. Jenni. 1996. Genetic transformation in freshwater: Escherichia coli is able to develop natural competence. Appl. Environ. Microbiol. 62: 3673 3678.
11. Berlyn, M. K. B.,, K. B. Low,, K. E. Rudd,, and M. Singer,. 1996. Linkage map of Escherichia coli K-12, edition 9, p. 1715 1902. In F. C. Neidhardt,, R. Curtiss III,, J. L. Ingraham,, E. C. C. Lin,, K. B. Low,, B. Magasanik,, W. S. Reznikoff,, M. Riley,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd ed. American Society for Microbiology, Washington, D.C..
12. Bickle, T. A.,, and D. H. Krüger. 1993. Biology of DNA restriction. Microbiol. Rev. 57: 434 450.
13. Bisercic, M.,, J. Feutrier,, and P. R. Reeves, 1991. Nucleotide sequences of gnd genes from nine natural isolates of Escherichia coli: evidence of intragenic recombination as a contributing factor in the evolution of the polymorphic gnd locus. J. Bacteriol. 173: 3894 3900.
14. Blattner, F. R. G. Plunkett III,, C. A. Bloch,, N. T. Perna,, V. Burland,, M. Riley,, J. Col-lado-Vides,, J. D. Glasner,, C. K. Rode,, G. F. Mayhew,, J. Gregor,, N. W. Davis,, H. A. Kirkpatrick,, M. A. Goeden,, D. J. Rose,, B. Mau,, and Y. Shao. 1997. The complete genome sequence of Escherichia coli. Science 211: 1453 1474.
15. Boyd, E. F.,, K. Nelson,, F.-S. Wang,, T. S. Whittam,, and R. K. Selander. 1994. Molecular genetic basis of allelic polymorphism in malate dehydrogenase (mdh) in natural populations of Escherichia coli and Salmonella enterica. Proc. Natl. Acad. Sci. USA 91: 1280 1284.
16. Crameri, A.,, S.-A. Raillard,, E. Bermudez,, and W. P. C. Stemmer. 1998. DNA shuffling of a family of genes from diverse species accelerates directed evolution. Nature 391: 288 291.
17. Crow, J. F. 1986. Basic Concepts in Population, Quantitative and Evolutionary Genetics, p. 185 186. W. H. Freeman & Co., New York, N.Y..
18. Crow, J. F.,, and M. Kimura. 1970. An Introduction to Population Genetics Theory, p. 418 430. Harper and Row, New York, N.Y..
19. Dabert, P.,, and G. R. Smith. 1997. Gene replacement with linear DNA fragments in wild-type Escherichia coli: enhancement by chi sites. Genetics 145: 877 889.
20. Daniel, A. S.,, F. V. Fuller-Pace,, D. M. Legge,, and N. E. Murray. 1988. Distribution and diversity of hsd genes in Escherichia coli and other enteric bacteria. J. Bacteriol. 170: 1775 1782.
21. Dila, D.,, E. Sutherland,, L., Moran,, B. Slatko,, and E. A. Raleigh. 1990. Genetic and sequence organization of the mcrBC locus of Escherichia coli K-12. J. Bacteriol. 172: 4888 4900.
22. Drake, J. W. 1991. A constant rate of spontaneous mutation in DNA-based microbes. Proc. Natl. Acad. Sci. USA 88: 7160 7164.
23. DuBose, R. F.,, D. E. Dykhuizen,, and D. L. Hard. 1988. Genetic exchange among natural isolates of bacteria: recombination within the phoA gene of Escherichia coli. Proc. Natl. Acad. Sci. USA 85: 7036 7040.
24. Dykhuizen, D. E.,, and L. Green. 1991. Recombination in Escherichia coli and the definition of biological species. J. Bacteriol. 173: 7257 7268.
25. Firth, N.,, K., Ippen-Ihler,, and R. A. Skurray,. 1996. Structure and function of the F factor and mechanism of conjugation, p. 2377 2401. In F. C. Neidhardt,, R. Curtiss III,, J. L. Ingraham,, E. C. C. Lin,, K. B. Low,, B. Magasanik,, W. S. Reznikoff,, M. Riley,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd ed. American Society for Microbiology, Washington, D.C..
26. Graupner, S.,, and W. Wackernagel. 1996. Identification of multiple plasmids released from recombinant genomes of Hansenula polymorpha by transformation of Escherichia coli. Appl. Environ. Microbiol. 62: 1839 1841.
