1887

Chapter 3 : Developmental Biology

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Developmental Biology, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818203/9781555811556_Chap03-1.gif /docserver/preview/fulltext/10.1128/9781555818203/9781555811556_Chap03-2.gif

Abstract:

This chapter summarizes what is known about the structural and biochemical differences between elementary body (EB) and reticulate body (RB) and the mechanisms by which genes are regulated during the developmental cycle. The EB is adapted for extracellular survival, which for some strains of and may extend to prolonged exposure outside of the host organism. This chapter discusses stage-specific structures and biochemical events. Several homologs of proteins that regulate alternative sigma factor activities in bacteria (AtoS, RsbW, two RsbV orthologs, and RsbU) are encoded by the chlamydial genome. Mathews and Sriprakash were the first to carry out mutational analysis of a chlamydial promoter. The gene analyzed encodes two short transcripts with the same 5' end but different 3' ends; the transcripts generated are antisense to a predicted integrase gene encoded by the plasmid of . One of the most interesting observations was that deletion of the N-terminal and C-terminal extension sequences of σ ablated transcription from P2, relating structural differences between σ and σ to differences in promoter recognition for the first time. The purpose of the multiple transcripts from genes/operons remains a mystery, and further investigation may show that multiple transcripts are the exception rather than the rule. The complete sequencing of the chlamydial genome will provide signposts for research in the future and will reduce much of the arduous gene sequencing that was so much a part of chlamydial research in the past.

Citation: Hatch T. 1999. Developmental Biology, p 29-67. In Stephens R (ed), Chlamydia. ASM Press, Washington, DC. doi: 10.1128/9781555818203.ch3

Key Concept Ranking

Bacterial Outer Membrane Proteins
0.41838396
0.41838396
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

A 30-hpi inclusion of C. psittaci ( ). IB, intermediate body. Bar, 100 nm.

Citation: Hatch T. 1999. Developmental Biology, p 29-67. In Stephens R (ed), Chlamydia. ASM Press, Washington, DC. doi: 10.1128/9781555818203.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Color Plate 1
Color Plate 1

Acridine orange stain of C. psittaci-infecled L cells. Areas with a high RNA to DNA ratio stain red; those with a low RNA to DNA ratio stain yellow to yellow-green. (Left) Intracellular RBs and intermediate forms at 24 hpi. (Right) Intracellular intermediate forms and EBs at 48 hpi.

Citation: Hatch T. 1999. Developmental Biology, p 29-67. In Stephens R (ed), Chlamydia. ASM Press, Washington, DC. doi: 10.1128/9781555818203.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Color Plate 2
Color Plate 2

Model of the envelope of chlamydial EBs, adapted from . The actual shapes of the proteins and the existence of specific interpeptide cross-links have not been established. Several proteins that are believed to be part of the outer membrane (see text) have been omitted. The periplasmic P layer is closely associated with the inner leaflet of the outer membrane, in a manner similar to the hexagonal array reported by and . The N terminus of the larger of the doublet proteins in the P layer may be associated with an integral outer membrane protein, as suggested by the data of and .

Citation: Hatch T. 1999. Developmental Biology, p 29-67. In Stephens R (ed), Chlamydia. ASM Press, Washington, DC. doi: 10.1128/9781555818203.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Hexagonal arrays (arrows) seen below the outer membrane of purified EB cell walls, shadowcast with platinum-palladium alloy ( ). Bar, 250 ran.

Citation: Hatch T. 1999. Developmental Biology, p 29-67. In Stephens R (ed), Chlamydia. ASM Press, Washington, DC. doi: 10.1128/9781555818203.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Coomassie blue-stained SDS-polyaci'ylamide gel (A) and Western blot (B) of whole C. psittaci Sarkosyl outer membrane complexes (OMC) prepared at 15 (RB) and 48 (EB) hpi. Lines point to POMPs and 60-kDa OmcB doublet proteins found in EBs but not RBs ( ).

Citation: Hatch T. 1999. Developmental Biology, p 29-67. In Stephens R (ed), Chlamydia. ASM Press, Washington, DC. doi: 10.1128/9781555818203.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Chlamydia surface projections. (Left) Scanning electron micrograph showing regularly spaced, hemispheric domes (arrowheads) ( ). Bar, 100 nm. (Right) Transmission electron micrograph of envelope complexes revealing spike-like projections which are thought to extend through the inclusion membrane (courtesy of A. Matsumoto, Kawasaki Medical School).

Citation: Hatch T. 1999. Developmental Biology, p 29-67. In Stephens R (ed), Chlamydia. ASM Press, Washington, DC. doi: 10.1128/9781555818203.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

Putative promoter regions of chlamydial genes. The putative -10 and -35 boxes are underlined and potential transcription start sites that were identified by primer extension or S1 nuclease protection are in boldface and underlined. The -10 regions are diverse but most resemble the E. coli σ70 consensus. Many of the putative -35 regions have flanking AT-rich sequences which may contribute to promoter strength, as suggested by . The 5′ ends of all of the late genes and PCT were determined by . The ends of the plasmid ORFs were determined by . The ends of the other transcripts were determined by the following: ompA P2, ; SI ribosomal protein, ; the ribosomal operon spc, ; rRNA P1, ; groE and dnaK, ; the sulfur-rich protein SRP, ; and tuf P1 and P2, .

Citation: Hatch T. 1999. Developmental Biology, p 29-67. In Stephens R (ed), Chlamydia. ASM Press, Washington, DC. doi: 10.1128/9781555818203.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6
Figure 6

Northern blot showing the stability of ompA transcripts at 24 hpi. Rifampin was added at zero time to infected cells and total RNA was extracted at the times indicated ( ).

Citation: Hatch T. 1999. Developmental Biology, p 29-67. In Stephens R (ed), Chlamydia. ASM Press, Washington, DC. doi: 10.1128/9781555818203.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 7
Figure 7

ompA and rRNA promoters. (A) ompA P2 promoter of C. trachomatis L2. The -35 and -10 boxes are underlined; +1 is in boldface and underlined. (B) Comparison of the P2 promoter regions of five chlamydial strains. CPn, C. pneumoniae AR-39 ( ); CTL2, C. trachomatis L2 ( ); CP6BC, C. psittaci 6BC ( ); CPGPIC, C. psittaci GPIC ( ); CTMo, C. trachomatis mouse pneumonitis biovar ( ). Bases conserved among all strains are connected by vertical lines; transcription start sites are in boldface and underlined. (C) rRNA P1 promoter region of C. trachomatis L2. The -35 box and an expanded -10 box are underlined.

