1887

Chapter 9 : Insertion Sequences and Transposons

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Insertion Sequences and Transposons, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818180/9781555811518_Chap09-1.gif /docserver/preview/fulltext/10.1128/9781555818180/9781555811518_Chap09-2.gif

Abstract:

Transposable elements (TEs) have been defined as DNA sequences able to insert at many sites in the genome. At present there are about 500 TEs identified in many different bacterial species. Most insertion sequence (IS) elements and transposons were discovered after their transposition into genes of interest. In bacteria the relative juxtapositions of genes are not necessarily important because most will be involved in producing tows-acting factors, which are able to fulfill their function irrespective of their location or arrangement in the genome. Nonreplicative (or "cut-and-paste") transposons are excised from the donor site by double-strand breaks and inserted at the target site without the duplication of the transposon sequences (e.g., IS10 and IS50). Some bacteriophages are also considered to group with the replicative transposons because they use transposition to replicate during the lytic phase of their life cycles. It should be noted that the transposons in the portable-homology rearrangements are no longer flanked by the same direct repeats of target sequences as they were before the rearrangements. Usually composite transposons have their IS elements in the inverted-repeat configuration so that homologous recombination only causes the inversion of the markers within the transposon. Conjugative transposons harbor within the same sequence the cellular (transposition) and the intercellular (conjugation) mobilities. In the few experiments where selection has been maintained for many generations, IS elements have been found to have a major effect on the genetic structure of the population.

Citation: Chalmers R, Blot M. 1999. Insertion Sequences and Transposons, p 151-169. In Charlebois R (ed), Organization of the Prokaryotic Genome. ASM Press, Washington, DC. doi: 10.1128/9781555818180.ch9

Key Concept Ranking

Restriction Fragment Length Polymorphism
0.40986124
0.40986124
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Mechanism of nonreplicative transposition. The DNA components of the reactions are all shown, but supercoiling and the protein components have been omitted for clarity. Markers A and B are in the transposon; C and D are in the flanking donor DNA, which is lost; X and Y are in the target DNA. Symbols: half boxes, transposon ends; solid and shaded circles, 5′ phosphate groups; solid and shaded triangles, 3′ hydroxyl groups; half arrows, direct repeats of target sequences.

Citation: Chalmers R, Blot M. 1999. Insertion Sequences and Transposons, p 151-169. In Charlebois R (ed), Organization of the Prokaryotic Genome. ASM Press, Washington, DC. doi: 10.1128/9781555818180.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Mechanism of replicative transposition. The transposon and donor (AB and CD, respectively) are fused with the target molecule, XY, to form a Shapiro intermediate, which is converted to a cointegrate by replication. Symbols: half boxes, transposon ends; shaded circles, 5′ phosphate groups; solid and shaded triangles, 3′ hydroxyl groups; half arrows, direct repeats of target sequences.

Citation: Chalmers R, Blot M. 1999. Insertion Sequences and Transposons, p 151-169. In Charlebois R (ed), Organization of the Prokaryotic Genome. ASM Press, Washington, DC. doi: 10.1128/9781555818180.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Transposons as regions of portable homology. Transposons are represented as rectangles, with arrows indicating the relative orientations of the insertions. Homologous recombination between insertions in the direct-repeat configuration deletes one copy of the transposon and the markers in between. Recombination between inverted repeats causes inversion of one copy of the transposon and the markers in between.

Citation: Chalmers R, Blot M. 1999. Insertion Sequences and Transposons, p 151-169. In Charlebois R (ed), Organization of the Prokaryotic Genome. ASM Press, Washington, DC. doi: 10.1128/9781555818180.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Precise and nearly precise excision. (Middle) A transposon insertion is shown as a rectangle flanked by 5-bp direct repeats of target site duplications. (Top) Precise excision restores the locus to wild type by the deletion of the transposon and one of the 5-bp target site repeats. (Bottom) Nearly precise excision leaves behind remnants of the transposon and both of the target duplications. Nearly precise excision can go on to give precise excisions.

