1887

Chapter 4 : Chlamydial Metabolism as Inferred from the Complete Genome Sequence

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Chlamydial Metabolism as Inferred from the Complete Genome Sequence, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818203/9781555811556_Chap04-1.gif /docserver/preview/fulltext/10.1128/9781555818203/9781555811556_Chap04-2.gif

Abstract:

This chapter deciphers chlamydiae's metabolic capabilities from the complete genome sequence. On the basis of their primary function in growth, metabolic reactions have been categorized as assembly reactions, polymerization reactions, biosynthetic reactions, and fueling reactions. Numerous in situ studies have suggested that chlamydiae show strain-to-strain variation in amino acid requirements and that they compete with the host for the available amino acid pool. All cells have an absolute requirement for cofactors. Nevertheless, it is not unusual for small-genome organisms to lack the ability to synthesize cofactors. Genome sequence information indicates that chlamydiae are capable of limited cofactor biosynthesis. Fatty acid biosynthesis, a series of reactions that requires a lot of energy, is a metabolic process that is absent from minimal-genome organisms that have been sequenced. As a result the fatty acid composition of these organisms to a large extent reflects that present in the growth medium. Nucleotides are found in significant amounts only inside of cells, because they are rapidly degraded in the extracellular environment. Numerous studies on nucleotide metabolism using both host-free reticulate bodies (RBs) and an in situ approach employing as host wild-type and various mutant cell lines, with welldefined genetic deficiencies in nucleotide metabolism, have been carried out. These studies conclude that chlamydiae cannot synthesize nucleotides de novo or salvage nucleotides. This chapter describes Embden-Meyerhoff-Parnas (EMP) pathway, the pentose phosphate pathway (PPP), gluconeogenesis, respiration, and ATPase complex.

Citation: McClarty G. 1999. Chlamydial Metabolism as Inferred from the Complete Genome Sequence, p 69-100. In Stephens R (ed), Chlamydia. ASM Press, Washington, DC. doi: 10.1128/9781555818203.ch4
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Color Plate 1
Color Plate 1

Schematic diagram summarizing phospholipid trafficking and biosynthesis in chlamydiae. Sphingomyelin trafficking is based on the model proposed by Hackstadt and colleagues (reviewed in ). Trafficking and de novo synthesis of glycerophospholipids is based on the results of McClarty and colleagues ( ) and information provided by the genome sequencing project of .

Citation: McClarty G. 1999. Chlamydial Metabolism as Inferred from the Complete Genome Sequence, p 69-100. In Stephens R (ed), Chlamydia. ASM Press, Washington, DC. doi: 10.1128/9781555818203.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 1
Figure 1

Summary of nucleotide acquisition and metabolism in chlamydiae. Question marks indicate reactions that are presumed to occur but for which no gene has been identified.

Citation: McClarty G. 1999. Chlamydial Metabolism as Inferred from the Complete Genome Sequence, p 69-100. In Stephens R (ed), Chlamydia. ASM Press, Washington, DC. doi: 10.1128/9781555818203.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Glycolysis in chlamydiae. Note that both priming reactions (ATP utilizing) of glycolysis are bypassed in chlamydiae, thus altering their glycolytic balance. See text for details.

Citation: McClarty G. 1999. Chlamydial Metabolism as Inferred from the Complete Genome Sequence, p 69-100. In Stephens R (ed), Chlamydia. ASM Press, Washington, DC. doi: 10.1128/9781555818203.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

The PPP in chlamydiae.

Citation: McClarty G. 1999. Chlamydial Metabolism as Inferred from the Complete Genome Sequence, p 69-100. In Stephens R (ed), Chlamydia. ASM Press, Washington, DC. doi: 10.1128/9781555818203.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

The tricarboxylic acid cycle in chlamydiae. The TCA cycle is incomplete in chlamydiae; there is no entry of acetyl-CoA into the cycle. As a result, an alternate source of carbon is required to keep the cycle functioning. Two possible sources are depicted. One involves the SodTi exchanger and the other requires glutamate dehydrogenase. See text for details.