Citation: Hatch T. 1999. Developmental Biology, p 29-67. In Stephens R (ed), Chlamydia. ASM Press, Washington, DC. doi: 10.1128/9781555818203.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818203.chap3
1. Allen, J. E.,, M. C. Cerrone,, P. R. Beatty,, and R. S. Stephens. 1990. Cysteine-rich outer membrane proteins of Chlamydia trachomatis display compensatory sequence changes between biovariants. Mol. Microbiol 4:15431550.
2. Allen, J. E.,, and R. S. Stephens. 1989. Identification by sequence analysis of two-site posttranslational processing of the cysteine-rich outer membrane protein 2 of Chlamydia trachomatis, serovar L2. J. Bacteriol 171:285291.
3. An, L. L.,, A. P. Hudson,, R. A. Prendergast,, T. P. O'Brien,, E. S. Stuart,, J. A. Whittum-Hudson,, and A. B. MacDonald. 1997. Biochemical and functional antigenic mimicry by a polyclonal anti-idiotypic antibody for chlamydial exoglycolipid antigen. Pathobiology 65:229240.
4. Baehr, W. B.,, Y.-X. Zhang,, T. Joseph,, H. Su,, E. E. Nano,, K. D. E. Everett,, and H. D. Caldwell. 1988. Mapping antigenic domains expressed by Chlamydia trachomatis major outer membrane protein genes. Proc. Natl. Acad. Sci. USA 85:40004004.
5. Bannantine, J. P.,, D. D. Rockey,, and T. Hackstadt. 1998. Tandem genes of Chlamydia psittaci that encode proteins localized to the inclusion membrane. Mol Microbiol 28:10171026.
6. Barbour, A. G.,, K.-I. Amano,, T. Hackstadt,, L. Perry,, and H. D. Caldwell. 1982. Chlamydia trachomatis has penicillin-binding proteins but not detectable muramic acid. J. Bacteriol 151:420428.
7. Barron, A. L. (ed.). 1988. Microbiology of Chlamydia. CRC Press, Inc., Boca Raton, Fla..
8. Barry, C. E., III,, T. J. Brickman,, and T. Hackstadt. 1993. Hcl-mediated effects on DNA structure: a potential regulator of chlamydial development. Mol Microbiol 9:273283.
9. Barry, C. E. H. I.,, S. F. Hayes,, and T. Hackstadt. 1992. Nucleoid condensation in Escherichia coli that express a chlamydial histone homolog. Science 256:377379.
10. Batteiger, B. E.,, R. G. Rank,, P. M. Bavoil,, and L. S. Soderberg. 1993. Partial protection against genital reinfection by immunization of guinea pigs with isolated outer membrane proteins of the chlamydial agent of guinea pig inclusion conjunctivitis. J. Gen. Microbiol 139:29652972.
11. Baumann, M.,, L. Brade,, E. Fasske,, and H. Brade. 1992. Staining of surface antigens of Chlamydia trachomatis L2 in tissue culture. Infect. Immun. 60:44334438.
12. Bavoil, P.,, A. Ohlin,, and J. Schachter. 1984. Role of disulfide bonding in outer membrane structure and permeability in Chlamydia trachomatis. Infect. Immun. 44:479485.
13. Bavoil, P. M.,, and R.-C. Hsia. 1998. type III secretion in Chlamydia: a case of deja vu? Mol Microbiol 28:859862.
14. Beatty, W. L.,, R. P. Morrison,, and G. I. Byrne. 1995. Reactivation of persistent Chlamydia trachomatis infection in cell culture. Infect. Immun. 63:199205.
15. Bedson, S. P.,, and J. O. W. Bland. 1932. A morphological study of psittacosis virus, with the description of a developmental cycle. Br. J. Exp. Pathol. 13:461466.
16. Belunis, C. J.,, K. E. Mdluli,, C. R. H. Raetz,, and F. E. Nano. 1992. A novel 3-deoxy-D-manno-octulosonic acid transferase from Chlamydia trachomatis required for expression of the genus-specific epitope. J. Biol. Chem. 267:1870218707.
17. Birkelund, S.,, K. Knudsen,, A. S. Madsen,, E. Falk,, P. Mygind,, and G. Christiansen,. 1998. Differential expression of Chlamydia pneumoniae Omp4 and Omp5 after infection of C57-Black mice?, p. 275278. In R. S. Stephens,, G. I. Byrne,, G. Christiansen,, I. N. Clarke,, J. T. Grayston,, R. G. Rank,, G. L. Ridgway,, P. Saikku,, J. Schachter,, and W. E. Stamm (ed.), Chlamydial Infections. Proceedings of the Ninth International Symposium on Human Chlamydial Infection. International Chlamydia Symposium, San Francisco, Calif..
18. Birkelund, S.,, A. G. Lundemose,, and G. Christiansen. 1988. Chemical cross-linking of Chlamydia trachomatis. Infect. Immun. 56:654659.
19. Birkelund, S.,, A. G. Lundemose,, and G. Christiansen. 1989. Characterization of native and recombinant 75-kilodalton immunogens from Chlamydia trachomatis serovar L2. Infect. Immun. 57:26832690.
20. Brade, H.,, L. Brade,, and F. E. Nano. 1987a. Chemical and serological investigations on the genus-specific lipopolysaccharide epitope of Chlamydia. Proc. Natl Acad. Sci. USA 84:25082512.
21. Brade, L.,, F. E. Nano,, S. Schlecht,, S. Schramek,, and H. Brade. 1987b. Antigenic and immunogenic properties of recombinants from Salmonella typhimurium and Salmonella minnesota rough mutants expressing in their lipopolysaccharide a genus-specific chlamydial epitope. Infect. Immun. 55:482486.
22. Brickman, T. J.,, C. E. Barry III,, and T. Hackstadt. 1993. Molecular cloning and expression of hctB encoding a strain-variant chlamydial histone-like protein with DNA-binding activity. J. Bacteriol 175: 42744281.
23. Brimer, C. D.,, and T. C. Montie. 1998. Cloning and comparison of fliC genes and identification of glycosylation in the flagellin of Pseudomonas aeruginosa a-type strains. J. Bacteriol 180:32093217.
24. Brunham, R. C.,, F. A. Plummer,, and R. S. Stephens. 1993. Bacterial antigenic variation, host immune response, and pathogen-host coevolution. Infect. Immun. 61:22732276.
25. Caldwell, H. D.,, J. Kromhout,, and J. Schachter. 1981. Purification and partial characterization of the major outer membrane protein of Chlamydia trachomatis. Infect. Immun. 31:11611176.
26. Campbell, L. A.,, C.-C. Kuo,, and J. T. Grayston. 1990. Structural and antigenic analysis of Chlamydia pneumoniae. Infect. Immun. 58:9397.
27. Campbell, S.,, S. J. Richmond,, P. S. Yates,, and C. C. Storey. 1994. Lipopolysaccharide in cells infected by Chlamydia trachomatis. Microbiology 140:19952002.
28. Cevenini, R.,, M. Donati,, E. Brocchi,, G. Simone,, and M. La Placa. 1991. Partial characterisation of an 89-kDa highly immunoreactive protein from Chlamydia psittaci A/22 causing ovine abortion. FEMS Microbiol. Lett. 81:111116.
29. Chen, J. C.-R.,, and R. S. Stephens. 1994. Trachoma and LGV biovars of Chlamydia trachomatis share the same glycosaminoglycan-dependent mechanism for infection of eukaryotic cells. Mol. Microbiol. 11:501507.
