1887

Chapter 2 : Genomic Autobiographies of Chlamydiae

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Genomic Autobiographies of Chlamydiae, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818203/9781555811556_Chap02-1.gif /docserver/preview/fulltext/10.1128/9781555818203/9781555811556_Chap02-2.gif

Abstract:

The genome sequences of and contain the respective autobiographies that have been translated, read, and begun to be interpreted. The species contains three biovariants: trachoma, lymphogranuloma venereum (LGV), and murine (MoPn). Strains of that are natural pathogens of humans are members of either the trachoma or LGV biovar. Chlamydiae have substantial capacity for DNA repair and recombination, including mismatch repair (MutL, MutS, and three parologous MutY proteins), the excinuclease UvrABCD complex, transcription-repair coupling factor (TRCF), and a number of proteins implicated in recombination-coupled repair such as RecA, RecBCD, and RecJ. One of the phenotypic hallmarks of chlamydial development is the remarkably condensed nucleoid structure observed in elementary bodies (EB). The central metabolism determined for and was found to be conserved. It appears that chlamydiae use fewer transport systems than free-living bacteria and rely on transport systems with broad specificity. The presence of an apparently complete glycolytic pathway was complemented by a tricarboxylic acid (TCA) cycle. The genome contains genes encoding TrpA, TrpB, and TrpC, as well as a gene encoding a regulator of tryptophan gene transcription, TrpR. In the context of the unique biology and phylogeny of chlamydiae, the current challenges for productive microbiological research, and the medical imperative for progress in understanding chlamydial infection and disease, is that having a database available for the entire and genomes will provide enduring benefits for chlamydial research.

Citation: Stephens R. 1999. Genomic Autobiographies of Chlamydiae, p 9-27. In Stephens R (ed), Chlamydia. ASM Press, Washington, DC. doi: 10.1128/9781555818203.ch2

Key Concept Ranking

Type III Secretion System
0.43458977
0.43458977
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Pulsed-field gel electrophoretic comparison of genomic DNA obtained from four strains of (B/TW5/OT, C/TW3/OT, D/UW3/Cx, and LGV-434). Sse8387I digestion of genomic DNA from trachoma biovar strains (C and D) exhibits restriction fragment lengths identical to those obtained for LGV biovar DNA. Arrow indicates polymorphic band for serovar B. The switch time was a 1- to 15-s ramp for 20 h at 200 V.

Citation: Stephens R. 1999. Genomic Autobiographies of Chlamydiae, p 9-27. In Stephens R (ed), Chlamydia. ASM Press, Washington, DC. doi: 10.1128/9781555818203.ch2
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Ordered list of protein coding genes of Asterisks indicate genes not found in the genome.

Citation: Stephens R. 1999. Genomic Autobiographies of Chlamydiae, p 9-27. In Stephens R (ed), Chlamydia. ASM Press, Washington, DC. doi: 10.1128/9781555818203.ch2
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Untitled
Untitled

Schematic overview of chlamydial metabolism inferred from the gene repertoire of and .

Citation: Stephens R. 1999. Genomic Autobiographies of Chlamydiae, p 9-27. In Stephens R (ed), Chlamydia. ASM Press, Washington, DC. doi: 10.1128/9781555818203.ch2
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Genomic context of type III secretion system genes. Genes are identified by the gene nomenclature of their respective related ortholog or by consecutive ORF-assigned number. has the same relative gene content and genomic organization. Arrows indicate the coding strand direction and not necessarily operon transcription.

Citation: Stephens R. 1999. Genomic Autobiographies of Chlamydiae, p 9-27. In Stephens R (ed), Chlamydia. ASM Press, Washington, DC. doi: 10.1128/9781555818203.ch2
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Amino acid sequence alignment among Hsp60 orthologs from mitochondria, and three GroEL paralogs. Conserved and identical residues are boxed and identical residues are bold.

