1887

Chapter 18 : Proteome Approach to the Identification of Cellular Proteins

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Proteome Approach to the Identification of Cellular Proteins, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818180/9781555811518_Chap18-1.gif /docserver/preview/fulltext/10.1128/9781555818180/9781555811518_Chap18-2.gif

Abstract:

has been an obvious initial study for proteomics, as it is one of the best-understood organisms and its genome was one of the first sequenced. This chapter reviews the technologies that make proteomics a genuinely new approach to protein science, and reflects on the emergence of global protein studies that allow proteins separated on gels to be identified, thus enabling analysis of protein fluxes and networks. Compared to genomics, proteomics provides information on the end products of gene expression and, in essence, is an examination of the “tools” an organism uses to survive and proliferate in an environment. Genomics provides the total information base or capacity of an organism to survive in terms of the potential gene products, open reading frames, and organization of the genes. Fundamental approaches to protein identification have not changed much over the past decade, e.g., N-terminal sequencing, molecular weight, protein pI, amino acid analysis and peptide mapping. Improved methods are based on greater resolution of peptide masses by mass spectrometry (MS). In living organisms it is unlikely that at any one time all genes in the genome will be expressed. The differential display of proteins by 2-D PAGE has long been used with to monitor response to stimuli. Further advances in protein solubilization and detection methods are required to resolve in gel all proteins from a proteome, in particular, those that are membrane associated or of high hydrophobicity.

Citation: Nouwens A, Hopwood F, Traini M, Williams K, Walsh B. 1999. Proteome Approach to the Identification of Cellular Proteins, p 331-346. In Charlebois R (ed), Organization of the Prokaryotic Genome. ASM Press, Washington, DC. doi: 10.1128/9781555818180.ch18

Key Concept Ranking

Sodium Dodecyl Sulfate
0.46068817
0.46068817
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

2-D PAGE reference map for K-12 strain W3110 created with CA technology. Proteins were separated by four to eight CA in the first dimension and 11.5% acrylamide in the second dimension. The convention for pI orientation with CA is often the reverse of that used by IPG. Molecular weight estimates were made with protein spots of known molecular mass (deduced from sequence). Reproduced from ftp://ncbi.nlm.nih.gov/repository/ECO2DBASE/F1nogrid.tif.

Citation: Nouwens A, Hopwood F, Traini M, Williams K, Walsh B. 1999. Proteome Approach to the Identification of Cellular Proteins, p 331-346. In Charlebois R (ed), Organization of the Prokaryotic Genome. ASM Press, Washington, DC. doi: 10.1128/9781555818180.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Outline of the steps involved in a sequential extraction procedure. proteins are fractionated by their hydrophobicity by using different reducing agents, chaotropes, and surfactants. The proteins are then separated by 2-D PAGE. The result is several simplified patterns of protein spots, making image analysis and identification less complicated. The technique also extracts proteins not usually obtained in a one-step procedure. Modified from Molloy et al. ( ). CHAPS, 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate; DTT, dithiothreitol; SB 3-10, sulfobetaine 3-10; TBP, tributyl phosphine.

Citation: Nouwens A, Hopwood F, Traini M, Williams K, Walsh B. 1999. Proteome Approach to the Identification of Cellular Proteins, p 331-346. In Charlebois R (ed), Organization of the Prokaryotic Genome. ASM Press, Washington, DC. doi: 10.1128/9781555818180.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Use of narrow-range pH gradients and differential solubility to display the K-12 strain W3110 proteome more easily. Using a four-step sequential extraction procedure (the solutions detailed in Fig. 3 plus a final solubilization with amidosulfobetaine 3-10 instead of sulfobetaine 3-10), proteins were separated by the Bio-Rad minigel format on three IPG strips of overlapping pI ranges. The second-dimension gels were Bio-Rad 10 to 20% ReadyGels, which fractionate in the range of 10 to 100 kDa. Note the well-spread-out pattern in the horizontal plane (different pH) and the different proteins solubilized in the vertical plane (different extraction conditions).