27. Guttman, D. S.,, and D. E. Dykhuizen. 1994. Clonal divergence in Escherichia coli as a result of recombination, not mutation. Science 266: 1380 1383.
28. Guttman, D. S.,, and D. E. Dykhuizen. 1994. Detecting selective sweeps in naturally occurring Escherichia coli. Genetics 138: 993 1003.
29. Hanahan, D.,, and F. R. Bloom,. 1996. Mechanisms of DNA transformation, p. 2449 2459. In F. C. Neidhardt,, R. Curtiss III,, J. L. Ingraham,, E. C. C. Lin,, K. B. Low,, B. Magasanik,, W. S. Reznikoff,, M. Riley,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd ed. American Society for Microbiology, Washington, D.C..
30. Heinemann, J.,, and G. Sprague. 1989. Bacterial conjugative plasmids mobilize DNA transfer between bacteria and yeast. Nature (London) 340: 205 209.
31. Heinemann, J. A.,, H. E. Scott,, and M. Williams. 1996. Doing the conjugative two-step: evidence of recipient autonomy in retrotransfer. Genetics 143: 1425 1435.
32. Herzer, P. J.,, S. Inouye,, M. Inouye,, and T. Whittam. 1990. Phylogenetic distribution of branched RNA-linked multicopy single-stranded DNA among natural isolates of Escherichia coli. J. Bacteriol. 172: 6175 6181.
33. Hobbs, M.,, and P. R. Reeves. 1994. The JUMPstart sequence: a 39 bp element common to several polysaccharide gene clusters. Mol. Microbiol. 12: 855 856.
34. Holloway, B. W.,, and K. B. Low,. 1987. F-prime and R-prime factors, p. 1145 1153. In F. C. Neidhardt,, J. L. Ingraham,, K. B. Low,, B. Magasanik,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology. American Society for Microbiology, Washington, D.C..
35. Holloway, B. W.,, and K. B. Low,. 1996. F-prime and R-prime factors, p. 2413 2420. In F. C. Neidhardt,, R. Curtiss III,, J. L. Ingraham,, E. C. C. Lin,, K. B. Low,, B. Magasanik,, W. S. Reznikoff,, M. Riley,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd ed. American Society for Microbiology, Washington, D.C..
36. Keenleyside, W. J.,, and C. Whitfield. 1995. Lateral transfer of rfb genes: a mobilizable ColE1-type plasmid carries the rfbO:54 (0:54 antigen biosynthesis) gene cluster from Salmonella enterica serovar Borreze. J. Bacteriol. 177: 5247 5253.
37. Kröger, M.,, and R. Wahl. 1997. Compilation of DNA sequences of Escherichia coli K12; description of the interactive databases ECD and ECDC (update 1996). Nucleic Acids Res. 25: 39 42.
38. Lan, R.,, and P. R. Reeves. 1996. Gene transfer is a major factor in bacterial evolution. Mol. Biol. Evol. 13: 47 55.
39. Lawrence, J. G.,, and H. Ochman. 1997. Amelioration of bacterial genomes: rates of change and exchange. J. Mol. Evol. 44: 383 397.
40. Lawrence, J. G.,, and J. R. Roth. 1996. Selfish operons: horizontal transfer may drive the evolution of gene clusters. Genetics 143: 1843 1860.
41. Levin, B. R., 1986. Restriction-modification immunity and the maintenance of genetic diversity in bacterial populations, p. 669 688. In S. Karlin, and E. Nevo (ed.), Evolutionary Processes and Theory. Academic Press, New York, N.Y.
42. Li, W.-H. 1997. Molecular Evolution. Sinauer Associates, Sunderland, Mass..
43. Liu, D.,, and P. R. Reeves. 1994. Presence of different O antigen forms in three isolates of one clone of Escherichia coli. Genetics 138: 6 10.
44. Lloyd, R. G., and C. Buckman. 1995. Conjugational recombination in Escherichia coli: genetic analysis of recombinant formation in Hfr X F crosses. Genetics 139: 1123 1148.