Citation: Stephens R. 1999. Genomic Autobiographies of Chlamydiae, p 9-27. In Stephens R (ed), Chlamydia. ASM Press, Washington, DC. doi: 10.1128/9781555818203.ch2
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818203.chap2
1. Allan, L.,, and J. H. Pearce. 1983. Amino acid requirements of strains of Chlamydia trachomatis and C. psittaci growing in McCoy cells: relationship with clinical syndrome and host origin. J. Gen. Microbiol. 129: 2001 2007.
2. Amann, R.,, N. Springer,, W. Schonhuber,, W. Ludwig,, E. N. Schmid,, K. D. Muller,, and R. Michel. 1997. Obligate intracellular bacterial parasites of acanthamoebae related to Chlamydia spp. Appl. Environ. Microbiol. 63: 115 121.
3. Barbour, A. G.,, K. Amano,, T. Hackstadt,, L. Perry,, and H. D. Caldwell. 1982. Chlamydia trachomatis has penicillin-binding proteins but not detectable muramic acid. J. Bacteriol. 151: 420 428.
4. Beatty, W. L.,, T. A. Belanger,, A. A. Desai,, R. P. Morrison,, and G. I. Byrne. 1994. Role of tryptophan in gamma interferon-mediated chlamydial persistence. Ann. N. Y. Acad. Sci. 730: 304 306.
5. Birkelund, S.,, and R. S. Stephens. 1992. Construction of physical and genetic maps of Chlamydia trachomatis serovar L2 by pulsed-field gel electrophoresis. J. Bacteriol. 174: 2742 2747.
6. Cerrone, M. C.,, J. J. Ma,, and R. S. Stephens. 1991. Cloning and sequence of the gene for heat shock protein-60 from Chlamydia trachomatis and immunological reactivity of the protein. Infect. Immun. 59: 79 90.
7. Chang, J. J.,, K. R. Leonard,, and Y. X. Zhang. 1997. Structural studies of the surface projections of Chlamydia trachomatis by electron microscopy. J. Med. Microbiol. 46: 1013 1018.
8. Christen, S.,, S. R. Thomas,, B. Garner,, and R. Stocker. 1994. Inhibition by interferon-γ of human mononuclear cell-mediated low density lipoprotein oxidation. Participation of tryptophan metabolism also on the kynurenine pathway. J. Clin. Invest. 93: 2149 2158.
9. Cieslewicz, M.,, and E. Vimr. 1996. Thermoregulation of kpsF, the first region 1 gene in the kps locus for polysialic acid biosynthesis in Escherichia coli Kl. J. Bacteriol. 178: 3212 3220.
10. Costerton, J. W.,, L. Poffenroth,, J. C. Wilt,, and N. Kordova. 1976. Ultrastructural studies of the nucleoids of the pleomorphic forms of Chlamydia psittaci 6BC: a comparison with bacteria. Can. J. Bacteriol. 22: 16 26.
11. Dufour, A.,, and W. G. Haldenwang. 1994. Interactions between a Bacillus subtilis anti-sigma factor (RsbW) and its antagonist (RsbV). J. Bacteriol. 176: 1813 1820.
12. Engel, J. N.,, and D. Ganem. 1990. A polymerase chain reaction-based approach to cloning sigma factors from eubacteria and its application to the isolation of a sigma-70 homolog from Chlamydia trachomatis. J. Bacteriol. 172: 2447 2455.
13. Engel, J. N.,, J. Pollack,, E. Perara,, and D. Ganem. 1990. Heat shock response of murine Chlamydia trachomatis. J. Bacteriol. 172: 6959 6972.
14. Fox, A.,, J. C. Rogers,, J. Gilbart,, S. Morgan,, C. H. Davis,, S. Knight,, and P. B. Wyrick. 1990. Muramic acid is not detectable in Chlamydia psittaci or Chlamydia trachomatis by gas chromatographymass spectrometry. Infect. Immun. 58: 835 837.
15. Grimwood, J.,, W. P. Mitchell,, and R. S. Stephens,. 1998. Phylogenetic analysis of a multigene family conserved between Chlamydia trachomatis and Chlamydia pneumoniae, p. 263 266. M. R. S. Stephens,, G. I. Byrne,, G. Christiansen,, I. N. Clarke,, J. T. Grayston,, R. G. Rank,, G. L. Ridgway,, P. Saikku,, J. Schachter,, and W. E. Stamm (ed.), Chlamydial Infections. Proceedings of the Ninth International Symposium on Human Chlamydial Infection. International Chlamydia Symposium, San Francisco, Calif..