Citation: Nouwens A, Hopwood F, Traini M, Williams K, Walsh B. 1999. Proteome Approach to the Identification of Cellular Proteins, p 331-346. In Charlebois R (ed), Organization of the Prokaryotic Genome. ASM Press, Washington, DC. doi: 10.1128/9781555818180.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Flow chart showing equipment used in the process of preparing proteins separated by 2-D PAGE for PMF.

Citation: Nouwens A, Hopwood F, Traini M, Williams K, Walsh B. 1999. Proteome Approach to the Identification of Cellular Proteins, p 331-346. In Charlebois R (ed), Organization of the Prokaryotic Genome. ASM Press, Washington, DC. doi: 10.1128/9781555818180.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5
FIGURE 5

Screen shot of RAID. The program first retrieves monoisotopic peak lists and filters out contaminating masses (such as trypsin). It then automatically submits the data to the MS-Fit program (http://prospector.ucsf.edu/msfit). The program can also extract pI/ information from the Melanie II imaging software that is used to create gel images like that in Fig. 6.

Citation: Nouwens A, Hopwood F, Traini M, Williams K, Walsh B. 1999. Proteome Approach to the Identification of Cellular Proteins, p 331-346. In Charlebois R (ed), Organization of the Prokaryotic Genome. ASM Press, Washington, DC. doi: 10.1128/9781555818180.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818180.chap18
1. Ames, G. F.-L.,, and K. Nikaido. 1976. Two-dimensional gel electrophoresis of membrane proteins. Biochemistry 15:616623.
2. Anderson, L.,, and J. Seilhamer. 1997. A comparison of selected mRNA and protein abundances in human liver. Electrophoresis 18:533537.
3.Bairoch, A. 1997. Proteome databases. In M. R. Wilkins,, K. L. Williams,, R. D. Appel,, and D. F. Hochstrasser (ed.), Proteome Research: New Frontiers in Functional Genomics. Springer-Verlag, Berlin, Germany.
4. Blattner, F. R.,, G. Plunkett,, C. A. Bloch,, N. T. Perna,, V. Burland,, M. Riley,, J. Collado-Vides,, J. D. Glasner,, C. K. Rode,, G. F. Mayhew,, J. Gregor,, N. W. Davis,, H. A. Kirkpatrick,, M. A. Goeden,, D. J. Rose,, B. Mau,, and Y. Shao. 1997. The complete genome sequence of Escherichia coli K-12. Science 277:14531474.
5. Bloch, P. L.,, T. A. Phillips,, and F. C. Neidhardt. 1980. Protein identifications on O'Farrell two-dimensional gels: locations of 81 Escherichia coli proteins. J. Bacteriol. 141:14091420.
6. Blomberg, A.,, L. Blomberg,, J. Norbeck,, S. J. Fey,, P. M. Larsen,, M. Larsen,, P. Roepstorff,, H. Degand,, M. Boutry,, A. Posch,, and A. Görg. 1995. Interlaboratory reproducibility of yeast protein patterns analyzed by immobilized pH gradient two-dimensional gel electrophoresis. Electrophoresis 16:19351945.
7. Bravo, R.,, and J. E. Celis. 1980. A search for differential polypeptide synthesis throughout the cell cycle of HeLa cells. J. Cell Biol. 84:795802.
8. Celis, J. E.,, M. Ostergaard,, N. A. Jensen,, I. Gromova,, H. H. Rasmussen,, and P. Gromov. 1998. Human and mouse proteomic databases: novel resources in the protein universe. FEBS Lett. 430:6472.
9. Cleveland, D. 1983. Peptide mapping in one dimension by limited proteolysis of sodium dodecyl sulfate-solubilized proteins. Methods Enzymol. 96:222229.
10. Corbett, J. M.,, M. J. Dunn,, A. Posch,, and A. Görg. 1994. Positional reproducibility of protein spots in two-dimensional polyacrylamide gel electrophoresis using immobilised pH gradient isoelectric focusing in the first dimension: an interlaboratory comparison. Electrophoresis 15: 12051211.