30. Chen, J. C.-R.,, and R. S. Stephens. 1997. Chlamydia trachomatis glycosaminoglycan-dependent and independent attachment to eukaryotic cells. Microb. Pathog. 22:2330.
31. Chen, J. C.-R.,, J. P. Zhang,, and R. S. Stephens. 1996. Structural requirements of heparin binding to Chlamydia trachomatis. J. Biol. Chem. 271:1113411140.
32. Christiansen, G.,, A. S. Madsen,, K. Knudsen,, P. Mygind,, and S. Birkelund,. 1998. Stability of the outer membrane proteins of Chlamydia pneumonias, p. 271274. In R. S. Stephens,, G. I. Byrne,, G. Christiansen,, I. N. Clarke,, J. T. Grayston,, R. G. Rank,, G. L. Ridgway,, P. Saikku,, J. Schachter,, and W. E. Stamm (ed.), Chlamydial Infections. Proceedings of the Ninth International Symposium on Human Chlamydial Infection. International Chlamydia Symposium, San Francisco, Calif..
33. Christiansen, G.,, L. Ostergaard,, and S. Birkelund. 1997. Molecular biology of the Chlamydia pneumoniae surface. Scand. J. Infect. Dis. Suppl. 104:510.
34. Christiansen, G.,, L. B. Petersen,, J. E. Koehler,, A. G. Lundemose,, and S. Birkelund. 1993. Interaction between Chlamydia trachomatis histone H1-like protein (Hcl) and DNA. J. Bacteriol. 175:17851795.
35. Collett, B. A.,, W. J. Newhall V,, R. A. Jersild, Jr.,, and R. B. Jones. 1989. Detection of surface-exposed epitopes on Chlamydia trachomatis by immune electron microscopy. J. Gen. Microbiol. 135:8594.
36. Conlan, J. W.,, I. N. Clarke,, and M. E. Ward. 1988. Epitope mapping with solid-phase peptides: identification of type-, subspecies-, and genus-reactive antibody binding domains of the major outer membrane protein of Chlamydia trachomatis. Mol. Microbiol. 2:673679.
37. Crenshaw, R. W.,, M. J. Fahr,, D. W. Wichlan,, and T. P. Hatch. 1990. Developmental cycle-specific host-free RNA synthesis in Chlamydia spp. Infect. Immun. 58:31943201.
38. Danilition, S. L.,, I. W. Maclean,, R. Peeling,, S. Winston,, and R. C. Brunham. 1990. The 75-kilodalton protein of Chlamydia trachomatis: a member of the heat shock protein 70 family? Infect. Immun. 58: 189196.
39. Douglas, A. L. (University of Tennessee, Memphis). 1997>. Unpublished observation.
40. Douglas, A. L.,, and T. P. Hatch. 1995. Functional analysis of the major outer membrane protein gene promoters of Chlamydia trachomatis. J. Bacteriol. 177:62866289.
41. Douglas, A. L.,, and T. P. Hatch. 1996. Mutagenesis of the P2 promoter of the major outer membrane protein gene of Chlamydia trachomatis. J. Bacteriol. 178:55735578.
42. Douglas, A. L.,, and T. P. Hatch,. 1998. Expression of the sigma factor genes of Chlamydia trachomatis L2, p. 527530. In R. S. Stephens,, G. I. Byrne,, G. Christiansen,, I. N. Clarke,, J. T. Grayston,, R. G. Rank,, G. L. Ridgway,, P. Saikku,, J. Schachter,, and W. E. Stamm (ed.), Chlamydial Infections. Proceedings of the Ninth International Symposium on Human Chlamydial Infection. International Chlamydia Symposium, San Francisco, Calif..
43. Douglas, A. L.,, N. K. Saxena,, and T. P. Hatch. 1994. Enhancement of in vitro transcription by addition of cloned, overexpressed major sigma factor of Chlamydia psittaci 6BC. J. Bacteriol. 176:30333039.
44. Engel, J. N.,, and D. Ganem. 1987. Chlamydial rRNA operons: gene organization and identification of putative promoters. J. Bacteriol. 169:56785685.
45. Engel, J. N.,, and D. Ganem,. 1990a. Identification and comparison of putative chlamydial promoter elements, p. 245260. In L. van der Ploeg,, D. R. Cantoo,, and H. J. Vogel (ed.), Immune Recognition and Evasion: Molecular Aspects of Host-Parasite Interaction. Academic Press, Inc., New York, N.Y..
46. Engel, J. N.,, and D. Ganem. 1990b. A polymerase chain reaction-based approach to cloning sigma factors from eubacteria and its application to the isolation of a sigma-70 homolog from Chlamydia trachomatis. J. Bacteriol. 172:24472455.
47. Engel, J. N.,, J. Pollack,, F. Malik,, and D. Ganem. 1990. Cloning and characterization of RNA polymerase core subunits of Chlamydia trachomatis by using the polymerase chain reaction. J. Bacteriol. 172:57325741.
48. Everett, K. D. E.,, A. A. Andersen,, M. Plaunt,, and T. P. Hatch. 1991. Cloning and sequence analysis of the major outer membrane protein gene of Chlamydia psittaci 6BC. Infect. Immun. 59:28532855.
49. Everett, K. D. E.,, D. M. Desiderio,, and T. P. Hatch. 1994. Characterization of lipoprotein EnvA in Chlamydia psittaci 6BC. J. Bacteriol. 176:60826087.
50. Everett, K. D. E.,, and T. P. Hatch. 1991. Sequence analysis and lipid modification of the cysteine-rich envelope proteins of Chlamydia psittaci 6BC. J. Bacteriol. 173:38213830.
51. Everett, K. D. E.,, and T. P. Hatch. 1995. Architecture of the cell envelope of Chlamydia psittaci 6BC. J. Bacteriol. 177:877882.
52. Fahr, M. J.,, A. L. Douglas,, W. Xia,, and T. P. Hatch. 1995. Characterization of late gene promoters in Chlamydia trachomatis. J. Bacteriol. 177:42524260.
53. Fahr, M. J.,, K. S. Sriprakash,, and T. P. Hatch. 1992. Convergent and overlapping transcripts of the Chlamydia trachomatis 7.5-kb plasmid. Plasmid 28:247257.
54. Fan, J.,, and R. S. Stephens. 1997. Antigen conformation dependence of Chlamydia trachomatis infectivity neutralization. J. Infect. Dis. 176:713721.
55. Fan, T.,, H. Lu,, H. Hu,, L. Shi,, G. A. McClarty,, D. W. Nance,, A. H. Greenberg,, and G. Zhong. 1998. Inhibition of apoptosis in chlamydia-infected cells: blockade of mitochondrial cytochrome c release and caspase activation. J. Exp. Med. 187:487496.
56. Fox, A.,, J. C. Rogers,, J. Gilbart,, S. Morgan,, C. H. Davis,, S. Knight,, and P. B. Wyrick. 1990. Muramic acid is not detectable in Chlamydia psittaci or Chlamydia trachomatis by gas chromatographymass spectrometry. Infect. Immun. 58:835837.
57. Garrett, A. J.,, M. J. Harrison,, and G. P. Manire. 1974. A search for the bacterial mucopeptide, muramic acid, in Chlamydia. J. Gen. Microbiol. 80:315318.
58. Ge, Y.,, C. Li,, L. Corum,, C. A. Slaughter,, and N. W. Charon. 1998. Structure and expression of the FlaA periplasmic flagellar protein of Borrelia burgdorferi. J. Bacteriol. 180:24182425.