16. Hackstadt, T. 1991. Purification and N-terminal amino acid sequences of Chlamydia trachomatis histone analogs. 7. Bacteriol 173: 7046 7049.
17. Hackstadt, T.,, T. J. Brickman,, C. E. D. Barry,, and J. Sager. 1993. Diversity in the Chlamydia trachomatis histone homologue Hc2. Gene 132: 137 141.
18. Hatch, G. M.,, and G. McClarty. 1998. Cardiolipin remodeling in eukaryotic cells infected with Chlamydia trachomatis is linked to elevated mitochondrial metabolism. Biochem. Biophys. Res. Commun. 243: 356 360.
19. Hatch, T. P., 1988. Metabolism of Chlamydia, p. 97 109. In A. L. Barron (ed.), Microbiology of Chlamydia. CRC Press, Boca Raton, Fla..
20. Heyes, M. P.,, C. Y. Chen,, E. O. Major,, and K. Saito. 1997. Different kynurenine pathway enzymes limit quinolinic acid formation by various human cell types. Biochem. J. 326: 351 356.
21. Hsia, R. C.,, Y. Pannekoek,, E. Ingerowski,, and P. M. Bavoil. 1997. Type III secretion genes identify a putative virulence locus of Chlamydia. Mol. Microbiol. 25: 351 359.
22. Hueck, C. J. 1998. Type in protein secretion systems in bacterial pathogens of animals and plants. Microbiol. Mol. Biol. Rev. 62: 379 433.
23. Kalman, S.,, W. P. Mitchell,, R. Marathe,, C. Lammel,, J. Fan,, R. W. Hyman,, L. Olinger,, J. Grimwood,, R. W. Davis,, and R. S. Stephens. 1999. Comparative genomes of Chlamydia pneumoniae and C. trachomatis. Submitted for publication.
24. Koehler, J. E.,, R. R. Burgess,, N. E. Thompson,, and R. S. Stephens. 1990. Chlamydia trachomatis RNA polymerase major σ subunit. Sequence and structural comparison of conserved and unique regions with Escherichia coli alO and Bacillus subtilis σ43. J. Biol. Chem. 265: 13206 13214.
25. Koshiyama, K. Y.,, and R. S. Stephens,. 1998. Identification and functional assessment of a chlamydial superoxide dismutase, p. 535 538. In R. S. Stephens,, G. I. Byrne,, G. Christiansen,, I. N. Clarke,, J. T. Grayston,, R. G. Rank,, G. L. Ridgway,, P. Saikku,, J. Schachter,, and W. E. Stamm (ed.), Chlamydial Infections. Proceedings of the Ninth International Symposium on Human Chlamydial Infection. International Chlamydia Symposium, San Francisco, Calif.
26. Kubori, T.,, Y. Matsushima,, D. Nakamura,, J. Uralil,, M. Lara-Tejero,, A. Sukhan,, J. E. Galan,, and S.-I. Aizawa. 1998. Supramolecular structure of the Salmonella typhimurium type III protein secretion system. Science 280: 602 605.
27. Longbottom, D.,, J. Findlay,, E. Vretou,, and S. M. Dunbar. 1998. Immunoelectron microscopic localisation of the OMP90 family on the outer membrane surface of Chlamydia psittaci. FEMS Microbiol. Lett. 164: 111 117.
28. Lukacova, M.,, M. Baumann,, L. Brade,, U. Mamat,, and H. Brade. 1994. Lipopolysaccharide smooth-rough phase variation in bacteria of the genus Chlamydia. Infect. Immun. 62: 2270 2276.
29. Matsumoto, A. 1981. Electron microscope observations of surface projections and related intracellular structures of Chlamydia organisms. J. Electron Microsc. 30: 315 320.
30. Mitchell, W. P.,, and R. S. Stephens,. 1998. Strand-biased base frequency statistics locate a possible origin of replication in Chlamydia trachomatis, p. 543 546. In R. S. Stephens,, G. I. Byrne,, G. Christiansen,, I. N. Clarke,, J. T. Grayston,, R. G. Rank,, G. L. Ridgway,, P. Saikku,, J. Schachter,, and W. E. Stamm (ed.), Chlamydial Infections. Proceedings of the Ninth International Symposium on Human Chlamydial Infection. International Chlamydia Symposium, San Francisco, Calif..