Citation: Chalmers R, Blot M. 1999. Insertion Sequences and Transposons, p 151-169. In Charlebois R (ed), Organization of the Prokaryotic Genome. ASM Press, Washington, DC. doi: 10.1128/9781555818180.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5
FIGURE 5

Intramolecular replicative transposition. The ends of the transposon are represented as interrupted half boxes on either side of transposon markers AB. An arbitrary target site is located between CD and EF. Following strand transfer, replication of the transposon sequences results in deletions and inversions. Symbols: half boxes, transposon ends; circles, 5′ phosphate groups; triangles, 3′ hydroxyl groups.

Citation: Chalmers R, Blot M. 1999. Insertion Sequences and Transposons, p 151-169. In Charlebois R (ed), Organization of the Prokaryotic Genome. ASM Press, Washington, DC. doi: 10.1128/9781555818180.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 6
FIGURE 6

Inside-out transposition, dimer donors, and cryptic ends. (A) The IS elements on the left (L) and right (R) of a composite transposon are represented as rectangles, with arrows indicating their relative orientations. The transposon carries the unique sequences XYZ, and an arbitrary target site is located between markers DEF and GHI. During inside-out transposition, the innermost pair of ends from the IS elements are cleaved and transferred to the target site. The cleavage step always deletes the transposon sequences XYZ. Strand transfer produces either deletions or inversions, depending on the orientation of the target. A target site on a different DNA molecule would produce a replicon fusion (not shown). (B) A replicon with a single IS element will have multiple ends available if it exists as a dimer. If opposite ends of the sister IS elements are used for transposition, cleavage will delete half of the dimer and yield an intermediate, almost identical to inside-out transposition. Strand transfer will likewise produce deletions, inversions, and replicon fusions (not shown). (С) A cryptic transposon end (half box) may be present in the correct location and orientation with respect to one of the transposon ends.

Citation: Chalmers R, Blot M. 1999. Insertion Sequences and Transposons, p 151-169. In Charlebois R (ed), Organization of the Prokaryotic Genome. ASM Press, Washington, DC. doi: 10.1128/9781555818180.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 7
FIGURE 7

Bimolecular synapsis. Transposon ends are represented as open and solid half boxes to distinguish the left and right ends, respectively. An arbitrary intramolecular target site is illustrated, flanked by markers ABC and DEF. After the transposon sequences have been duplicated by the passage of a replication fork, transposase cleaves at the opposite ends of each of the sister elements. If the target site is on a different DNA molecule, the strand transfer product is a cointegrate (left side of figure). If the target site is intramolecular, the products are replicative deletions or replicative inversions, depending on the relative orientations of the ends and the target site. Open circle, potential target site; solid circle, actual target site used.