59. Gerard, H. C.,, J. A. Whittum-Hudson,, and A. P. Hudson. 1997. Genes required for assembly and function of the protein synthetic system in Chlamydia trachomatis are expressed early in elementary to reticulate body transformation. Mol. Gen. Genet. 255:637642.
60. Giannikopoulou, P.,, K. Bini,, O. D. Simitsek,, V. Pallini,, and E. Vretou. 1997. Two-dimensional electrophoretic analysis of the protein family at 90 kDa of abortifacient Chlamydia psittaci. Electrophoresis 18:21042108.
61. Gu, L.,, W. M. Wenman,, M. Remacha,, R. Meuser,, J. Coffin,, and R. Kaul. 1995. Chlamydia trachomatis RNA polymerase alpha subunit: sequence and structural analysis. J. Bacteriol. 177:25942601.
62. Gutierrez-Martin, C. B.,, D. M. Ojcius,, R. C. Hsia,, R. Hellio,, P. M. Bavoil,, and A. Dautry-Varsat. 1997. Heparin-mediated inhibition of Chlamydia psittaci adherence to HeLa cells. Microb. Pathog. 22:4757.
63. Hackstadt, T. 1986. Identification and properties of chlamydial polypeptides that bind eucaryotic cell surface components. J. Bacteriol. 165:1320.
64. Hackstadt, T. 1991. Purification and N-terminal amino acid sequences of Chlamydia trachomatis histone analogs. J. Bacteriol. 173:70467049.
65. Hackstadt, T.,, W. Baehr,, and Y. Ying. 1991. Chlamydia trachomatis developmentally regulated protein is homologous to eukaryotic histone H1. Proc. Natl. Acad. Sci. USA 88:39373941.
66. Hackstadt, T.,, T. J. Brickman,, C. E. Barry III,, and J. Sager. 1993. Diversity in the Chlamydia trachomatis histone homolog Hc2. Gene 132:137141.
67. Hackstadt, T.,, and H. D. Caldwell. 1985. Effect of proteolytic cleavage of surface-exposed proteins on infectivity of Chlamydia trachomatis. Infect. Immun. 48:546551.
68. Hackstadt, T.,, D. D. Rockey,, R. A. Heinzen,, and M. A. Scidmore. 1996. Chlamydia trachomatis interrupts an exocytic pathway to acquire endogenously synthesized sphingomyelin in transit from the Golgi apparatus to the plasma membrane. EMBO J. 15:964977.
69. Hackstadt, T.,, M. A. Scidmore,, and D. D. Rockey. 1995. Lipid metabolism in Chlamydia trachomatis-infected cells: directed trafficking of Golgi-derived sphingolipids to the chlamydial inclusion. Proc. Natl Acad. Sci. USA 92:48774881.
70. Hackstadt, T.,, W. J. Todd,, and H. D. Caldwell. 1985. Disulfide-mediated interactions of the chlamydial major outer membrane protein: role in the differentiation of chlamydiae? J. Bacteriol. 161:2531.
71. Harley, C. B.,, and R. P. Reynolds. 1987. Analysis of E. coli promoter sequences. Nucleic Acids Res. 15:23432361.
72. Hatch, G. M.,, and G. McClarty. 1998. Cardiolipin remodeling in eukaryotic cells infected with Chlamydia trachomatis is linked to elevated mitochondrial metabolism. Biochem. Biophys. Res. Commun. 243:356360.
73. Hatch, T. P. 1996. Disulfide cross-linked envelope proteins: the functional equivalent of peptidoglycan in chlamydiae? J. Bacteriol. 178:15.
74. Hatch, T. P.,, I. Allan,, and J. H. Pearce. 1984. Structural and polypeptide differences between envelopes of infective and reproductive life cycle forms of Chlamydia spp. J. Bacteriol. 157:1320.
75. Hatch, T. P.,, M. Miceli,, and J. E. Sublett. 1986. Synthesis of disulfide-bonded outer membrane proteins during the developmental cycle of Chlamydia psittaci and Chlamydia trachomatis. J. Bacteriol. 165: 379385.
76. Hatch, T. P.,, D. W. Vance,, and E. AI-Hossainy. 1981. Identification of a major envelope protein in Chlamydia spp. J. Bacteriol. 146:426429.
77. Hoist, O.,, K. Bock,, L. Brade,, and H. Brade. 1995. The structures of oligosaccharide bisphosphates isolated from the lipopolysaccharide of a recombinant Escherichia coli strain expressing the gene gseA [3-deoxy-D-manno-octulopyranosonic acid (Kdo) transferase] of Chlamydia psittaci 6BC. Eur. J. Biochem. 229:194200.
78. How, S. J.,, D. Hobson,, and C. A. Hart. 1984. Studies in vitro of the nature and synthesis of the cell wall of Chlamydia trachomatis. Curr. Microbiol. 10:269274.
79. Hsia, R.-C.,, Y. Pannekoek,, E. Ingerowski,, and P. M. Bavoil. 1997. Type III secretion genes identify a putative virulence locus of Chlamydia. Mol. Microbiol. 25:351359.
80. Hueck, C. J. 1998. Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol. Mol. Biol. Rev. 62:379433.
81. Ingalls, R. R.,, P. A. Rice,, N. Qureshi,, K. Takayama,, J. S. Lin,, and D. T. Golenbock. 1995. The inflammatory cytokine response to Chlamydia trachomatis infection is endotoxin mediated. Infect. Immun. 63:31253130.
82. Ivins, B. E.,, and P. B. Wyrick. 1978. Response of C3H/HeJ and C3H/HeN mice and their peritoneal macrophages to the toxicity of Chlamydia psittaci elementary bodies. Infect. Immun. 22:620622.
83. Jenkin, H. M. 1960. Preparation and properties of cell walls of the agent of meningopneumonitis. J. Bacteriol. 80:639647.
84. Jennings, M. P.,, M. Virji,, D. Evans,, V. Foster,, Y. N. Srikhanta,, L. Steeghs,, P. van der Ley,, and E. R. Moxon. 1998. Identification of a novel gene involved in pilin glycosylation in Neisseria meningitidis. Mol. Microbiol. 29:975984.
85. Karimi, S. T.,, R. H. Schloemer,, and C. E. Wilde HI. 1989. Accumulation of chlamydial lipopolysac-charide antigen in plasma membranes of infected cells. Infect. Immun. 57:17801785.
86. Kaul, R.,, M. Allen,, E. M. Bradbury,, and W. M. Wenman. 1996. Sequence specific binding of chlamydial histone H1-like protein. Nucleic Acids Res. 24:29812989.
87. Kaul, R.,, G. J. Gray,, N. R. Koehncke,, and L. Gu. 1992. Cloning and sequence analysis of the Chlamydia trachomatis spc ribosomal protein gene cluster. J. Bacteriol. 174:12051212.
88. Kaul, R.,, A. Hoang,, P. Yau,, E. M. Bradbury,, and W. M. Wenman. 1997. The chlamydial EUO gene encodes a histone H1-specific protease. J. Bacteriol. 179:59285934.
89. Kaul, R.,, S. Tao,, and W. M. Wenman. 1992. Interspecies structural diversity among chlamydial genes encoding histone H1. Gene 112:129132.
90. Knudsen, K.,, A. S. Madsen,, P. Mygind,, G. Christiansen,, and S. Birkelund,. 1998. Surface localized proteins of Chlamydia pneumoniae, p. 267270. In R. S. Stephens,, G. I. Byrne,, G. Christiansen,, I. N. Clarke,, J. T. Grayston,, R. G. Rank,, G. L. Ridgway,, P. Saikku,, J. Schachter,, and W. E. Stamm (ed.), Chlamydial Infections. Proceedings of the Ninth International Symposium on Human Chlamydial Infection. International Chlamydia Symposium, San Francisco, Calif..