11.Cordwell S. J., D. J. Basseal, B. Bjellqvist, D. C. Shaw, and I. Humphery-Smith. 1997. Characterization of basic proteins from Spiroplasma melliferum using novel immobilised pH gradients. Electrophoresis 18:13931398.
12. Daniels, D. L.,, G. Plunkett III,, V. Burland,, and F. R. Blattner. 1992. Analysis of the Escherichia coli genome: DNA sequence of the region from 84.5 to 86.5 minutes. Science 257: 771778.
13. Ducret, A.,, I. Van Oostveen,, J. K. Eng,, J. R. Yates III,, and R. Aebersold. 1998. High throughput protein characterization by automated reverse-phase chromatography/electrospray tandem mass spectrometry. Protein Sci. 7: 706719.
14. Dujon, B. 1996. The yeast genome project: what did we learn? Trends Genet. 12:263270.
15. Dunn, M. J.,, J. M. Corbett, and C. H. Wheeler. 1997. HSC-2DPAGE and the two-dimensional gel electrophoresis database of dog heart proteins. Electrophoresis 18:27952802.
16. Fey, S. J.,, A. Nawrocki,, M. R. Larsen,, A. Görg,, P. RoepstorrT,, G. N. Skews,, R. Williams,, and P. M. Larsen. 1997. Proteome analysis of Saccharomyces cerevisiae: a methodological outline. Electrophoresis 18:13611372.
17. Freestone, P.,, M. Trinei,, S. C. Clarke, T. Nyström, and V. Noms. 1998. Tyrosine phosphorylation in Escherichia coli. J. Mol. Biol. 279: 10451051.
18. Gage, D. J.,, and F. C. Neidhardt. 1993. Adaptation of Escherichia coli to the uncoupler of oxidative phosphorylation 2,4-dinitrophenol. J. Bacteriol. 175:71057108.
19. Garrels, J. I.,, and W. Gibson. 1976. Identification and characterization of multiple forms of actin. Cell 9:793805.
20. Garrels, J. I.,, C. S. McLaughlin,, J. R. Warner,, B. Futcher,, G. I. Latter,, R. Kobayashi,, B. Schwender,, T. Volpe,, D. S. Anderson,, R. Mesquita-Fuentes,, and W. E. Payne. 1997. Proteome studies of Saccharomyces cerevisiae: identification and characterization of abundant proteins. Electrophoresis 18:13471360.
21. Gooley, A. A.,, and N. H. Packer,. 1997. The importance of protein co- and post-translational modifications in proteome projects. In M. R. Wilkins,, K. L. Williams,, R. D. Appel,, and D. F. Hochstrasser (ed.), Proteome Research: New Frontiers in Functional Genomics. Springer-Verlag, Berlin, Germany.
22. Gooley, A. A.,, and K. L. Williams. 1997. How to find, identify and quantitate the sugars on proteins. Nature 385:557559.
23. Görg, A.,, G. Boguth,, C. Obermaier,, and W. Weiss. 1998. Two-dimensional electrophoresis of proteins in an immobilized pH 4-12 gradient. Electrophoresis 19:15161519.
24. Haynes, P. A.,, S. P. Gygi,, D. Figeys,, and R. Aebersold. 1998. Proteome analysis: biological assay or data archive. Electrophoresis 19:18621871.
25. Hecker, M.,, W. Schumann,, and U. Völker. 1996. Heat-shock and general stress response in Bacillus subtilis. Mol. Microbiol. 19:417428.
26. Herendeen, S. L.,, R. A. VanBogelen,, and F. C. Neidhardt. 1979. Levels of major proteins of Escherichia coli during growth at different temperatures. J. Bacteriol. 139:185194.
27. Hochstrasser, D. F.,, S. Frutiger,, M. R. Wilkins,, G. Hughes,, and J.-C. Sanchez. 1997. Elevation of apolipoprotein E in the CSF of cattle affected by BSE. FEBS Lett. 416:161163.
28. Humphery-Smith, L.,, S. J. Cordwell,, and W. P. Blackstock. 1997. Proteome research: complementarity and limitations with respect to the RNA and DNA worlds. Electrophoresis 18: 12171242.