Citation: McClarty G. 1999. Chlamydial Metabolism as Inferred from the Complete Genome Sequence, p 69-100. In Stephens R (ed), Chlamydia. ASM Press, Washington, DC. doi: 10.1128/9781555818203.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Color Plate 2
Color Plate 2

Schematic diagram illustrating one possible arrangement of the respiratory chain and V/A-ATP synthase complex in chlamydiae. The ability to form and utilize H and/or Na or ion gradients for ATP synthesis in chlamydiae is depicted. However, the ability to do so is based on information deduced from genomics. These possibilities need to be confirmed by experimentation. See text for details.

Citation: McClarty G. 1999. Chlamydial Metabolism as Inferred from the Complete Genome Sequence, p 69-100. In Stephens R (ed), Chlamydia. ASM Press, Washington, DC. doi: 10.1128/9781555818203.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818203.chap4
1. Allen, E. G.,, and M. R. Bovarnick. 1957. Association of reduced diphosphopyridine nucleotide cytochrome c reductase activity in meningopneumonitis virus. J. Exp. Med. 105: 539 547.
2. Allen, E. G.,, and M. R. Bovarnick. 1962. Enzymatic activity associated with meningopneumonitis. Ann. N. Y. Acad. Sci. 98: 229 233.
3. Barbour, A. G.,, K. Amano,, T. Hackstadt,, L. Perry,, and H. D. Caldwell. 1982. Chlamydia trachomatis has penicillin-binding proteins but not detectable muramic acid. J. Bacteriol. 151: 420 428.
4. Beatty, W. L.,, T. A. Belanger,, A. A. Desai,, R. P. Morrison,, and G. I. Byrne. 1994a. Role of tryptophan in gamma interferon-mediated chlamydial persistence. Ann. N. Y. Acad. Sci. 730: 304 306.
5. Beatty, W. L.,, R. P. Morrison,, and G. I. Byrne. 1994b. Persistent chlamydiae: from cell culture to a paradigm for chlamydial pathogenesis. Microbiol. Rev. 58: 686 699.
6. Belunis, C. J.,, K. E. Mdluli,, C. R. H. Raetz,, and F. E. Nano. 1992. A novel 3-deoxy-D-manno-octulosonic acid transferase from Chlamydia trachomatis required for expression of the genus specific epitope. J. Biol. Chem. 267: 18702 18707.
7. Bisaccia, F.,, C. Indiveri,, and F. Palmieri. 1988. Purification and reconstitution of two anion carriers from rat liver mitochondria: the dicarboxylate and the 2-oxoglutarate carrier. Biochim. Biophys. Acta 933: 229 240.
8. Brade, L.,, K. Zych,, A. Rozalski,, P. Kosma,, K. Bock,, and H. Brade. 1997. Structural requirements of synthetic oligosaccharides to bind monoclonal antibodies against Chlamydia lipopolysaccharide. Glycobiology 7: 819 827.
9. Bruchhaus, I.,, T. Jacobs,, M. Denart,, and E. Tannich. 1996. Pyrophosphate-dependent phosphofruc-tokinase of Entamoeba histolytica: molecular cloning, recombinant expression and inhibition by pyrophosphate analogues. Biochem. J. 316: 57 63.
10. Carlisle, S. M.,, S. D. Blakeley,, S. M. Hemmingsen,, S. J. Trevanion,, T. Hiyoshi,, N. J. Kruger,, and D. T. Dennis. 1990. Pyrophosphate-dependent phosphofructokinase. Conservation of protein sequence between the alpha- and beta-subunits and with the ATP-dependent phosphofructokinase. J. Biol. Chem. 265: 18366 18371.
11. Chiappino, M. L.,, C. Dawson,, J. Schachter,, and B. A. Nichols. 1995. Cytochemical localization of glycogen in Chlamydia trachomatis inclusions. J. Bacteriol 177: 5358 5363.