91. Koehler, J. E.,, S. Birkelund,, and R. S. Stephens. 1992. Overexpression and surface localization of the Chlamydia trachomatis major outer membrane protein in Escherichia coli. Mol. Microbiol. 6:10871094.
92. Koehler, J. E.,, R. R. Burgess,, N. E. Thompson,, and R. S. Stephens. 1990. Chlamydia trachomatis RNA polymerase major a subunit: sequence and structural comparison of conserved and unique regions with Escherichia coli σ70 and Bacillus subtilis σ43. J. Biol. Chem. 265:1320613214.
93. Kuo, C.-C.,, and E. Y. Chi. 1987. Ultrastructural study of Chlamydia trachomatis surface antigens by immunogold staining with monoclonal antibodies. Infect. Immun. 55:13241328.
94. Kuo, C.-C.,, N. Takahashi,, A. F. Swanson,, Y. Ozeki,, and S.-I. Hakomori. 1996. An N-linked high-mannose type oligosaccharide expressed at the major outer membrane protein of Chlamydia trachomatis mediates attachment and infectivity of the microorganism to HeLa cells. J. Clin. Invest. 98:28132818.
95. Lambden, P. R.,, J. S. Everson,, M. E. Ward,, and I. N. Clarke. 1990. Sulfur-rich proteins of Chlamydia trachomatis: developmentally regulated transcription of polycistronic mRNA from tandem promoters. Gene 87:105112.
96. Lewis, V. J.,, W. L. Thacker,, and S. H. Mitchell. 1979. Demonstration of chlamydial endotoxin-like activity. J. Gen. Microbiol. 114:215216.
97. Lindquist, E. A.,, and R. S. Stephens,. 1998. Transcriptional activity of a sequence variable protein family in Chlamydia trachomatis, p. 259262. In R. S. Stephens,, G. I. Byrne,, G. Christiansen,, I. N. Clarke,, J. T. Grayston,, R. G. Rank,, G. L. Ridgway,, R. Saikku,, J. Schachter,, and W. E. Stamm (ed.), Chlamydial Infections. Proceedings of the Ninth International Symposium on Human Chlamydial Infection. International Chlamydia Symposium, San Francisco, Calif..
98. Lobau, S.,, U. Mamat,, W. Brabetz,, and H. Brade. 1995. Molecular cloning, sequence analysis, and functional characterization of the lipopolysaccharide biosynthetic gene kdtA encoding 3-deoxy-alpha-D-manno-octulosonic acid transferase of Chlamydia pneumoniae strain TW-183. Mol. Microbiol. 18: 391399.
99. Longbottom, D.,, S. M. Dunbar,, M. Russell,, E. Vretou,, G. E. Jones,, and A. J. Herring,. 1998a. Characterization, expression and surface localisation of the OEA Chlamydia psittaci 90 kDa family, p. 225258. In R. S. Stephens,, G. I. Byrne,, G. Christiansen,, I. N. Clarke,, J. T. Grayston,, R. G. Rank,, G. L. Ridgway,, R. Saikku,, J. Schachter,, and W. E. Stamm (ed.), Chlamydial Infections. Proceedings of the Ninth International Symposium on Human Chlamydial Infection. International Chlamydia Symposium, San Francisco, Calif..>
100. Longbottom, D.,, M. Russell,, S. M. Dunbar,, G. E. Jones,, and A. J. Herring. 1998b. Molecular cloning and characterization of the genes coding for the highly immunogenic cluster of 90-kilodalton envelope proteins from the Chlamydia psittaci subtype that causes abortion in sheep. Infect. Immun. 66:13171324.
101. Longbottom, D.,, M. Russell,, G. E. Jones,, F. A. Lainson,, and A. J. Herring. 1996. Identification of a multigene family coding for the 90 kDa proteins of the ovine abortion subtype of Chlamydia psittaci. FEMS Microbiol. Lett. 142:277281.
102. Lukacova, M.,, M. Baumann,, L. Brade,, U. Mamat,, and H. Brade. 1994. Lipopolysaccharide smooth-rough phase variation in bacteria of the genus Chlamydia. Infect. Immun. 62:22702276.
103. Lundemose, A. G.,, S. Birkelund,, P. M. Larsen,, S. J. Gey,, and G. Christiansen. 1990. Characterization and identification of early proteins of Chlamydia trachomatis serovar L2 by two-dimensional gel electrophoresis. Infect. Immun. 58:24782486.
104. Mathews, S. A.,, A. L. Douglas,, K. S. Sriprakash,, and T. P. Hatch. 1993. In vitro transcription in Chlamydia psittaci and Chlamydia trachomatis. Mol. Microbiol. 7:937946.
105. Mathews, S. A.,, and K. S. Sriprakash. 1994. The RNA polymerase of Chlamydia trachomatis has a flexible sequence requirement at the -10 and -35 boxes of its promoters. J. Bacteriol. 176:37853789.
106. Mathews, S. A.,, and R. S. Stephens. DNA structure and novel amino and carboxyl termini of the chlamydia σ70 analog modulate promoter recognition. Submitted for publication.
107. Matsumoto, A. 1982. Electron microscopic observations of surface projections on Chlamydia psittaci reticulate bodies. J. Bacteriol. 150:358364.
108. Matsumoto, A., 1988. Structural characteristics of chlamydial bodies, p. 2145. In A. L. Barron (ed.), Microbiology of Chlamydia. CRC Press, Inc., Boca Raton, Fla..
109. Matsumoto, A.,, and G. P. Manire. 1970a. Electron microscopic observations on the effect of penicillin on the morphology of Chlamydia psittaci. J. Bacteriol. 101:278285.
110. Matsumoto, A.,, and G. P. Manire. 1970b. Electron microscopic observations on the fine structure of cell walls of Chlamydia psittaci. J. Bacteriol. 104:13321337.
111. McClarty, G. 1994. Chlamydiae and the biochemistry of intracellular parasitism. Trends Microbiol. 2:157164.
112. Melgosa, M. P.,, C.-C. Kuo,, and L. A. Campbell. 1991. Sequence analysis of the major outer membrane protein gene of Chlamydia pneumoniae. Infect. Immun. 59:21952199.
113. Melgosa, M. P.,, C.-C. Kuo,, and L. A. Campbell. 1993. Outer membrane complex proteins of Chlamydia pneumoniae. FEMS Microbiol. Lett. 112:199204.
114. Melgosa, M. P.,, C.-C. Kuo,, and L. A. Campbell. 1994. Isolation and characterization of a gene encoding a Chlamydia pneumoniae 76-kilodalton protein containing a species-specific epitope. Infect. Immun. 62:880886.
115. Miyashita, N.,, Y. Kanamoto,, and A. Matsumoto. 1993. The morphology of Chlamydia pneumoniae. J. Med Microbiol. 38:418425.
116. Morrison, R. P.,, R. J. Belland,, K. Lyng,, and H. D. Caldwell. 1989. Chlamydial disease pathogenesis. The 57-kD chlamydial hypersensitivity antigen is a stress response protein. J. Exp. Med. 170:12711283.
117. Moskaug, J. O.,, K. Sandvig,, and S. Olsnes. 1987. Cell-mediated reduction of the interfragment disulfide in nicked diphtheria toxin. A new system to study toxin entry at low pH. J. Biol. Chem. 262:1033910345.