29. Jones P. G.,, R. A. VanBogelen,, and F. C. Neidhardt. 1987. Induction of proteins in response to low temperature in Escherichia coli. J. Bacteriol. 169:20922095.
30. Kennelly, P. J.,, and M. Potts. 1996. Fancy meeting you here! A fresh look at "Prokaryotic" protein phosphorylation. J. Bacteriol. 178:47594764.
31. Knopf, U. C.,, A. Sommer,, J. Kenny,, and R. R. Traut. 1975. A new two-dimensional gel electrophoresis system for the analysis of complex protein mixtures: application to the ribosome of E. coli. Mol. Biol. Rep. 2:3540.
32. Kohara, Y.,, K. Akiyama,, and K. Isono. 1987. The physical map of the whole E. coli chromosome: application of a new strategy for rapid analysis and sorting of a large genomic library. Cell 50:495508.
33. Lambert, L. A.,, K. Abshire,, D. Blankenhorn,, and J. L. Slonczewski. 1997. Proteins induced in Escherichia coli by benzoic acid. J. Bacteriol. 179:75957599.
34. Link, A. J.,, L. G. Hays,, E. B. Carmack,, and J. R. Yates III. 1997. Identifying the major proteome components of Haemophilis influenzae type-strain NCTC 8143. Electrophoresis 18: 13141334.
35. Link, A. J.,, K. Robison,, and G. M. Church. 1997. Comparing the predicted and observed properties of proteins encoded in the genome of Escherichia coli K-12. Electrophoresis 18:12591313.
36. Loomis, W. F.,, G. Shaulsky,, and N. Wang. 1997. Histidine kinases in signal transduction pathways of eukaryotes. J. Cell Sci. 110:11411145.
37. Mann, M.,, P. Hojrup,, and P. Roepstorff. 1993. Use of mass spectrometric molecular weight information to identify proteins in sequence databases. Biol. Mass Spectrom. 22:338345.
38. Matsudaira, P. 1987. Sequence from picomole quantities of proteins electroblotted onto polyvinylidene difluoride membranes. J. Biol. Chem. 262:1003510038.
39. Molloy, M. P.,, B. R. Herbert,, B. J. Walsh,, M. I. Tyler,, M. Traini,, J.-C. Sanchez,, D. F. Hochstrasser,, K. L. Williams,, and A. A. Gooley. 1998. Extraction of membrane proteins by differential solubilization for separation using two-dimensional gel electrophoresis. Electrophoresis 19:837844.
40. Nawrocki, A.,, M. R. Larsen,, A. V. Podtelejnikov,, O. N. Jensen,, M. Mann,, P. Roepstorff,, A. Görg,, S. J. Fey,, and P. M. Larsen. 1998. Correlation of acidic and basic carrier ampholyte and immobilized pH gradient two-dimensional gel electrophoresis patterns based on mass spectrometric protein identification. Electrophoresis 19:10241035.
41. Neidhardt, F. C.,, P. L. Bloch,, S. Pedersen,, and S. Reeh. 1977. Chemical measurement of steady-state levels of ten aminoacyl-transfer ribonucleic acid synthetases in Escherichia coli. J. Bacteriol. 129:378387.
42. Neidhardt, F. C.,, T. A. Phillips,, R. A. VanBogelen,, M. W. Smith,, Y. Georgalis,, and A. R. Subramanian. 1981. Identity of the B56.5 protein, the A-protein, and the groE gene product of Escherichia coli. J. Bacteriol. 145:513520.
43. Neidhart, F. C.,, and M. A. Savageau,. 1996. Regulation beyond the operon, p. 13111324. In F. C. Neidhart,, R. Curtiss III,, J. L. Ingraham,, E. C. C. Lin,, K. B. Low,, B. Magasanik,, W. S. Reznikoff,, M. Riley,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd ed. American Society for Microbiology, Washington, D.C.
44. O'Farrell, P. H. 1975. High resolution two-dimensional gel electrophoresis of proteins. J. Biol. Chem. 250:40074021.