12. Cronan, J. E., Jr.,, and D. Laporte,. 1996. Tricarboxylic acid cycle and glyoxylate bypass, p. 206 216. In F. C. Neidhardt,, R. Curtiss III,, J. L. Ingraham,, E. C. C. Lin,, K. B. Low,, B. Magasanik,, W. S. Reznikoff,, M. Riley,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd ed. American Society for Microbiology, Washington, D.C..
13. Cronan, J. E., Jr.,, and C. O. Rock,. 1996. Biosynthesis of membrane lipids, p. 612 636. In F. C. Neidhardt,, R. Curtiss III,, J. L. Ingraham,, E. C. C. Lin,, K. B. Low,, B. Magasanik,, W. S. Reznikoff,, M. Riley,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd ed. American Society for Microbiology, Washington, D.C..
14. Curnow, A. W.,, M. Ibba,, and D. Soli. 1996. tRNA-dependent asparagine formation. Nature 382: 589 590.
15. Davidson, M.,, C. C. Kuo,, J. P. Middaugh,, L. A. Campbell,, S. P. Wang,, W. P. Newman III,, J. C. Finley,, and J. T. Grayston. 1998. Confirmed previous infection with Chlamydia pneumoniae (TWAR) and its presence in early coronary atherosclerosis. Circulation 98: 628 633.
16. Engel, J. N.,, and D. Ganem. 1987. Chlamydial rRNA operons: gene organization and identification of putative tandem promoters. J. Bacteriol. 169: 5678 5685.
17. Engel, J. N.,, J. Pollack,, F. Malik,, and D. Ganem. 1990. Cloning and characterization of RNA polymerase core subunits of Chlamydia trachomatis by using the polymerase chain reaction. J. Bacteriol 172: 5732 5741.
18. Entrican, G.,, J. Brown,, and S. Graham. 1998. Cytokines and the protective host immune response to Chlamydia psittaci. Comp. Immunol. Microbiol Infect. Dis. 21: 15 26.
19. Fan, H.,, G. McClarty,, and R. C. Brunham. 1991. Biochemical evidence for the existence of thymidylate synthase in the obligate intracellular parasite Chlamydia trachomatis. J. Bacteriol. 173: 6670 6677.
20. Finbow, M. E.,, and M. A. Harrison. 1997. The vacuolar H +-ATPase: a universal proton pump of eukaryotes. Biochem. J. 324: 697 712.
21. Fiore, C.,, V. TVezeguet,, A. Le Saux,, P. Roux,, C. Schwimmer,, A. C. Dianoux,, F. Noel,, G. J. Lauquin,, G. Brandolin,, and P. V. Vignais. 1998. The mitochondrial ADP/ATP carrier: structural, physiological and pathological aspects. Biochimie 80: 137 150.
22. Fothergill-Gilmore, L. A.,, and P. A. M. Michels. 1993. Evolution of glycolysis. Prog. Biophys. Mol Biol 59: 105 235.
23. Fraenkel, D. G., 1996. Glycolysis, p. 189 198. In F. C. Neidhardt,, R. Curtiss III,, J. L. Ingraham,, E. C. C. Lin,, K. B. Low,, B. Magasanik,, W. S. Reznikoff,, M. Riley,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd ed. American Society for Microbiology, Washington, D.C..
24. Fraser, C. M.,, S. Casjens,, W. M. Huang,, G. G. Sutton,, R. Clayton,, R. Lathigra,, O. White,, K. A. Ketchum,, R. Dodson,, E. K. Hickey,, M. Gwinn,, B. Dougherty,, J. F. Tomb,, R. D. Fleischmann,, D. Richardson,, J. Peterson,, A. R. Kerlavage,, J. Quackenbush,, S. Salzberg,, M. Hanson,, R. van Vugt,, N. Palmer,, M. D. Adams,, J. Gocayne,, J. Weidman,, T. Utterback,, L. Watthey,, L. McDonald,, P. Artiach,, C. Bowman,, S. Garland,, C. Fujii,, M. D. Cotton,, K. Horst,, K. Roberts,, B. Hatch,, H. O. Smith,, and J. C. Venter. 1997. Genomic sequence of a Lyme disease spirochaete, Borrelia burgdorferi. Nature 390: 580 586.