Citation: Chalmers R, Blot M. 1999. Insertion Sequences and Transposons, p 151-169. In Charlebois R (ed), Organization of the Prokaryotic Genome. ASM Press, Washington, DC. doi: 10.1128/9781555818180.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818180.chap9
1. Adam, E.,, M. R. Volkert,, and M. Blot. 1998. Cytochrome C. biogenesis is involved in the transposon Tn5-mediated bleomycin resistance and associated fitness effect in E. coli . Mol. Microbiol. 28: 15 24.
2. Adzuma, K.,, and K. Mizuuchi. 1989. Interaction of proteins located at a distance along DNA: mechanism of target immunity in the Mu DNA strand-transfer reaction. Cell 57: 41 47.
3. Adzuma, K.,, and K. Mizuuchi. 1988. Target immunity of Mu transposition reflects a differential distribution of Mu B protein. Cell 53: 257 266.
4. Ahmed, A. 1991. A comparison of intramolecular rearrangements promoted by transposons Tn 5 and Tn l0 . Proc. R. Soc. Lond. B. 244: 1 9.
4a. Alm, R. A.,, L. S. Ling,, D. T. Moir,, B. L. King,, E. D. Brown,, P. C. Doig,, D. R. Smith,, B. Noonan,, B. C. Guild,, B. L. de-Jonge,, G. Carmel,, P. J. Tummino,, A. Caruso,, M. Uria-Nickelsen,, D. M. ,, C. Ives,, R. Gibson,, D. Merberg,, S. D. Mills,, Q. Jiang,, D. E. Taylor,, G. F. Vovis,, and T. J. Trust. 1999. Genomic-sequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori . Nature 397: 176 180.
5. Arthur, A.,, and D. Sherratt. 1979. Dissection of the transposition process: a transposon-encoded site-specific recombination system. Mol. Gen. Genet. 175: 267 274.
6. Bender, J.,, and N. Kleckner. 1986. Genetic evidence that TnlO transposes by a nonreplicative mechanism. Cell 45: 801 815.
7. Benjamin, H. W.,, and N. Kleckner. 1992. Excision of Tn l0 from the donor site during transposition occurs by flush double-strand cleavages at the transposon termini. Proc. Natl. Acad. Sci., USA 89: 4648 4652.
8. Berg, D. E. 1983. Structural requirement for IS50-mediated gene transposition. Proc. Natl. Acad. Sci. USA 80: 792 796.
9. Berg, D. E., 1989. Transposon Tn5, p. 185 210. In D. E. Berg, and M. M. Howe (ed.), Mobile DNA. American Society for Microbiology, Washington, D.C.
10. Biel, S. W.,, and D. L. Hard. 1983. Evolution of transposons: natural selection for Tn 5 in E. coli K12. Genetics 103: 581 592.
11. Birkenbihl, R. P.,, and W. Vielmetter. 1989. Complete maps of IS 1, IS 2, IS3, IS4, IS5, IS30, and ISÎ50 locations in E. coli K12. Mol. Gen. Genet. 220: 147 153.
12. Birkenbihl, R. P.,, and W. Vielmetter. 1991. Completion of the IS map in E. coli: IS 186 positions on the E. coli K12 chromosome. Mol. Gen. Genet. 226: 318 320.
13. Bisercic, M.,, and H. Ochman. 1993. The ancestry of insertion sequences common to Escherichia coli and Salmonella typhimurium . J. Bacteriol. 175: 7863 7868.
14. Bisercic, M.,, and H. Ochman. 1993. Natural populations of Escherichia coli and Salmonella typhimurium harbor the same classes of insertion sequences. Genetics 133: 449 454.
15. Bishop, R.,, and D. Sherratt. 1984. Transposon Tn 1 intra-molecular transposition. Mol. Gen. Genet. 196: 117 122.
16. Blattner, F. R.,, I. G. Plunkett,, C. A. Bloch,, N. T. Peraa,, V. Burland,, M. Riley,, J. Collado-Vides,, J. D. Glasner,, C. K. Rode,, G. F. Mayhew,, J. Gregor,, N. W. Davis,, H. A. Kirkpatrick,, M. A. Goeden,, D. J. Rose,, B. Mau,, and Y. Shao. 1997. The complete genome sequence of E. coli K-12. Science 277: 1453 1461.
17. Blazquez, J.,, A. Navas,, P. Gonzalo,, J. L. Martinez,, and F. Baquero. 1996. Spread and evolution of natural plasmids harboring transposon Tn5. FEMS Microbiol. Ecol 19: 63 71.