45. Lorenz, M. G.,, and W. Wackernagel. 1994. Bacterial gene transfer by natural genetic transformation in the environment. Microbiol. Rev. 58: 563 602.
46. Louarn, J.,, F. Cornet,, V. Francois,, J. Patte,, and J. M. Louarn. 1994. Hyperrecombination in the terminus region of the Escherichia coli chromosome: possible relation to nucleoid organization. J. Bacteriol. 176: 7524 7531.
47. Low, K. B., 1996. Hfr strains of Escherichia coli K-12, p. 2402 2405. In F. C. Neidhardt,, R. Curtiss III,, J. L. Ingraham,, E. C. C. Lin,, K. B. Low,, B. Magasanik,, W. S. Reznikoff,, M. Riley,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd ed. American Society for Microbiology, Washington, D.C..
48. Masters, M., 1996. Generalized transduction, p. 2421 2441. In F. C. Neidhardt,, R. Curtiss III,, J. L. Ingraham,, E. C. C. Lin,, K. B. Low,, B. Magasanik,, W. S. Reznikoff,, M. Riley,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd ed. American Society for Microbiology, Washington, D.C..
49. McKane, M. L.,, and R. Milkman. 1995. Transduction, restriction and recombination patterns in Escherichia coli. Genetics 139: 35 43.
50. Milkman, R. 1973. Electrophoretic variation in Escherichia coli from natural sources. Science 182: 1024 1026.
51. Milkman, R., 1996. Recombinational exchange among clonal populations, p. 2663 2684. In F. C. Neidhardt,, R. Curtiss III,, J. L. Ingraham,, E. C. C. Lin,, K. B. Low,, B. Magasanik,, W. S. Reznikoff,, M. Riley,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd ed. American Society for Microbiology, Washington, D.C..
52. Milkman, R., 1997. Recombination and DNA sequence variation in E. coli, p. 177 189. In B. A. M. van der Zeijst,, W. P. M. Hoekstra,, J. D. A. Van Embden,, and A. J. W. van Alphen (ed.), Ecology of Pathogenic Bacteria, Molecular and Evolutionary Aspects. North-Holland, Amsterdam, The Netherlands.
53. Milkman, R. 1997. Recombination and population structure in Escherichia coli. Genetics 146: 745 750.
54. Milkman, R.,, and I. P. Crawford. 1983. Clustered third-base substitutions among wild strains of Escherichia coli. Science 221: 378 380.
55. Milkman, R.,, D. Cryderman,, M. McKane,, K. McWeeny,, and E. A. Raleigh,. 1998. Evolutionary evidence for recombination among bacteria in nature: E. coli, p. 226 240. In M. Syvanen, and C. Kado (ed.), Horizontal Gene Transfer. Chapman and Hall, London, United Kingdom.
56. Milkman, R.,, and M. McKane,. 1995. DNA sequence variation and recombination in E. coli. p. 127 142. In S. Baumberg,, J. P. W. Young,, E. M. H. Wellington,, and J. R. Saunders (ed.), Population Genetics of Bacteria. Cambridge University Press, Cambridge, United Kingdom.
57. Milkman, R.,, and M. McKane Bridges. 1990. Molecular evolution of the Escherichia coli chromosome. III. Clonal frames. Genetics 126: 505 517.
58. Milkman, R.,, and M. McKane Bridges. 1993. Molecular evolution of the Escherichia coli chromosome. IV. Sequence comparisons. Genetics 133: 455 468.
59. Milkman, R.,, R. Melvin,, E. Jaeger,, and R. McBride. Unpublished data.
60. Milkman, R.,, E. A. Raleigh,, M. McKane,, D. Cryderman,, P. Fiscus,, and K. McWeeny. Molecular evolution of the Escherichia coli chromosome. V. Recombination patterns among strains of diverse origin. Genetics, in press.
61. Miller, J. H. 1992. A Short Course in Bacterial Genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y..
62. Modrich, P. 1991. Mechanisms and biological effects of mismatch repair. Annu. Rev. Genet. 25: 229 253.
63. Modrich, P.,, and R. Lahue. 1996. Mismatch repair in replication fidelity, genetic recombination and cancer biology. Annu. Rev. Biochem. 65: 101 133.