25. Fraser, C. M.,, J. D. Gocayne,, O. White,, M. D. Adams,, R. A. Clayton,, R. D. Fleischmann,, C. J. Bult,, A. R. Kerlavage,, G. Sutton,, J. M. Kelley,, J. L. Fritchman,, J. F. Weidman,, K. V. Small,, M. Sandusky,, J. Fuhrmann,, D. Nguyen,, T. R. Utterback,, D. M. Saudek,, C. A. Phillips,, J. M. Merrick,, J.-F. Tomb,, B. A. Dougherty,, K. F. Bott,, P.-C. Hu,, T. S. Lucier,, S. N. Peterson,, H. O. Smith,, C. A. Hutchinson,, and J. C. Venter. 1995. The minimal gene complement of Mycoplasma genitalium. Science 270: 397 403.
26. Fraser, C. M.,, S. J. Norris,, G. M. Weinstock,, O. White,, G. G. Sutton,, R. Dodson,, M. Gwinn,, E. K. Hickey,, R. Clayton,, K. A. Ketchum,, E. Sodergren,, J. M. Hardham,, M. P. McLeod,, S. Salzberg,, J. Peterson,, H. Khalak,, D. Richardson,, J. K. Howell,, M. Chidambaram,, T. Utterback,, L. McDonald,, P. Artiach,, C. Bowman,, M. D. Cotton,, and J. C. Venter. 1998. Complete genome sequence of Treponema pallidum, the syphilis spirochete. Science 281: 375 388.
27. Gaugler, R. W.,, E. M. Neptune, Jr.,, G. M. Adams,, T. L. Sallee,, E. Weiss,, and N. N. Wilson. 1969. Lipid synthesis by isolated Chlamydia psittaci. J. Bacteriol. 100: 823 826.
28. Gennis, R. B.,, and V. Stewart,. 1996. Respiration, p. 217 261. In F. C. Neidhardt,, R. Curtiss III,, J. L. Ingraham,, E. C. C. Lin,, K. B. Low,, B. Magasanik,, W. S. Reznikoff,, M. Riley,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd ed. American Society for Microbiology, Washington, D.C..
29. Green, J. M.,, B. P. Nichols,, and R. G. Matthews,. 1996. Folate biosynthesis, reduction and polyglutamylation, p. 665 673. In F. C. Neidhardt,, R. Curtiss III,, J. L. Ingraham,, E. C. C. Lin,, K. B. Low,, B. Magasanik,, W. S. Reznikoff,, M. Riley,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd ed. American Society for Microbiology, Washington, D.C..
30. Gu, L.,, W. M. Wenman,, M. Remacha,, R. Meuser,, J. Coffin,, and R. Kaul. 1995. Chlamydia trachomatis RNA polymerase alpha subunit: sequence and structural analysis. J. Bacteriol. 177: 2594 2601.
31. Hackstadt, T.,, E. R. Fischer,, M. A. Scidmore,, D. D. Rockey,, and R. A. Heinzen. 1997. Origins and functions of the chlamydial inclusion. Trends Microbiol. 5: 288 293.
32. Hackstadt, T.,, D. D. Rockey,, R. A. Heinzen,, and M. A. Scidmore. 1996. Chlamydia trachomatis interrupts an exocytic pathway to acquire endogenously synthesized sphingomyelin in transit from the Golgi apparatus to the plasma membrane. EMBO J. 15: 964 977.
33. Hackstadt, T.,, M. A. Scidmore,, and D. D. Rockey. 1995. Lipid metabolism in Chlamydia trachomatis-infected cells: directed trafficking of Golgi-derived sphingolipids to the chlamydial inclusion. Proc. Natl. Acad. Sci. USA 92: 4877 4881.
34. Harold, F. M.,, and P. C. Maloney,. 1996. Energy transduction by ion currents, p. 283 306. In F. C. Neidhardt,, R. Curtiss III,, J. L. Ingraham,, E. C. C. Lin,, K. B. Low,, B. Magasanik,, W. S. Reznikoff,, M. Riley,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd ed. American Society for Microbiology, Washington, D.C..
35. Hatch, G. M.,, and G. McClarty. 1998. Phospholipid composition of purified Chlamydia trachomatis mimics that of the eukaryotic host cell. Infect. Immun. 66: 3727 3735.
36. Hatch, T. P. 1975. Utilization of L-cell nucleoside triphosphates by Chlamydia psittaci for ribonucleic acid synthesis. J. Bacteriol. 122: 393 400.
37. Hatch, T. P., 1988. Metabolism of Chlamydia, p. 97 109. In A. L. Barron (ed.), Microbiology of Chlamydia. CRC Press, Boca Raton, Fla..