18. Blot, M. 1994. Transposable elements and adaptation of host bacteria. Genetica 93: 5 12.
19. Blot, M.,, B. Hauer,, and G. Monnet. 1994. Growth advantage, better survival and the bleomycin resistance gene of Tn5. Genetics 242: 595 601.
20. Blot, M.,, J. Heitman,, and W. Arber. 1993. Tn5-mediated bleomycin resistance in Escherichia coli requires the expression of host genes. Mol. Microbiol. 8: 1017 1024.
21. Blot, M.,, J. Meyer,, and W. Arber. 1991. Bleomycin-resistance gene derived from the transposon Tn5 confers selective advantage to Escherichia coli K-12. Proc. Natl. Acad. Sci. USA 88: 9112 9116.
22. Boyd, E. F.,, and D. L. Hard. 1997. Nonran-dom location of IS 1 elements in the genomes of natural isolates of Escherichia coli . Mol. Biol. Evol. 14: 725 732.
23. Campbell, A. 1981. Evolutionary significance of accessory DNA elements in bacteria. Annu. Rev. Microbiol. 35: 55 83.
24. Campbell, A. 1981. Some questions about movable elements and their implications. Cold Spring Harbor Symp. Quant. Biol. 45: 1 9.
25. Campbell, A. M.,, D. Berg,, D. Botstein,, E. Lederberg,, R. Novick,, P. Starlinger,, and W. Szybalski,. 1977. Nomenclature of transposable elements in Prokaryotes, p. 15 22. In A. I. Bukhari,, J. A. Shapiro,, and S. L. Adhya (ed.), DNA Insertion Elements, Plasmids and Episomes. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
26. Canceill, D.,, and S. D. Ehrlich. 1996. Copy-choice recombination mediated by DNA polymerase III holoenzyme from Escherichia coli . Proc. Natl. Acad. Sci. USA 93: 6647 6652.
27. Casadesus, J.,, and J. R. Roth. 1989. Absence of insertions among spontaneous mutants of Salmonella typhimurium . Mol. Gen. Genet. 216: 210 216.
28. Chalmers, R. M.,, and N. Kleckner. 1996. ISW/TnlO transposition efficiendy accommodates diverse transposon end configurations. EMBO J. 15: 5112 5122.
29. Chalmers, R. M.,, and N. Kleckner. 1994. TniO/IS10 transposase purification, activation, and in vitro reaction. J. Biol. Chem. 269: 8029 8035.
30. Chan, A.,, and R. Nagel. 1997. Involvement of recA and recF in the induced precise excision of Tn 10 in Escherichia coli . Mutat. Res. 381: 111 115.
31. Chao, L.,, and S. M. McBroom. 1985. Evolution of transposable elements: an IS 10 insertion increases fitness in E. coli . Mol. Biol. Evol. 2: 359 369.
32. Chao, L.,, C. Vargas,, B. B. Spear,, and E. C. Cox. 1983. Transposable elements as mutator genes in evolution. Nature 303: 633 635.
33. Chumley, F. G.,, and J. R. Roth. 1980. Rearrangements of the bacterial chromosome using Tn 10 as a region of homology. Genetics 94: 1 14.
34. Collins, J.,, G. Volckaert,, and P. Nevers. 1982. Precise and nearly-precise excision of the symmetrical inverted repeats of Tn5; common features of recA-independent deletion events in Escherichia coli . Gene 19: 139 146.
35. Condit, R. 1990. The evolution of transposable elements: conditions for establishment in bacterial populations. Evolution 44: 347 359.
36. Condit, R.,, and B. R. Levin. 1990. The evolution of plasmid carrying multiple resistance genes: the role of segregation, transposition and homologous recombination. Am. Nat. 135: 573 596.
37. Condit, R.,, F. Stewart,, and B. Levin. 1988. The population biology of bacterial transposons: a priori conditions for maintenance as parasitic DNA. Am. Nat. 132: 129 147.