64. Ochman, H.,, and R. K. Selander. 1984. Standard reference strains of Escherichia coli from natural populations. J. Bacteriol. 157: 690 693.
65. Ochman, H.,, and A. C. Wilson,. 1987. Evolutionary history of enteric bacteria, p. 1649 1654. In F. C. Neidhardt,, J. L. Ingraham,, K. B. Low,, B. Magasanik,, M. Riley,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology. American Society for Microbiology, Washington, D.C..
66. Oh, S. H.,, and K. F. Chater. 1997. Denatur-ation of circular or linear DNA facilitates targeted integrative transformation of Streptomyces coelicolor A3(2): possible relevance to other organisms. J. Bacteriol. 179: 122 127.
67. Povilionis, P. I.,, A. A. Lubys,, R. I. Vaisvila,, S. T. Kulakauskas,, and A. A. Janulaitis. 1989. Investigation of methyl-cytosine specific restriction in Escherichia coli K-12. Genetika 25: 753 755. (In Russian.)
68. Price, C.,, and T. A. Bickle. 1986. A possible role for DNA restriction in bacterial evolution. Microbiol. Sci. 3: 296 299.
69. Raleigh, E. A. 1992. Organization and function of the mcrBC genes of E. coli K-12. Mol. Microbiol. 6: 1079 1086.
70. Reeves, P. 1993. Evolution of Salmonella O-antigen variation by interspecific gene transfer on a large scale. Trends Genet. 9: 17 22.
71. Reeves, P., 1997. Specialised clones and lateral transfer in pathogens, p. 237 254. In B. A. M. van der Zeijst,, W. P. M. Hoekstra,, J. D. A. van Embden,, and A. J. W. van Alphen (ed.), Ecology of Pathogenic Bacteria, Molecular and Evolutionary Aspects. North-Holland, Amsterdam, The Netherlands.
72. Roberts, R. J.,, and D. Macelis. 1998. RE-BASE—restriction enzymes and methylases. Nucleic Acids Res. 26: 338 350.
73. Savageau, M. A. 1983. Escherichia coli habitats, cell types and mechanisms of gene control. Am. Nat. 122: 732 744.
74. Selander, R. K.,, D. A. Caugant,, H. Ochman,, J. M. Musser,, and T. S. Whittam. 1986. Methods of multilocus enzyme electrophoresis for bacterial population genetics and systematics. Appl. Environ. Miaobiol. 51: 873 884.
75. Selander, R. K.,, D. A. Caugant,, and T. S. Whittam,. 1987. Genetic structure and variation in natural populations of Escherichia coli, p. 1625 1648. In F. C. Neidhardt,, J. L. Ingraham,, K. B. Low,, B. Magasanik,, M. Riley,, M. Schaechter,, and H. E. Umbarger (éd.), Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, American Society for Microbiology, Washington, D.C..
76. Selander, R. K.,, J. Li,, and K. Nelson,. 1996. Evolutionary genetics of Salmonella enterica. p. 2691 2707. In F. C. Neidhardt,, R. Curtiss III,, J. L. Ingraham,, E. C. C. Lin,, K. B. Low,, B. Magasanik,, W. S. Reznikoff,, M. Riley,, M. Schaechter,, and H. E. Umbarger (éd.), Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd ed. American Society for Microbiology, Washington, D.C. [See p. 2695.].
77. Selander, R. K.,, and B. R. Levin. 1980. Genetic diversity and structure in Escherichia coli populations. Science 210: 545 547.
78. Sharp, P.,, and W.-H. Li. 1986. An evolutionary perspective on synonymous codon usage in unicellular organisms. J. Mol. Evol. 24: 28 38.
79. Sharp, P.,, and W.-H. Li. 1987. The codon adaptation index—a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res. 15: 1281 1295.
80. Sharp, P.,, J. E. Kelleher,, A. S. Daniel,, G. M. Cowan,, and N. E. Murray. 1992. Roles of selection and recombination in the evolution of type I restriction-modification systems in enterobacteria. Proc. Natl. Acad. Sci. USA 89: 9836 9840.