118. Moulder, J. W. 1991. Interaction of chlamydiae and host cell in vitro. Microbiol. Rev. 55:143190.
119. Moulder, J. W. 1993. Why is Chlamydia sensitive to penicillin in the absence of peptidoglycan? Infect. Agents Dis. 2:8799.
120. Moulder, J. W.,, D. L. Novosel,, and J. E. Officer. 1963. Inhibition of the growth of agents of the psittacosis group by D-cycloserine and its specific reversal by D-alanine. J. Bacteriol. 85:707711.
121. Murakami, K.,, N. Fujita,, and A. Ishihama. 1996. Transcription factor recognition surface on the RNA polymerase alpha subunit is involved in contact with the DNA enhancer element. EMBO J. 15:43584367.
122. Mygind, P.,, G. Christiansen,, and S. Birkelund. 1998. Topological analysis of Chlamydia trachomatis L2 outer membrane protein 2. J. Bacteriol. 180:57845787.
123. Newhall, W. J.,, V. 1987. Biosynthesis and disulfide cross-linking of outer membrane components during the growth cycle of Chlamydia trachomatis. Infect. Immun. 55:162168.
124. Newhall, W. J. V.,, 1988. Macromolecular and antigenic composition of chlamydiae, p. 4770. In A. L. Barron (ed.), Microbiology of Chlamydia. CRC Press, Inc., Boca Raton, Fla..
125. Newhall, W. J. V.,, and M. B. Basinski,. 1986. Purification and structural characterization of chlamydial outer membrane proteins, p. 9396. In D. Oriel,, G. Ridgway,, J. Schachter,, D. Taylor-Robinson,, and M. Ward (ed.), Chlamydial Infections. Proceedings of the Sixth International Symposium on Human Chlamydial Infections. Cambridge University Press, Cambridge, United Kingdom.
126. Newhall, W. J. V.,, and R. B. Jones. 1983. Disulfide-linked oligomers of the major outer membrane protein of chlamydiae. J. Bacteriol. 154:9981001.
127. Nurminen, M.,, M. Leinonen,, P. Saikku,, and P. H. Makela. 1983. The genus-specific antigen of Chlamydia: resemblance to the lipopolysaccharide of enteric bacteria. Science 220:12791281.
128. O'Connell, C. M. C.,, and A. T. Maurelli,. 1998. Introduction of foreign DNA into Chlamydia and stable expression of chloramphenicol resistance, p. 519522. In R. S. Stephens,, G. I. Byrne,, G. Christiansen,, I. N. Clarke,, J. T. Grayston,, R. G. Rank,, G. L. Ridgway,, P. Saikku,, J. Schachter,, and W. E. Stamm (ed.), Chlamydial Infections. Proceedings of the Ninth International Symposium on Human Chlamydial Infection..
129. Pal, S.,, I. Theodor,, E. M. Peterson,, and L. M. de la Maza. 1997. Immunization with an acellular vaccine consisting of the outer membrane complex of Chlamydia trachomatis induces protection against a genital challenge. Infect. Immun. 65:33613369.
130. Patton, D. L.,, Y. T. Sweeney,, and C.-C. Kuo. 1994. Demonstration of delayed hypersensitivity in Chlamydia trachomatis salpingitis in monkeys: a pathogenic mechanism of tubal damage. J. Infect. Dis. 69:680683.
131. Perara, E.,, D. Ganem,, and J. N. Engel. 1992. A developmentally regulated chlamydial gene with apparent homology to eukaryotic histone HI. Proc. Natl. Acad. Sci. USA 89:21252129.
132. Perkins, H. R.,, and A. C. Allison. 1963. Cell wall constituents of Rickettsia and Psittacosis lymphogranuloma organisms. J. Gen. Microbiol. 30:469480.
133. Persson, K.,, and A. Peykani,. 1998. Polymeric but not monomelic MOMP reacts with many monoclonal antibodies to Chlamydia pneumoniae, p. 279282. In R. S. Stephens,, G. I. Byrne,, G. Christiansen,, I. N. Clarke,, J. T. Grayston,, R. G. Rank,, G. L. Ridgway,, P. Saikku,, J. Schachter,, and W. E. Stamm (ed.), Chlamydial Infections. Proceedings of the Ninth International Symposium on Human Chlamydial Infection. International Chlamydia Symposium, San Francisco, Calif..
134. Petersen, L. B.,, S. Birkelund,, and G. Christiansen. 1994. Interaction of the Chlamydia trachomatis histone HI-like protein (Hcl) with DNA and RNA causes repression of transcription and translation in vitro. Mol. Microbiol. 11:10851098.
135. Petersen, L. B.,, S. Birkelund,, and G. Christiansen. 1996a. Purification of recombinant Chlamydia trachomatis histone HI-like protein Hc2, and comparative functional analysis of Hc2 and Hcl. Mol. Microbiol. 20:295311.
136. Petersen, L. B.,, S. Birkelund,, A. Holm,, S. Ostergaard,, and G. Christiansen. 1996b. The 18-kilodalton Chlamydia trachomatis histone HI-like protein (Hcl) contains a potential N-terminal dimerization site and a C-terminal nucleic acid binding domain. J. Bacteriol. 178:9941002.
137. Peterson, E. M.,, L. M. de la Maza,, L. Brade,, and H. Brade. 1998. Characterization of a neutralizing monoclonal antibody directed at the lipopolysaccharide of Chlamydia pneumoniae. Infect. Immun. 66: 38483855.
138. Plaunt, M. R.,, and T. P. Hatch. 1988. Protein synthesis early in the developmental cycle of Chlamydia psittaci. Infect. Immun. 56:30213025.
139. Qureshi, N.,, I. Kaltashov,, K. Walker,, V. Doroshenko,, R. J. Cotter,, K. Takayama,, T. R. Sievert,, P. A. Rice,, J. S. Lin,, and D. T. Golenbock. 1997. Structure of the monophosphoryl lipid A moiety obtained from the lipopolysaccharide of Chlamydia trachomatis. J. Biol. Chem. 272:1059410600.
140. Raulston, J. E. 1995. Chlamydial envelope components and pathogen-host cell interactions. Mol. Microbiol. 15:607616.
141. Raulston, J. E.,, C. H. Davis,, D. H. Schmiel,, M. W. Morgan,, and P. B. Wyrick. 1993. Molecular characterization and outer membrane association of a Chlamydia trachomatis protein related to the hsp70 family of proteins. J. Biol. Chem. 268:2313923147.
142. Raulston, J. E.,, C. H. Davis,, T. R. Paul,, and P. B. Wyrick,. 1998. Heat shock protein 70 kDa and the chlamydial envelope: an entry-level position?, p. 8386. In R. S. Stephens,, G. I. Byrne,, G. Christiansen,, I. N. Clarke,, J. T. Grayston,, R. G. Rank,, G. L. Ridgway,, P. Saikku,, J. Schachter,, and W. E. Stamm (ed.), Chlamydial Infections. Proceedings of the Ninth International Symposium on Human Chlamydial Infection. International Chlamydia Symposium, San Francisco, Calif..
143. Remacha, M.,, R. Kaul,, R. Sherburne,, and W. M. Wenman. 1996. Functional domains of chlamydial histone H1-like protein. Biochem. J. 315:481486.