38. Cousineau, B.,, D. Smith,, S. Lawrence-Cavanagh,, J. Mueller,, J. Yang,, D. Mills,, D. Manias,, G. Dunny,, A. Lambowitz,, and M. Belfort. 1998. Retrohoming of a bacterial group II intron: mobility via complete reverse splicing, independent of homologous DNA recombination. Cell 21: 4.
39. Craig, N. L. 1996. Transposon Tn7. Curr. Top. Microbiol Immunol. 204: 27 48.
40. d'Alencon, E.,, M. Petranovic,, B. Michel,, P. Noirot,, A. Aucouturier,, M. Uzest,, and S. D. Ehrlich. 1994. Copy-choice illegitimate DNA recombination revisited. EMBO J. 13: 2725 2734.
41. de Bruijn, F. J. 1987. Transposon Tn5 muta-genesis to map genes. Methods Enzymol. 154: 175 196.
42. de-Massy, B.,, J. Patte,, J. M. Louarn,, and J. P. Bouche. 1984. oriX: a new replication origin in E. coli. Cell 36: 221 227.
43. Deonier, R. C., 1996. Native insertion sequence elements: locations, distributions and sequence relationships, p. 2000 2012. In F. C. Neidhardt,, R. Curtiss III,, J. L. Ingraham,, E. C. C. Lin,, K. B. Low,, B. Magasanik,, W. S. Reznikoff,, M. Riley,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd ed., vol. 2. ASM Press, Washington D.C.
44. Deonier, R. C.,, and R. C.. Hadley. 1976. Distribution of inverted IS-length sequences in the E. coli K12 genome. Nature 264: 191 193.
45. Deonier, R. C.,, and R. G. Hadley. 1980. IS2-IS2 and IS3-IS3 recombination frequencies in F integration. Plasmid 3: 48 64.
46. Dodson, K. W.,, and D. E. Berg. 1989. Factors affecting transposition activity of IS 50 and Tn5 ends. Gene 76: 207 213.
47. Doolittle, W. F.,, and C. Sapienza. 1980. Selfish genes, the phenotype paradigm and genome evolution. Nature 284: 601 603.
47a. Duperchy, E.,, D. Schneider,, and M. Blot. Unpublished data.
48. Dyda, F.,, A. B. Hickman,, T. M. Jenkins,, A. Engelman,, R. Craigie,, and D. R. Davies. 1994. Crystal structure of the catalytic domain of HIV-1 integrase: similarity to other polynucleo-tidyl transferases. Science 266: 1981 1986.
49. Escoubas, J. M.,, M. F. Prère,, O. Fayet,, I. Salvignol,, D. Galas,, D. Zerbib,, and M.L. Chandler. 1991. Translational control of transposition activity of the bacterial insertion sequence ISÎ. EMBO J. 10: 705 712.
50. Fiandt, M.,, W. Szybalski,, and M. Malamy. 1972. Polar insertions in lac, gal and phage lambda consist of a few IS-DNA sequences inserted with either orientation. Mol. Gen. Genet. 119: 223 231.
51. Foster, T. J.,, V. Lundblad,, S. Hanley-Way,, S. M. Hailing,, and N. Kleckner. 1981. Three TnlO-associated excision events: relationship to transposition and role of direct and inverted repeats. Cell 23: 215 227.
52. Goryshin, I. Y.,, and W. S. Reznikoff. 1998. Tn5 in vitro transposition. J. Biol. Chem. 273: 7367 7374.
53. Green, L.,, R. Miller,, D. E. Dykhuizen,, and D. L. Hartl. 1984. Distribution of DNA insertion elements IS5 in natural isolates of E. coli . Proc. Natl. Acad. Sci. USA 81: 4500 4504.
54. Grindley, N. D.,, and D. J. Sherratt. 1979. Sequence analysis at IS 1 insertion sites: models for transposition. Cold Spring Harbor Symp. Quant. Biol. 2: 1257 1261.
55. Harayama, S.,, T. Oguchi,, and T. lino. 1984. Does Tn 10 transpose via the cointegrate molecule? Mol. Gen. Genet. 194: 444 450.
56. Hartl, D. L.,, D. E. Dykhuizen,, R. D. Miller,, L. Green,, and J. De Framond. 1983. Transposable element IS50 improves growth rate of E. coli cells without transposition. Cell 35: 503 510.
57. Hopkins, J. D.,, M. Clements,, and M. Sy-vanen. 1983. New class of mutations in Escherichia coli (uup) that affect precise excision of insertion elements and bacteriophage Mu growth. J. Bacteriol. 153: 384 389.