38. Hatch, T. P.,, E. Al-Hossainy,, and J. A. Silverman. 1982. Adenine nucleotide and lysine transport in Chlamydia psittaci. J. Bacteriol. 150: 662 667.
39. Hayashi, M.,, Y. Nakayama,, and T. Unemoto. 1996. Existence of Na +-translocating NADH-quinone reductase in Haemophilus influenzae. FEBS Lett. 381: 174 176.
40. Hilario, E.,, and J. P. Gogarten. 1998. The prokaryote-to-eukaryote transition reflected in the evolution of the V/F/A-ATPase catalytic and proteolipid subunits. J. Mol. Evol. 46: 703 715.
41. Hilario, E.,, and G. McClarty. 1998. Unpublished data.
42. Iliffe, E. R.,, and G. McClarty. Glucose metabolism in Chlamydia trachomatis: the "energy parasite" hypothesis revisited. Submitted for publication.
43. Ingalls, R. R.,, P. A. Rice,, N. Qureshi,, K. Takayama,, J. S. Lin,, and D. J. Golenbock. 1995. The inflammatory cytokine response to Chlamydia trachomatis infection is endotoxin mediated. Infect. Immun. 63: 3125 3130.
44. Island, M. D.,, B. Y. Wei,, and R. J. Kadner. 1992. Structure and function of the uhp genes for the sugar phosphate transport system in Escherichia coli and Salmonella typhimurium. J. Bacteriol. 174: 2754 2762.
45. Kalman, S.,, W. P. Mitchell,, R. Marathe,, C. Lammel,, J. Fan,, R. W. Hyman,, L. Olinger,, J. Grimwood,, R. W. Davis,, and R. S. Stephens. Comparative genomes of Chlamydia pneumoniae and C. trachomatis. Submitted for publication.
46. Kaneda, T. 1991. Iso- and anteiso-fatty acids in bacteria: biosynthesis and taxonomic significance. Microbiol. Rev. 55: 288 302.
47. Kaneko, T.,, S. Sato,, H. Kotani,, A. Tanaka,, E. Asamizu,, Y. Nakamura,, N. Miyajima,, M. Hirosawa,, M. Sugiura,, S. Sasamoto,, T. Kimura,, T. Hosouchi,, A. Matsuno,, A. Muraki,, N. Nakazaki,, K. Naruo,, S. Okumura,, S. Shimpo,, C. Takeuchi,, T. Wada,, A. Watanabe,, M. Yamada,, M. Yasuda,, and S. Tabata. 1996. Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA Res. 3: 109 136.
48. Kaul, R.,, G. J. Gray,, N. R. Koehncke,, and J. J. Gu. 1992. Cloning and sequence analysis of the Chlamydia trachomatis spc ribosomal protein gene cluster. J. Bacteriol. 174: 1205 1212.
49. Koehler, J. E.,, R. R. Burgess,, N. E. Thompson,, and R. S. Stephens. 1990. Chlamydia trachomatis RNA polymerase major sigma subunit. Sequence and structural comparison of conserved and unique regions with Escherichia coli sigma 70 and Bacillus subtilis sigma 43. J. Biol. Chem. 265: 13206 13214.
50. Krause, D. C.,, H. H. Winkler,, and D. O. Wood. 1985. Cloning and expression of the Rickettsia prowazekii ADP/ATP translocator in Escherichia coli. Proc. Natl. Acad. Sci. USA 82: 3015 3019.
51. Lukacova, M.,, M. Baumann,, L. Brade,, U. Mamat,, and H. Brade. 1994. Lipopolysaccharide smooth-rough phase variation in bacteria of the genus Chlamydia. Infect. Immun. 62: 2270 2276.
52. McClarty, G. 1994. Chlamydiae and the biochemistry of intracellular parasitism. Trends Microbiol. 2: 157 164.
53. McClarty, G.,, and G. Tipples. 1991. In situ studies on the incorporation of nucleic acid precursors into Chlamydia trachomatis DNA. J. Bacteriol. 173: 4922 4931.
54. Mertens, E. 1991. Pyrophosphate-dependent phosphofructokinase, an anaerobic glycolytic enzyme? FEBSLett. 285: 1 5.