144. Ricci, S.,, R. Cevenini,, E. Cosco,, M. Comanducci,, G. Ratti,, and V. Scarlato. 1993. Transcriptional analysis of the Chlamydia trachomatis plasmid pCT identifies temporally regulated transcripts, anti-sense RNA and cr70-selected promoters. Mol. Gen. Genet. 237:318326.
145. Ricci, S.,, G. Ratti,, and V. Scarlato. 1995. Transcriptional regulation in the Chlamydia trachomatis pCT plasmid. Gene 154:9398.
146. Richmond, S. J.,, and P. Stirling. 1981. Localization of chlamydial group antigen in McCoy cell monolayers infected with Chlamydia trachomatis or Chlamydia psittaci. Infect. Immun. 34:561570.
147. Rockey, D. D.,, R. A. Heinzen,, and T. Hackstadt. 1995. Cloning and characterization of a Chlamydia psittaci gene coding for a protein localized in the inclusion membrane of infected cells. Mol. Microbiol. 15:617626.
148. Rockey, D. D.,, and J. L. Rosquist 1994. Protein antigens of Chlamydia psittaci present in infected cells but not detected in the infectious elementary body. Infect. Immun. 62:106112.
149. Sardinia, L. M.,, J. N. Engel,, and D. Ganem. 1989. Chlamydial gene encoding a 70-kilodalton antigen in Escherichia coli: analysis of expression signals and identification of the gene product. J. Bacteriol. 171:335341.
150. Schmiel, D. H.,, S. T. Knight,, J. E. Raulston,, J. Choong,, C. H. Davis,, and P. B. Wyrick. 1991. Recombinant Escherichia coli clones expressing Chlamydia trachomatis gene products attach to human endometrial epithelial cells. Infect. Immun. 59:40014012.
151. Schmiel, D. H.,, and P. B. Wyrick. 1994. Another putative heat-shock gene and aminoacyl tRNA synthetase gene are located upstream from the grpE and dnaK-Wke genes in Chlamydia trachomatis. Gene 145:5763.
152. Scidmore, M. A.,, E. R. Fischer,, and T. Hackstadt. 1996. Sphingolipids and glycoproteins are differentially trafficked to the Chlamydia trachomatis inclusion. J. Cell. Biol. 134:363374.
153. Shen, L.,, S. Yan,, T. P. Hatch,, J.-M. Chen,, and X.-Y. Zhang,. 1998. Identification of promoters for the tuf gene of Chlamydia trachomatis serovar F, p. 551554. In R. S. Stephens,, G. I. Byrne,, G. Christiansen,, I. N. Clarke,, J. T. Grayston,, R. G. Rank,, G. L. Ridgway,, P. Saikku,, J. Schachter,, and W. E. Stamm (ed.), Chlamydial Infections. Proceedings of the Ninth International Symposium on Human Chlamydial Infection. International Chlamydia Symposium, San Francisco, Calif..
154. Solbrig, M. V.,, M. L. Wong,, and R. S. Stephens. 1990. Developmental-stage-specific plasmid super-coiling in Chlamydia trachomatis. Mol. Microbiol. 4:15351541.
155. Souriau, A.,, J. Salinas,, C. De Sa,, K. Layachi,, and A. Rodolakis. 1994. Identification of subspecies-and serotype 1-specific epitopes on the 80- to 90-kilodalton protein region of Chlamydia psittaci that may be useful for diagnosis of chlamydial induced abortion. Am. J. Vet. Res. 50:510514.
156. Stephens, R. S., 1988. Chlamydial genetics, p. 111134. In A. L. Barron (ed.), Microbiology of Chlamydia. CRC Press, Inc., Boca Raton, Fla..
157. Stephens, R. S. 1993. The challenge of chlamydia research. Infect. Agents Dis. 1:279293.
158. Stephens, R. S. 1998. Personal communication.
159. Stephens, R. S.,, S. Kalman,, C. Lammel,, J. Fan,, R. Marathe,, L. Aravind,, W. Mitchell,, L. Olinger,, R. L. Tatusov,, Q. Zhao,, E. V. Koonin,, and R. W. Davis. 1998. Genome sequence of an obligate intracellular pathogen of humans: Chlamydia trachomatis. Science 282:754759.
160. Stephens, R. S.,, G. Mullenbach,, R. Sanchez-Pescador,, and N. Agabian. 1986. Sequence analysis of the major outer membrane protein gene from Chlamydia trachomatis serovar L2. J. Bacteriol. 168: 12771282.
161. Stephens, R. S.,, R. Sanchez-Pescador,, E. A. Wagar,, C. Inouye,, and M. S. Ureda. 1987. Diversity of Chlamydia trachomatis major outer membrane protein genes. J. Bacteriol. 169:38793885.
162. Stephens, R. S.,, E. A. Wagar,, and U. Edman. 1988. Developmental regulation of tandem promoters for the major outer membrane protein gene of Chlamydia trachomatis. J. Bacteriol. 170:744750.
163. Stothard, D. R.,, G. Boguslawski,, and R. B. Jones. 1998. Phylogenetic analysis of the Chlamydia trachomatis major outer membrane protein and examination of potential pathogenic determinants. Infect. Immun. 66:36183625.
164. Stuart, E. S.,, and A. B. MacDonald. 1984. Identification of two fatty acids in a group determinant of Chlamydia trachomatis. Curr. Microbiol. 11:123128.
165. Stuart, E. S.,, and A. B. MacDonald. 1989. Some characteristics of a secreted chlamydial antigen recognized by IgG from C. trachomatis patient sera. Immunology 68:469473.
166. Stuart, E. S.,, S. M. Terrell,, and A. B. MacDonald. 1987. Characterization of an antigen secreted by Chlamydia-infected cell culture. Immunology 61:527533.
167. Stuart, E. S.,, P. B. Wyrick,, J. Choong,, S. B. Stoler,, and A. B. MacDonald. 1991. Examination of chlamydial glycolipid with monoclonal antibodies: cellular distribution and epitope binding. Immunology 74:740747.
168. Su, H.,, and H. D. Caldwell. 1991. In vitro neutralization of Chlamydia trachomatis by monovalent Fab antibody specific to MOMP. Infect. Immun. 59:28432845.
169. Su, H.,, L. Raymond,, D. D. Rockey,, E. Fischer,, T. Hackstadt,, and H. D. Caldwell. 1996. A recombinant Chlamydia trachomatis major outer membrane protein binds to heparan sulfate receptors on epithelial cells. Proc. Natl. Acad. Sci. USA 93:1114311148.
170. Su, H.,, N. G. Watkins,, Y.-X. Zhang,, and H. D. Caldwell. 1990. Chlamydia trachomatis-host cell interactions: role of the chlamydial major outer membrane protein as an adhesin. Infect. Immun. 58:10171025.
171. Su, H.,, Y.-X. Zhang,, O. Barrera,, N. G. Watkins,, and H. D. Caldwell. 1988. Differential effects of trypsin on infectivity of Chlamydia trachomatis: loss of infectivity requires cleavage of major outer membrane protein variable domains II and IV. Infect. Immun. 56:20942100.
172. Su, H.,, Y.-X. Zhang,, and R. Li. 1985. Presence of muramic acid in Chlamydia trachomatis proved by liquid chromatography-mass spectrometry. Kexue Tongbao 30:695699.
173. Swanson, A. R.,, and C.-C. Kuo. 1990. Identification of lectin-binding proteins in Chlamydia species. Infect Immun. 58:502507.
174. Swanson, A. F.,, and C.-C. Kuo. 1991. Evidence that the major outer membrane protein of Chlamydia trachomatis is glycosylated. Infect. Immun. 59:21202125.