31. Moulder, J. W. 1991. Interaction of chlamydiae and host cells in vitro. Microbiol. Rev. 55: 143 190.
32. Moulder, J. W. 1993. Why is Chlamydia sensitive to penicillin in the absence of peptidoglycan? Infect. Agents Dis. 2: 87 99.
33. Nichols, B. A.,, P. Y. Setzer,, F. Pang,, and C. R. Dawson. 1985. New view of the surface projections of Chlamydia trachomatis. J. Bacteriol. 164: 344 349.
34. Perara, E.,, D. Ganem,, and J. N. Engel. 1992. A developmental^ regulated chlamydial gene with apparent homology to eukaryotic histone HI. Proc. Natl. Acad. Sci. USA 89: 2125 2129.
35. Ponting, C. P.,, and I. D. Kerr. 1996. A novel family of phospholipase D homologues that includes phospholipid synthases and putative endonucleases: identification of duplicated repeats and potential active site residues. Protein Sci. 5: 914 922.
36. Rasmussen, S. J.,, L. Eckmann,, A. J. Quayle,, L. Shen,, Y. X. Zhang,, D. J. Anderson,, J. Fierer,, R. S. Stephens,, and M. F. Kagnoff. 1997. Secretion of proinflammatory cytokines by epithelial cells in response to Chlamydia infection suggests a central role for epithelial cells in chlamydial pathogenesis. J. Clin. Invest. 99: 77 87.
37. Rasmussen, S. J.,, P. Timms,, P. R. Beatty,, and R. S. Stephens. 1996. Cytotoxic-T-lymphocyte-mediated cytolysis of L cells persistently infected with Chlamydia spp. Infect. Immun. 64: 1944 1949.
38. Singer, W. D.,, H. A. Brown,, and P. C. Sternweis. 1997. Regulation of eukaryotic phosphatidylinositol-specific phospholipase C and phospholipase D. Annu. Rev. Biochem. 66: 475 509.
39. Stephens, R. S. 1992. Challenge of Chlamydia research. Infect. Agents Dis. 1: 279 293.
40. Stephens, R. S.,, S. Kalman,, C. Lammel,, J. Fan,, R. Marathe,, L. Aravind,, W. Mitchell,, L. Olinger,, R. L. Tatusov,, Q. Zhao,, E. V. Koonin,, and R. W. Davis. 1998. Genome sequence of an obligate intracellular pathogen of humans: Chlamydia trachomatis. Science 282: 754 759.
41. Stephens, R. S.,, S. Kalman,, C. Lammel,, J. Fan,, R. Marathe,, L. Olinger,, and R. W. Davis. 1999. Unpublished observation.
42. Stephens, R. S.,, and Q. Zhao. 1997. Unpublished observation.
43. Stuart, E. S.,, S. M. Tirrell,, and A. B. MacDonald. 1987. Characterization of an antigen secreted by Chlamydia-infected cell culture. Immunology 61: 527 533.
44. Su, H.,, Y. X. Zhang,, and R. Li. 1985. Presence of muramic acid in Chlamydia trachomatis proved by liquid chromatography-mass spectrometry. Kexue Tongbao 30: 695 699.
45. Summersgill, J. T.,, N. N. Sahney,, C. A. Gaydos,, T. C. Quinn,, and J. A. Ramirez. 1995. Inhibition of Chlamydia pneumoniae growth in HEp-2 cells pretreated with gamma interferon and tumor necrosis factor alpha. Infect. Immun. 63: 2801 2803.
46. Swanson, A. F.,, and C. C. Kuo. 1991. Evidence that the major outer membrane protein of Chlamydia trachomatis is glycosylated. Infect. Immun. 59: 2120 2125.
47. Wagar, E. A.,, and R. S. Stephens. 1988. Developmental-form-specific DNA-binding proteins in Chlamydia spp. Infect. Immun. 56: 1678 1684.
48. Webster, A.,, and G. Kemp. 1993. The active adenovirus protease is the intact L3 23K protein. J. Gen. Virol. 74: 1415 1420.
49. Yim, M. B.,, H. Z. Chae,, S. G. Rhee,, P. B. Chock,, and E. R. Stadtman. 1994. On the protective mechanism of the thiol-specific antioxidant enzyme against the oxidative damage of biomacromolecules. J. Biol. Chem. 269: 1621 1626.
50. Zhang, J. P.,, and R. S. Stephens. 1992. Mechanism of C. trachomatis attachment to eukaryotic host cells. Cell 69: 861 869.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error