55. Mohlmann, T.,, J. Tjaden,, C. Schwoppe,, H. H. Winkler,, K. Kampfenkel,, and H. E. Neuhaus. 1998. Occurrence of two plastidic ATP/ADP transporters in Arabidopsis thaliana L.—molecular characterisation and comparative structural analysis of similar ATP/ADP translocators from plastids and Rickettsia prowazekii. Eur. J. Biochem. 252: 353 359.
56. Montfort, W. R.,, and A. Weichsel. 1997. Thymidylate synthase: structure, inhibition, and strained conformations during catalysis. Pharmacol. Then 76: 29 43.
57. Moulder, J. W. 1962. The Biochemistry of Intracellular Parasitism. The University of Chicago Press, Chicago, Ill..
58. Moulder, J. W. 1974. Intracellular parasitism: life in an extreme environment. J. Infect. Dis. 130: 300 306.
59. Moulder, J. W. 1979. The cell as an extreme environment. Proc. R. Soc. London Sect. B 204: 199 210.
60. Moulder, J. W. 1985. Comparative biology of intracellular parasitism. Microbiol. Rev. 49: 298 337.
61. Moulder, J. W., 1988. Characteristics of chlamydiae, p. 1 20. In A. L. Baron (ed.), Microbiology of Chlamydiae. CRC Press, Boca Raton, Fla..
62. Moulder, J. W. 1991. Interactions of chlamydiae and host cells in vitro. Microbiol. Rev. 55: 143 190.
63. Moulder, J. W. 1993. Why is Chlamydia sensitive to penicillin in the absence of peptidoglycan? Infect. Agents Dis. 2: 87 99.
64. Moulder, J. W.,, D. L. Grisso,, and R. B. Brubaker. 1965. Enzymes of glucose catabolism in a member of the psittacosis group. J. Bacteriol. 89: 810 812.
65. Nakayama, Y.,, M. Hayashi,, and T. Unemoto. 1998. Identification of six subunits constituting Na +-translocating NADH-quinone reductase from the marine Vibrio alginolyticus. FEBS Lett. 422: 240 242.
66. Neidhardt, F. C.,, J. L. Ingraham,, and M. Schaechter. 1990. Physiology of the Bacterial Cell. A Molecular Approach. Sinauer Associates, Inc., Sutherland, Mass..
67. Neuhard, J.,, and R. A. Kelln,. 1996. Biosynthesis and conversion of pyrimidines, p. 580 599. In F. C. Neidhardt,, R. Curtiss III,, J. L. Ingraham,, E. C. C. Lin,, K. B. Low,, B. Magasanik,, W. S. Reznikoff,, M. Riley,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd ed. American Society for Microbiology, Washington, D.C..
68. Newhall, W. J., 1988. Macromolecular and antigenic composition of chlamydiae, p. 47 70. In A. L. Baron (ed.), Microbiology of Chlamydiae. CRC Press, Boca Raton, Fla..
69. Ojcius, D. M.,, H. Degani,, J. Mispelter,, and A. Dautry-Varsat. 1998. Enhancement of ATP levels and glucose metabolism during an infection by Chlamydia. NMR studies of living cells. J. Biol. Chem. 273: 7052 7058.
70. Park, J. T., 1996. The murein sacculus, p. 48 57. In F. C. Neidhardt,, R. Curtiss III,, J. L. Ingraham,, E. C. C. Lin,, K. B. Low,, B. Magasanik,, W. S. Reznikoff,, M. Riley,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd ed. American Society for Microbiology, Washington, D.C..
71. Pos, K. M.,, P. Dimroth,, and M. Bott. 1998. The Escherichia coli citrate carrier CitT: a member of a novel eubacterial transporter family related to the 2-oxoglutarate/malate translocator from spinach chloroplasts. J. Bacteriol. 180: 4160 4165.
72. Postma, P. W.,, J. W. Lengeler,, and G. R. Jacobson,. 1996. Phosphoenolpyruvate:carbohydrate phosphotransferase systems, p. 1149 1174. In F. C. Neidhardt,, R. Curtiss III,, J. L. Ingraham,, E. C. C. Lin,, K. B. Low,, B. Magasanik,, W. S. Reznikoff,, M. Riley,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd ed. American Society for Microbiology, Washington, D.C..