45. Pasquali, C.,, S. Frutiger,, M. R. Wilkins,, G. J. Hughes,, R. D. Appel,, A. Bairoch,, D. Schaller,, J.-C. Sanchez,, and D. F. Hochstrasser. 1996. Two-dimensional gel electrophoresis of Escherichia coli homogenates: the Escherichia coli SWISS-2DPAGE database. Electrophoresis 17: 547555.
46. Phillips, T. A.,, P. L. Bloch,, and F. C. Neidhardt. 1980. Protein identification on O'Farrell two-dimensional gels: location of 55 additional Escherichia coli proteins. J. Bacteriol. 144:10241033.
47. Rabilloud, T. 1996. Solubilization of proteins for electrophoretic analyses. Electrophoresis 17: 813829.
48.Rabilloud, T., C. Adessi, A. Giraudel, and J. Lunardi. 1997. Improvement of the solubilization of proteins in two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis 18:307316.
49. Rudd, K. E.,, I. Humphery-Smith,, V. C. Wasinger,, and A. Bairoch. 1998. Low molecular weight proteins: a challenge for post-genomic research. Electrophoresis 19:536544.
50. Sanchez, J.-C, V. Rouge, M. Pisteur, F. Ravier, L. Tonella, M. Moosmayer, M. Wilkins, and D. F. Hochstrasser. 1997. Improved and simplified in-gel sample application using reswelling of dry immobilized pH gradients. Electrophoresis 18:324327.
51. Sankar, P.,, M. E. Hutton,, R. A. VanBogelen,, R. L. Clark,, and F. C. Neidhardt. 1993. Expression analysis of cloned chromosomal segments of Escherichia coli. J. Bacteriol. 175: 51455152.
52.Sato, T., K. Ito, and T. Yura. 1977. Membrane proteins of Escherichia coli K-12: two-dimensional polyacrylamide gel electrophoresis of inner and outer membranes. Euro. J. Biochem. 78:557567.
53. Smith, C. L.,, J. G. Econome,, A. Schutt,, S. Klco,, and C. R. Cantor. 1987. A physical map of the Escherichia coli K12 genome. Science 236: 14481453.
54. Smith, M. W.,, and F. C. Neidhardt. 1983. Proteins induced by anaerobiosis in Escherichia coli. J. Bacteriol. 154:336343.
55. Tonella, L.,, B. J. Walsh,, J.-C. Sanchez,, K. Ou,, M. R. Wilkins,, M. Tyler,, S. Frutiger,, A. A. Gooley,, I. Pescaru,, R. D. Appel,, J. X. Yan,, A. Bairoch,, C. Hoogland,, F. S. Morch,, G. J. Hughes,, K. L. Williams,, and D. F. Hochstrasser. 1998. '98 Escherichia coli SWISS-2DPAGE database update. Electrophoresis 19: 19601971.
56. Traini, M.,, A. A. Gooley,, K. Ou,, M. R. Wilkins,, L. Tonella,, J.-C. Sanchez,, D. F. Hochstrasser,, and K. L. Williams. 1998. Towards an automated approach for protein identification in proteome projects. Electrophoresis 19:19411949.
57. Urquhart, B. L.,, T. E. Atsalos,, D. Roach,, D. J. Basseal,, B. Bjellqvist,, W. L. Britton,, and I. Humphery-Smith. 1998. 'Proteomic contigs' of Mycobacterium tuberculosis and Mycobacterium bovis (BCG) using novel immobilised pH gradients. Electrophoresis 18:13841392.
58. VanBogelen, R. A.,, P. M. Kelley,, and F. C. Neidhardt. 1987. Differential induction of heat shock, SOS, and oxidation stress regulons and accumulation of nucleotides in Escherichia coli. J. Bacteriol. 169:2632.
59. VanBogelen, R. A.,, and F. C. Neidhardt. 1990. Ribosomes as sensors of heat and cold shock in Escherichia coli. Proc. Natl. Acad. Sci. USA 87:55895593.
60. VanBogelen, R. A.,, K. Z. Abshire,, A. Pertsemlidis,, R. L. Clark,, and F. C. Neidhardt,. 1996. Gene-protein database of Escherichia coli K-12, edition 6. In F. C. Neidhardt,, R. Curtiss III,, J. L. Ingraham,, E. C. C. Lin,, K. B. Low,, B. Magasanik,, W. S. Reznikoff,, M. Riley,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella:Cellular and Molecular Biology, 2nd ed. American Society for Microbiology, Washington, D.C.