81. Sikorski, J.,, S. Graupner,, M. G. Lorenz,, and W. Wackernagel. 1998. Natural transformation of Pseudomonas stutzeri in a non-sterile soil. Microbiology 144: 569 576.
82. Singer, M.,, T. A. Baker,, G. Schnitzler,, S. M. Deischel,, M. Goel,, W. Dove,, K. J. Jaacks,, A. D. Grossman,, J. W. Erickson,, and C. A. Gross. 1989. A collection of strains containing genetically linked alternating antibiotic resistance elements for genetic mapping of Escherichia coli. Microbiol. Rev. 53: 1 24.
83. Smith, G. R. 1991. Conjugational recombination in E. coli: myths and mechanisms. Cell 64: 19 27.
84. Smith, J. M.,, and N. H. Smith. 1996. Site specific codon bias in bacteria. Genetics 142: 1037 1043.
85. Stevenson, G.,, K. Andrianopoulos,, M. W. Hobbs,, and P. R. Reeves. 1996. Organization of the Escherichia coli K-12 gene cluster responsible for the extracellular polysaccharide colanic acid. J. Bacteriol. 178: 4885 4893.
86. Titheradge, A. J. B.,, D. Ternent,, and N. E. Murray. 1996. A third family of allelic hsd genes in Salmonella enterica: sequence comparisons with related proteins identify conserved regions implicated in restriction of DNA. Mol. Microbiol. 22 437 447. ( Corrigendum, 23:851.).
87. Vulic, L.,, F. Dionisio,, F. Taddei,, and M. Radman. 1997. Molecular keys to speciation: DNA polymorphism and the control of genetic exchange in enterobacteria. Proc. Natl. Acad. Sci. USA 94: 9763 9767.
88. Weisberg, R. A., 1996. Specialized transduction, p. 2442 2448. In F. C. Neidhardt,, R. Curtiss III,, J. L. Ingraham,, E. C. C. Lin,, K. B. Low,, B. Magasanik,, W. S. Reznikoff,, M. Riley,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd ed. American Society for Microbiology, Washington, D.C..
89. Whittam, T. S.,, H. Ochman,, and R. K. Selander. 1983. Multilocus genetic structure in natural populations of Escherichia coli. Proc. Natl. Acad. Sci. USA 80: 1751 1755.
90. Whittam, T. S., 1996. Genetic variation and evolutionary processes in natural populations of Escherichia coli, p. 2708 2720. In F. C. Neidhardt,, R. Curtiss III,, J. L. Ingraham,, E. C. C. Lin,, K. B. Low,, B. Magasanik,, W. S. Reznikoff,, M. Riley,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd ed. American Society for Microbiology, Washington, D.C..
91. Worth, L., Jr.,, S. Clark,, M. Radman,, and P. Modrich. 1994. Mismatch repair proteins MutS and MutL inhibit RecA-catalyzed strand transfer between diverged DNAs. Proc. Natl. Acad. Sci. USA 91: 3238 3241.
92. Yin, X.,, and G. Stotzky. 1997. Gene transfer among bacteria in natural environments. Adv. Appl. Microbiol. 45: 153 212.

Tables

Generic image for table
TABLE 1

HAZ: ECOR 47 → K12 W3110 transconjugants selected on minimal medium

Citation: Milkman R. 1999. Gene Transfer in Escherichia coli, p 291-309. In Charlebois R (ed), Organization of the Prokaryotic Genome. ASM Press, Washington, DC. doi: 10.1128/9781555818180.ch16
Generic image for table
TABLE 2

JAZ: (ECOR 47 → K12W3110trpA33 transconjugant HAZ-12) → K12 W3110 trpA33 back-transconjugants

Citation: Milkman R. 1999. Gene Transfer in Escherichia coli, p 291-309. In Charlebois R (ed), Organization of the Prokaryotic Genome. ASM Press, Washington, DC. doi: 10.1128/9781555818180.ch16
Generic image for table
TABLE 3

Conjugation: K12 — ECOR 47

Citation: Milkman R. 1999. Gene Transfer in Escherichia coli, p 291-309. In Charlebois R (ed), Organization of the Prokaryotic Genome. ASM Press, Washington, DC. doi: 10.1128/9781555818180.ch16

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error