58. Hughes, V. M.,, and N. Datta. 1983. Conju-gative plasmids in bacteria of the 'pre-antibiotic' era. Nature 302: 725 726.
59. Inouye, S.,, and M. Inouye. 1993. The retron: a bacterial retroelement required for the synthesis of msDNA. Curr. Opin. Genet. Dev. 3: 713 718.
60. Isberg, R. R.,, and M. Syvanen. 1985. Tn5 transposes independently of cointegrate resolution. Evidence for an alternative model for transposition. J. Mol. Biol. 182: 69 78.
61. Jilk, R. A.,, J. C. Makris,, L. Borchardt,, and W. S. Reznikoff. 1993. Implications of Tn5-associated adjacent deletions. J. Bacteriol. 175: 1264 1271.
62. Kitamura, K.,, Y. Torii,, C. Matsuoka,, and K. Yamamoto. 1995. DNA sequence changes in mutations in the tonB gene on the chromosome of Escherichia coli K12: insertion elements dominate the spontaneous spectra. Jpn. J. Genet. 70: 35 46.
63. Kleckner, N. 1977. Translocatable elements in procaryotes. Cell 11: 11 23.
64. Kleckner, N. 1981. Transposable elements in prokaryotes. Annu. Rev. Genet. 15: 341 404.
65. Kleckner, N., 1989. Transposon Tn10, p. 227 268. In D. E. Berg, and M. M. Howe (ed.), Mobile DNA. American Society for Microbiology, Washington, D.C.
66. Kleckner, N.,, R. M. Chalmers,, D. Kwon,, J. Sakai,, and S. Bolland. 1996. Tn 10 and IS 10 transposition and chromosome rearrangements: mechanisms and regulation in vivo and in vitro. Curr. Top. Microbiol. Immunol. 204: 49 84.
67. Kleckner, N.,, and D. G. Ross. 1980. recA- dependent genetic switch generated by transposon Tn 10 . J. Mol. Biol. 144: 215 221.
68. Kleckner, N.,, J. Roth,, and D. Botstein. 1977. Genetic engineering in vivo using translo-eatable drug-resistance elements. New methods in bacterial genetics. J. Mol Biol. 116: 125 159.
69. Krebs, M. P.,, and W. S. Reznikoff. 1986. Transcriptional and translational initiation sites of IS50. Control of transposase gene and inhibitor expression. J. Mol Biol 192: 781 791.
70. Lambowitz, A. M.,, and M. Belfort. 1993. Introns as mobile genetic elements. Annu. Rev. Biochem. 62: 587 622.
71. Lawrence, J. G.,, D. E. Dykhuizen,, R. F. DuBose,, and D. L. Hartl. 1989. Phylogenetic analysis using insertion sequence fingerprinting in Escherichia coli . Mol Biol Evol 6: 1 14.
72. Lawrence, J. G.,, H. Ochman,, and D. L. Hard. 1992. The evolution of insertion sequences within enteric bacteria. Genetics 131: 9 20.
73. Lenski, R. E.,, M. R. Rose,, S. C. Simpson,, and S. C. Tadler. 1991. Long-term experimental evolution in E. coli. I. Adaptation and divergence during 2,000 generations. Am. Nat. 138: 1315 1341.
74. Lenski, R. E.,, and M. Travisano. 1994. Dynamics of adaptation and diversification: a 10,000-generation experiment with bacterial populations. Proc. Natl. Acad. Sci. USA 91: 6808 6814.
75. Lichens-Park, A.,, and M. Syvanen. 1988. Cointegrate formation by IS50 requires multiple donor molecules. Mol Gen. Genet. 211: 244 251.
76. Lundblad, V.,, A. F. Taylor,, G. R. Smith,, and N. Kleckner. 1984. Unusual alleles of recB and recC stimulate excision of inverted repeat transposons Tn 10 and Tn 5 . Proc. Natl. Acad. Sci. USA 81: 824 288.
77. Mahillon, J.,, and M. Chandler. 1998. Insertion sequences. Microbiol. Mol Biol. Rev. 62: 725 774.
78. Médigue, C.,, J. P. Bouche,, A. Hénaut,, and A. Danchin. 1990. Mapping of sequenced genes (700 kbp) in the restriction map of the Escherichia coli chromosome. Mol Microbiol 4: 169 187.