61. VanBogelen, R. A.,, E. R. Olson,, B. L. Wanner,, and F. C. Neidhardt. 1996. Global analysis of proteins synthesized during phosphorus restriction in Escherichia coli. J. Bacteriol. 178:43444366.
62. VanBogelen, R. A.,, K. Z. Abshire,, B. Moldover,, E. R. Olson,, and F. C. Neidhardt. 1997. Escherichia coli proteome analysis using the gene-protein database. Electrophoresis 18:12431251.
63. Varki, A. 1993. Biological roles of oligosaccharides: all of the theories are correct. Glycobiology 3: 97130.
64. Wasinger, V. C.,, S. J. Cordwell,, A. Cerpa-Poljak,, J. X. Yan,, A. A. Gooley,, M. R. Wilkins,, M. W. Duncan,, R. Harris,, K. L. Williams,, and I. Humphery-Smith. 1995. Progress with gene-product mapping of the Mollicutes: Mycoplasma genitalium. Electrophoresis 16: 10901094.
65. Westermeier, R.,, W. Postel,, J. Weser,, and A. Görg. 1983. High-resolution two-dimensional electrophoresis with isoelectric focusing in immobilized pH gradients. J. Biochem. Biophys. Methods 8:321330.
66. Wilkins, M.,, K. Ou,, R. D. Appel,, J.-C. Sanchez,, J. X. Yan,, O. Golaz,, V. Farnsworth,, P. Cartier,, D. F. Hochstrasser,, K. L. Williams,, and A. A. Gooley. 1996. Rapid protein identification using N-terminal "sequence tag" and amino acid analysis. Biochem. Biophys. Res. Commun. 221:609613.
67. Wilkins, M. R.,, J.-C. Sanchez,, A. A. Gooley,, R. D. Appel,, I. Humphery-Smith,, D. F. Hochstrasser,, and K. L. Williams. 1995. Progress with proteome projects: Why all proteins expressed by a genome should be identified and how to do it. Biotechnol. Genet. Eng. Rev. 13:1950.
68. Wilkins, M. R.,, C. Pasquali,, R. D. Appel,, K. Ou,, O. Golaz,, J.-C. Sanchez,, J. X. Yan,, A. A. Gooley,, G. Hughes,, I. Humphery-Smith,, K. L. Williams,, and D. F. Hochstrasser. 1996. From proteins to proteomes: large scale protein identification by two-dimensional electrophoresis and amino acid analysis. Bio/Technology 14:6165.
69. Wilkins, M. R.,, and A. A. Gooley,. 1997. Protein identification in proteome projects. In M. R. Wilkins,, K. L. Williams,, R. D. Appel,, and D. F. Hochstrasser (ed.), Proteome Research: New Frontiers in Functional Genomics. Springer-Verlag, Berlin, Germany.
70. Wilkins, M. R.,, E. Gasteiger,, L. Tonella,, K. Ou,, M. Tyler,, J.-C. Sanchez,, A. A. Gooley,, B. J. Walsh,, A. Bairoch,, R. D. Appel,, K. L. Williams,, and D. F. Hochstrasser. 1998. Protein identification with N and C-terminal sequence tags in proteome projects. J. Mol. Biol. 278:599608.
71. Wilkins, M. R.,, E. Gasteiger,, A. A. Gooley,, B. R. Herbert,, M. Molloy,, P. A. Binz,, K. Ou,, J.-C. Sanchez,, A. Bairoch,, K. L. Williams,, and D. F. Hochstrasser. Large-scale mass spectrometric discovery of protein posttranslational modifications. (Submitted for publication).

Tables

Generic image for table
TABLE 1

Average and monoisotopic mass values for typical posttranslational modifications used by the FindMod program (http://expasy.proteome.org.au/sprot/findmod/findmod_masses.html).

Citation: Nouwens A, Hopwood F, Traini M, Williams K, Walsh B. 1999. Proteome Approach to the Identification of Cellular Proteins, p 331-346. In Charlebois R (ed), Organization of the Prokaryotic Genome. ASM Press, Washington, DC. doi: 10.1128/9781555818180.ch18

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error