73. Qureshi, N.,, I. Kaltashov,, K. Walker,, V. Doroshenko,, R. J. Cotter,, K. Takayama,, T. R. Sievert,, P. A. Rice,, J. S. Lin,, and D. T. Golenbock. 1997. Structure of the monophosphoryl lipid A moiety obtained from the lipopolysaccharide of Chlamydia trachomatis. J. Biol. Chem. 272: 10594 10600.
74. Raetz, C. R. H., 1996. Bacterial lipopolysaccharides: a remarkable family of bioactive macroamphiphiles, p. 1035 1063. In F. C. Neidhardt,, R. Curtiss III,, J. L. Ingraham,, E. C. C. Lin,, K. B. Low,, B. Magasanik,, W. S. Reznikoff,, M. Riley,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd ed. American Society for Microbiology, Washington, D.C..
75. Read, T.,, and R. C. Brunham. 1999. Unpublished data.
76. Reed, S. I.,, L. A. Anderson,, and H. M. Jenkins. 1981. Use of cycloheximide to study independent lipid metabolism of Chlamydia trachomatis cultivated in mouse L cells grown in serum free medium. Infect. Immun. 31: 668 673.
77. Reichard, P. 1993. From RNA to DNA, why so many ribonucleotide reductases? Science 260: 1773 1777.
78. Reichard, P. 1997. The evolution of ribonucleotide reduction. Trends Biochem. Sci. 22: 81 85.
79. Russell, R. 1993. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature 362: 801 809.
80. Schwartz, C. J.,, A. J. Valente,, and E. A. Sprague. 1993. A modern view of atherogenesis. Am. J. Cardiol. 71: 9B 14B.
81. Scidmore, M. A.,, E. R. Fischer,, and T. Hackstadt. 1996. Sphingolipids and glycoproteins are differentially trafficked to the Chlamydia trachomatis inclusion. J. Cell. Biol. 134: 363 374.
82. Solioz, M.,, and K. Davies. 1994. Operon of vacuolar-type Na( +)-ATPase of Enterococcus hirae. J. Biol. Chem. 269: 9453 9459.
83. Stephens, R. S. 1993. Challenge of Chlamydia research. Infect. Agents Dis. 1: 279 293.
84. Stephens, R. S.,, S. Kalman,, C. Fenner,, and R. W. Davis. 1997. The Chlamydia Genome Project. URL: http: / /chlamydia-www.berkeley.edu:4231 /.
85. Stephens, R. S.,, S. Kalman,, C. Lammel,, J. Fan,, R. Marathe,, L. Aravind,, W. P. Mitchell,, L. Olinger,, R. L. Tatusov,, Q. Zhao,, E. V. Koonin,, and R. W. Davis. 1998. Genome sequence of an obligate intracellular pathogen of humans: Chlamydia trachomatis. Science 282: 754 759.
86. Takase, K.,, S. Kakinuma,, I. Yamato,, K. Konishi,, K. Igarashi,, and Y. Kakinuma. 1994. Sequencing and characterization of the ntp gene cluster for vacuolar-type Na( +)-translocating ATPase of Enterococcus hirae. J. Biol. Chem. 269: 11037 11044.
87. Thomson, G. J.,, G. J. Howlett,, A. E. Ashcroft,, and A. Berry, 1998. The dhnA gene of Escherichia coli encodes a class I fructose bisphosphate aldolase. Biochem. J. 331: 437 445.
88. Tipples, G.,, and G. McClarty. 1991. Isolation and initial characterization of a series of Chlamydia trachomatis isolates selected for hydroxyurea resistance by a stepwise procedure. J. Bacteriol. 173: 4932 4940.
89. Tipples, G.,, and G. McClarty. 1993. The obligate intracellular bacterium Chlamydia trachomatis is auxotrophic for three of the four ribonucleoside triphosphates. Mol. Microbiol. 8: 1105 1114.
90. Tipples, G.,, and G. McClarty. 1995. Cloning and expression of the Chlamydia trachomatis gene for CTP synthetase. J. Biol. Chem. 270: 7908 7914.