79. Merlin, C.,, J. Mahillon,, J. Nesvera,, and A. Toussaint,. 1998. Gene recruiters and transporters: the modular structure of bacterial mobile elements. In C. M. Thoma (ed.), Plasmid Ecology and Biology. Harwood Academic Publishers, gmbh, Amsterdam, The Netherlands.
80. Mizuuchi, K. 1992. Transpositional recombination: mechanistic insights from studies of mu and other elements. Annu. Rev. Biochem. 61: 1011 1051.
81. Mueller, J. E.,, T. Clyman,, Y. J. Huang,, M. M. Parker,, and M. Belfort. 1996. Intron mobility in phage t4 occurs in the context of recombination-dependent DNA replication by way of multiple pathways. Genes Dev. 10: 351 364.
82. Naas, T.,, M. Blot,, W. M. Fitch,, and W. Ar-ber. 1995. Dynamics of IS-related genetic rearrangements in resting E. coli K-12. Mol Biol. Evol 12: 198 207.
83. Naas, T.,, M. Blot,, W. M. Fitch,, and W. Ar-ber. 1994. Insertion sequence-related genetic rearrangements in resting E. coli K-12. Genetics 136: 721 730.
84. Orgel, L. E.,, and F. H. C. Crick. 1980. Selfish DNA: the ultimate parasite. Nature 284: 604 607.
85. Papadopoulos, D.,, D. Schneider,, J. Meier-Eiss,, W. Arber,, R. E. Lenski,, and M. Blot. 1998. Genomic evolution during a 10,000-generation experiment with bacteria. Proc. Nat. Acad. Sci. USA 96: 3807 3812.
86. Pato, M. L., 1989. Bacteriophage Mu, p. 23 52. In D. E. Berg, and M. M. Howe (ed.), Mobile DNA. American Society for Microbiology, Washington, D.C.
87. Polard, P.,, M. F. Prere,, O. Fayet,, and M. Chandler. 1992. Transposase-induced excision and circularization of the bacterial insertion sequence IS 911 . EMBO J. 11: 5079 5090.
88. Raabe, T.,, E. Jenny,, and J. Meyer. 1988. A selection cartridge for rapid detection and analysis of spontaneous mutations including insertions of transposable elements in Enterobacteriaceae. Mol Gen. Genet. 215: 176 180.
89. Reddy, M.,, and J. Gowrishankar. 1997. Identification and characterization of ssb and uup mutants with increased frequency of precise excision of transposon Tn lO derivatives: nucleotide sequence of uup in Escherichia coli . J. Bacteriol. 179: 2892 2899.
90. Reznikoff, W. S. 1993. The TN5 transposon. Annu. Rev. Microbiol. 47: 945 963.
90a. Reznikoff, W. S. Personal communication.
91. Rice, P.,, and K. Mizuuchi. 1995. Structure of the bacteriophage Mu transposase core: a common structural motif for DNA transposition and retroviral integration. Cell 82: 209 220.
92. Roberts, D.,, B. C. Hoopes,, W. R. McClure,, and N. Kleckner. 1985. IS 10 transposition is regulated by DNA adenine methylation. Cell 43: 117 130.
93. Roberts, D. E.,, D. Ascherman,, and N. Kleckner. 1991. ISÎ0 promotes adjacent deletions at low frequency. Genetics 128: 37 43.
94. Rodriguez, H.,, E. T. Snow,, U. Bhat,, and E. L. Loechler. 1992. An Escherichia coli plasmid-based, mutational system in which supF mutants are selectable—insertion elements dominate the spontaneous spectra. Mutat. Res. 270: 219 231.
95. Rosenweig, R. F.,, R. R. Sharp,, D. S. Trêves,, and J. Adams. 1994. Microbial evolution in a simple unstructured environment: genetic differentiation in Escherichia coli. Genetics 137: 903 917.
95a. Rozen, D. Personal communication.
96. Salyers, A. A.,, N. B. Shoemaker,, A. M. Stevens,, and L. Y. Li. 1995. Conjugative transposons: an unusual and diverse set of integrated gene transfer elements. Microbiol. Rev. 59: 579.
97. Savic, D.,, S. Romac,, and D. Ehrlich. 1983. Inversion in the lactose region of E. coli K-12. Inversion termini map with IS3 elements a3b3 and b5a5 . J. Bacteriol. 155: 943 946.