175. Swanson, A. F.,, and C.-C. Kuo. 1994. The 32-kDa glycoprotein of Chlamydia trachomatis is an acidic protein that may be involved in the attachment process. FEMS Microbiol. Lett. 123:113118.
176. Swanson, A. F.,, R. A. B. Ezekowitz,, A. Lee,, and C.-C. Kuo. 1998. Human mannose-binding protein inhibits infection of HeLa cells by Chlamydia trachomatis. Infect. Immun. 66:16071612.
177. Tarn, J. E.,, C. H. Davis,, and P. B. Wyrick. 1994. Expression of recombinant DNA introduced into Chlamydia trachomatis by electroporation. Can. J. Microbiol. 40:583591.
178. Tamura, A.,, and G. P. Manire. 1967. Preparation and chemical composition of the cell membranes of developmental reticulate forms of meningopneumonitis organisms. J. Bacteriol. 94:11841188.
179. Tamura, A.,, and G. P. Manire. 1968. Effect of penicillin on the multiplication of meningopneumonitis organisms {Chlamydia psittaci). J. Bacteriol. 96:875880.
180. Tan, M.,, and J. N. Engel. 1996. Identification of sequences necessary for transcription in vitro from the Chlamydia trachomatis rRNA PI promoter. J. Bacteriol. 178:69756982.
181. Tan, M.,, T. Gaal,, R. L. Gourse,, and J. N. Engel. 1998. Mutational analysis of the Chlamydia trachomatis rRNA PI promoter defines four regions important for transcription in vitro. J. Bacteriol. 180:23592366.
182. Tan, M.,, B. Wong,, and J. N. Engel. 1996. Transcriptional organization and regulation of the dnaK and groE operons of Chlamydia trachomatis. J. Bacteriol. 178:69836990.
183. Tan, T.-W.,, A. J. Herring,, I. E. Anderson,, and G. E. Jones. 1990. Protection of sheep against Chlamydia psittaci infection with a subcellular vaccine containing the major outer membrane protein. Infect. Immun. 58:31013108.
184. Tanzer, R. (University of Tennessee, Memphis). 1998. Uunpublished observation.
185. Tao, S.,, R. Kaul,, and W. M. Wenman. 1991. Identification and nucleotide sequence of a developmentally regulated gene encoding a eucaryotic histone H1-like protein from Chlamydia trachomatis. J. Bacteriol. 173:28182822.
186. Taraska, T.,, D. M. Ward,, R. S. Ajioka,, P. B. Wyrick,, S. R. Davis-Kaplan,, C. H. Davis,, and J. Kaplan. 1996. The late chlamydia inclusion membrane is not derived from the endocytic pathway and is relatively deficient in host proteins. Infect. Immun. 64:37173727.
187. Ting, L.-M.,, R.-C. Hsia,, C. G. Haidaris,, and P. M. Bavoil. 1995. Interaction of outer envelope proteins of Chlamydia psittaci GPIC with the HeLa cell surface. Infect. Immun. 63:36003608.
188. Wagar, E. A.,, J. Schachter,, P. Bavoil,, and R. S. Stephens. 1990. Differential human serologic response to two 60,000 molecular weight Chlamydia trachomatis antigens. J. Infect. Dis. 162:922927.
189. Wagar, E. A.,, and R. S. Stephens. 1988. Developmental-form-specific DNA-binding proteins in Chlamydia spp. Infect. Immun. 56:16781684.
190. Ward, M. E. 1983. Chlamydial classification, development and structure. Br. Med. Bull. 39:109115.
191. Ward, M. E., 1988. The chlamydial developmental cycle, p. 7196. In A. L. Barron (ed.), Microbiology of Chlamydia. CRC Press, Inc., Boca Raton, Fla..
192. Watson, M. W.,, I. N. Clarke,, J. S. Everson,, and P. R. Lambden. 1995. The CrP operon of Chlamydia psittaci and Chlamydia pneumoniae. Microbiology 141:24892497.
193. Watson, M. W.,, P. R. Lambden,, J. S. Everson,, and I. N. Clarke. 1994. Immunoreactivity of the 60 kDa cysteine-rich proteins of Chlamydia trachomatis, Chlamydia psittaci and Chlamydia pneumoniae expressed in Escherichia coli. Microbiology 140:20032011.
194. Weiss, E. 1950. The effect of antibiotics on agents of the psittacosis-lymphogranuloma group. I. The effect of penicillin. J. Infect. Dis. 87:249263.
195. Wenman, W. M.,, and R. U. Meuser. 1986. Chlamydia trachomatis elementary bodies possess proteins which bind to eucaryotic cell membranes. J. Bacteriol. 165:602607.
196. Wichlan, D. G.,, and T. P. Hatch. 1993. Identification of an early-stage gene of Chlamydia psittaci 6BC. J. Bacteriol. 175:29362942.
197. Wylie, J. L.,, G. M. Hatch,, and G. McClarty. 1997. Host cell phospholipids are trafficked to and then modified by Chlamydia trachomatis. J. Bacteriol. 179:72337242.
198. Wyllie, S.,, R. H. Ashley,, D. Longbottom,, and A. J. Herring. 1998. The major outer membrane protein of Chlamydia psittaci functions as a porin-like ion channel. Infect. Immun. 66:52025207.
199. Wyrick, P. B.,, J. Coong,, S. T. Knight,, D. Goyeau,, E. S. Stuart,, and A. B. MacDonald. 1994. Chlamydia trachomatis antigens on the surface of infected human endometrial epithelial cells. Immunol. Infect. Dis. 4:131141.
200. Yuan, Y.,, Y.-X. Zhang,, D. S. Manning,, and H. D. Caldwell. 1990. Multiple tandem promoters of the major outer membrane protein gene (ompl) of Chlamydia psittaci. Infect. Immun. 58:28502855.
201. Zhang, D.-J.,, X. Yang,, J. Berry,, C.-X. Shen,, G. McClarty,, and R. C. Brunham. 1997. DNA vaccination with the major outer membrane protein gene induces acquired immunity to Chlamydia trachomatis (mouse pneumonitis) infection. J. Infect. Dis. 176:10351040.
202. Zhang, J. P.,, and R. S. Stephens. 1992. Mechanism of C. trachomatis attachment to eukaryotic host cells. Cell 69:861869.
203. Zhang, L.,, A. L. Douglas,, and T. P. Hatch. 1998. Characterization of a Chlamydia psittaci DNA binding protein (EUO) synthesized during the early and middle phases of the developmental cycle. Infect. Immun. 66:11671173.
204. Zhang, L.,, and T. P. Hatch,. 1998. Characterization of DNA binding sites of chlamydia EUO protein, p. 567570. In R. S. Stephens,, G. I. Byrne,, G. Christiansen,, I. N. Clarke,, J. T. Grayston,, R. G. Rank,, G. L. Ridgway,, P. Saikku,, J. Schachter,, and W. E. Stamm (ed.), Chlamydial Infections. Proceedings of the Ninth International Symposium on Human Chlamydial Infection. International Chlamydia Symposium, San Francisco, Calif..
205. Zhang, Y.-X.,, S. Stewart,, T. Joseph,, H. R. Taylor,, and H. D. Caldwell. 1987. Protective monoclonal antibodies recognize epitopes located on the major outer membrane protein of Chlamydia trachomatis. J. Immunol. 138:575581.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error