91. Todd, J. F.,, S. D. Blakeley,, and D. T. Dennis. 1995. Structure of the genes encoding the alpha- and beta-subunits of castor pyrophosphate-dependent phosphofructokinase. Gene 152: 181 186.
92. Tomb, J. E.,, O. White,, A. R. Kerlavage,, R. A. Clayton,, G. G. Sutton,, R. D. Fleischmann,, K. A. Ketchum,, H. P. Klenk,, S. Gill,, B. A. Dougherty,, K. Nelson,, J. Quackenbush,, L. Zhou,, E. F. Kirkness,, S. Peterson,, B. Loftus,, D. Richardson,, R. Dodson,, H. G. Khalak,, and A. Glodek. 1997. The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature 388: 539 547.
93. Unemoto, T.,, and M. Hayashi. 1993. Na( +)-translocating NADH-quinone reductase of marine and halophilic bacteria. J. Bioenerg. Biomembr. 25: 385 391.
94. Vender, J.,, and J. W. Moulder. 1967. Initial catabolism of glucose by the meningopneumonitis agent. J. Bacteriol. 94: 867 869.
95. Wagar, E. A.,, M. J. Giese,, B. Yasin,, and M. Pang. 1995. The glycyl-tRNA synthetase of Chlamydia trachomatis. J. Bacteriol. 177: 5179 5185.
96. Wagar, E. A.,, and M. Pang. 1992. The gene for the S7 ribosomal protein of Chlamydia trachomatis: characterization within the chlamydial str operon. Mol. Microbiol. 6: 327 335.
97. Weber, A.,, E. Menzlaff,, B. Arbinger,, M. Gutensohn,, C. Eckerskorn,, and U. I. Flugge. 1995. The 2-oxoglutarate/malate translocator of chloroplast envelope membranes: molecular cloning of a transporter containing a 12-helix motif and expression of the functional protein in yeast cells. Biochemistry 34: 2621 2627.
98. Weiss, E. 1967. Transaminase and other enzymatic reactions involving pyruvate and glutamate in Chlamydia (psittacosis trachoma group). J. Bacteriol. 93: 177 184.
99. Winkler, H. H.,, and H. E. Neuhaus. 1999. Unpublished data.
100. Wylie, J. L.,, J. D. Berry,, and G. McClarty. 1996a. Chlamydia trachomatis CTP synthetase: molecular characterization and developmental regulation of expression. Mol. Microbiol. 22: 631 642.
101. Wylie, J. L.,, G. M. Hatch,, and G. McClarty. 1997a. Host cell phospholipids are trafficked to and then modified by Chlamydia trachomatis. J. Bacteriol 179: 7233 7242.
102. Wylie, J. L.,, E. R. Iliffe,, L. L. Wang,, and G. McClarty. 1997b. Identification, characterization, and developmental regulation of Chlamydia trachomatis 3-deoxy-D-manno-octulosonate (KDO)-8-phosphate synthetase and CMP-KDO synthetase. Infect. Immun. 65: 1527 1530.
103. Wylie, J. L.,, L. L. Wang,, G. Tipples,, and G. McClarty. 1996b. A single point mutation in CTP synthetase of Chlamydia trachomatis confers resistance to cyclopentenyl cytosine. J. Biol. Chem. 271: 15393 15400.
104. Zalkin, H.,, and P. Nygaard,. 1996. Biosynthesis of purine nucleotides, p. 561 579. In F. C. Neidhardt,, R. Curtiss,, J. L. Ingraham,, E. C. C. Lin,, K. B. Low,, B. Magasanik,, W. S. Reznikoff,, M. Riley,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd ed. American Society for Microbiology, Washington, D.C..
105. Zhang, D. J.,, H. Fan,, G. McClarty,, and R. C. Brunham. 1995. Identification of the Chlamydia trachomatis RecA-encoding gene. Infect. Immun. 63: 676 680.

Tables

Generic image for table
Table 1

Precursor metabolites and their products in chlamydiae

Citation: McClarty G. 1999. Chlamydial Metabolism as Inferred from the Complete Genome Sequence, p 69-100. In Stephens R (ed), Chlamydia. ASM Press, Washington, DC. doi: 10.1128/9781555818203.ch4

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error