98. Sawyer, S.,, and D. Hartl. 1986. Distribution of transposable elements in Prokaryotes. Theor. Popul. Biol. 30: 1 16.
99. Sawyer, S. A.,, D. E. Dykhuizen,, R. F. DuBose,, L. Green,, T. Mutangadura-Mhlanga,, D. F. Wolczyk,, and D. L. Hartl. 1987. Distribution and abundance of insertion sequences among natural isolates of Escherichia coli . Genetics 115: 51 63.
100. Schaaper, R. M.,, B. N. Danforth,, and B. W. Glickman. 1986. Mechanisms of spontaneous mutagenesis: an analysis of spontaneous mutation in the E. coli lad gene. J. Mol. Biol. 189: 273 284.
101. Schaaper, R. M.,, and R. L. Dunn. 1991. Spontaneous mutation in the E. coli lad gene. Genetics 129: 317 326.
101a. Schneider, D. Personal communication.
102. Schnetz, K.,, and B. Rak. 1992. IS5—a mobile enhancer of transcription in Escherichia coli . Proc. Natl. Acad. Sci. USA 89: 1244 1248.
103. Shapiro, J. 1969. Mutations caused the insertion of genetic material into the gal operon of E. coli . J. Mol. Biol. 40: 93 99.
104. Shapiro, J. A. 1997. Genome organization, natural genetic engineering and adaptive mutation. Trends Genet. 13: 98 104.
105. Shapiro, J. A. 1979. Molecular model for the transposition and replication of bacteriophage Mu and other transposable elements. Proc. Natl. Acad. Sci. USA 76: 1933 1937.
106. Shen, M. M.,, E. A. Raleigh,, and N. Kleckner. 1987. Physical analysis of Tn 10- and IS 10 -promoted transpositions and rearrangements. Genetics 116: 359 369.
107. Sherratt, D., 1989. Tn3 and related transposable elements: site-specific recombination and transposition, p. 163 184. In D. E. Berg, and M. M. Howe (ed.), Mobile DNA. American Society for Microbiology, Washington, D.C.
108. Simons, R. W.,, B. C. Hoopes,, W. R. Mc-Clure,, and N. Kleckner. 1983. Three promoters near the termini of IS10: pIN, pOUT, and pill. Cell 34: 673 682.
109. Simons, R. W.,, and N. Kleckner. 1983. Translational control of IS10 transposition. Cell 34: 683 691.
110. Syvanen, M.,, J. D. Hopkins,, T. T. Griffin,, T. Y. Liang,, K. Ippen-Ihler,, and R. Kolod-ner. 1986. Stimulation of precise excision and recombination by conjugal proficient F' plas-mids. Mol. Gen. Genet. 203: 1 7.
111. Trêves, D. S.,, S. Manning,, and J. Adams. 1998. Repeated evolution of an acetate-crossfeeding polymorphism in long-term populations of Escherichia coli . Mol. Biol. Evol. 15: 789 797.
112. Umeda, M.,, and E. Ohtsubo. 1990. Mapping of insertion element IS5 in the Escherichia coli K-12 chromosome. Chromosomal rearrangements mediated by IS5. J. Mol. Biol. 213: 229 237.
113. Umeda, M.,, and E. Ohtsubo. 1990. Mapping of insertion element IS30 in the Escherichia coli K12 chromosome. Mol. Gen. Genet. 222: 317 322.
114. Umeda, M.,, and E. Ohtsubo. 1989. Mapping of insertion elements IS1, IS2 and IS3 on the Escherichia coli K-12 chromosome. Role of the insertion elements in formation of Hfrs and F' factors and in rearrangement of bacterial chromosomes. J. Mol. Biol. 208: 601 614.
115. Wiegand, T. W.,, and W. Reznikoff. 1992. Characterization of two hypertransposing Tn5 mutants. J Bacteriol. 174: 1229 1239.
116. Wilke, C. M.,, and J. Adams. 1992. Fitness effects of Ty transposition in Saccharomyces cerevisiae . Genetics 131: 31 42.
117. Zhou, M.,, A. Bhasin,, and W. S. Reznikoff. 1998. Molecular genetic analysis of transpo-sase-end DNA sequence recognition: coopera-tivity of three adjacent base pairs in specific interaction with a mutant Tn5 transposase. J. Mol Biol. 276: 913 925.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error