1887

Chapter 4 : Chlamydial Metabolism as Inferred from the Complete Genome Sequence

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Chlamydial Metabolism as Inferred from the Complete Genome Sequence, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818203/9781555811556_Chap04-1.gif /docserver/preview/fulltext/10.1128/9781555818203/9781555811556_Chap04-2.gif

Abstract:

This chapter deciphers chlamydiae's metabolic capabilities from the complete genome sequence. On the basis of their primary function in growth, metabolic reactions have been categorized as assembly reactions, polymerization reactions, biosynthetic reactions, and fueling reactions. Numerous in situ studies have suggested that chlamydiae show strain-to-strain variation in amino acid requirements and that they compete with the host for the available amino acid pool. All cells have an absolute requirement for cofactors. Nevertheless, it is not unusual for small-genome organisms to lack the ability to synthesize cofactors. Genome sequence information indicates that chlamydiae are capable of limited cofactor biosynthesis. Fatty acid biosynthesis, a series of reactions that requires a lot of energy, is a metabolic process that is absent from minimal-genome organisms that have been sequenced. As a result the fatty acid composition of these organisms to a large extent reflects that present in the growth medium. Nucleotides are found in significant amounts only inside of cells, because they are rapidly degraded in the extracellular environment. Numerous studies on nucleotide metabolism using both host-free reticulate bodies (RBs) and an in situ approach employing as host wild-type and various mutant cell lines, with welldefined genetic deficiencies in nucleotide metabolism, have been carried out. These studies conclude that chlamydiae cannot synthesize nucleotides de novo or salvage nucleotides. This chapter describes Embden-Meyerhoff-Parnas (EMP) pathway, the pentose phosphate pathway (PPP), gluconeogenesis, respiration, and ATPase complex.

Citation: McClarty G. 1999. Chlamydial Metabolism as Inferred from the Complete Genome Sequence, p 69-100. In Stephens R (ed), Chlamydia. ASM Press, Washington, DC. doi: 10.1128/9781555818203.ch4
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Color Plate 1
Color Plate 1

Schematic diagram summarizing phospholipid trafficking and biosynthesis in chlamydiae. Sphingomyelin trafficking is based on the model proposed by Hackstadt and colleagues (reviewed in ). Trafficking and de novo synthesis of glycerophospholipids is based on the results of McClarty and colleagues ( ) and information provided by the genome sequencing project of .

Citation: McClarty G. 1999. Chlamydial Metabolism as Inferred from the Complete Genome Sequence, p 69-100. In Stephens R (ed), Chlamydia. ASM Press, Washington, DC. doi: 10.1128/9781555818203.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 1
Figure 1

Summary of nucleotide acquisition and metabolism in chlamydiae. Question marks indicate reactions that are presumed to occur but for which no gene has been identified.

Citation: McClarty G. 1999. Chlamydial Metabolism as Inferred from the Complete Genome Sequence, p 69-100. In Stephens R (ed), Chlamydia. ASM Press, Washington, DC. doi: 10.1128/9781555818203.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Glycolysis in chlamydiae. Note that both priming reactions (ATP utilizing) of glycolysis are bypassed in chlamydiae, thus altering their glycolytic balance. See text for details.

Citation: McClarty G. 1999. Chlamydial Metabolism as Inferred from the Complete Genome Sequence, p 69-100. In Stephens R (ed), Chlamydia. ASM Press, Washington, DC. doi: 10.1128/9781555818203.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

The PPP in chlamydiae.

Citation: McClarty G. 1999. Chlamydial Metabolism as Inferred from the Complete Genome Sequence, p 69-100. In Stephens R (ed), Chlamydia. ASM Press, Washington, DC. doi: 10.1128/9781555818203.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

The tricarboxylic acid cycle in chlamydiae. The TCA cycle is incomplete in chlamydiae; there is no entry of acetyl-CoA into the cycle. As a result, an alternate source of carbon is required to keep the cycle functioning. Two possible sources are depicted. One involves the SodTi exchanger and the other requires glutamate dehydrogenase. See text for details.

Citation: McClarty G. 1999. Chlamydial Metabolism as Inferred from the Complete Genome Sequence, p 69-100. In Stephens R (ed), Chlamydia. ASM Press, Washington, DC. doi: 10.1128/9781555818203.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Color Plate 2
Color Plate 2

Schematic diagram illustrating one possible arrangement of the respiratory chain and V/A-ATP synthase complex in chlamydiae. The ability to form and utilize H and/or Na or ion gradients for ATP synthesis in chlamydiae is depicted. However, the ability to do so is based on information deduced from genomics. These possibilities need to be confirmed by experimentation. See text for details.

Citation: McClarty G. 1999. Chlamydial Metabolism as Inferred from the Complete Genome Sequence, p 69-100. In Stephens R (ed), Chlamydia. ASM Press, Washington, DC. doi: 10.1128/9781555818203.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818203.chap4
1. Allen, E. G.,, and M. R. Bovarnick. 1957. Association of reduced diphosphopyridine nucleotide cytochrome c reductase activity in meningopneumonitis virus. J. Exp. Med. 105:539547.
2. Allen, E. G.,, and M. R. Bovarnick. 1962. Enzymatic activity associated with meningopneumonitis. Ann. N. Y. Acad. Sci. 98:229233.
3. Barbour, A. G.,, K. Amano,, T. Hackstadt,, L. Perry,, and H. D. Caldwell. 1982. Chlamydia trachomatis has penicillin-binding proteins but not detectable muramic acid. J. Bacteriol. 151:420428.
4. Beatty, W. L.,, T. A. Belanger,, A. A. Desai,, R. P. Morrison,, and G. I. Byrne. 1994a. Role of tryptophan in gamma interferon-mediated chlamydial persistence. Ann. N. Y. Acad. Sci. 730:304306.
5. Beatty, W. L.,, R. P. Morrison,, and G. I. Byrne. 1994b. Persistent chlamydiae: from cell culture to a paradigm for chlamydial pathogenesis. Microbiol. Rev. 58:686699.
6. Belunis, C. J.,, K. E. Mdluli,, C. R. H. Raetz,, and F. E. Nano. 1992. A novel 3-deoxy-D-manno-octulosonic acid transferase from Chlamydia trachomatis required for expression of the genus specific epitope. J. Biol. Chem. 267:1870218707.
7. Bisaccia, F.,, C. Indiveri,, and F. Palmieri. 1988. Purification and reconstitution of two anion carriers from rat liver mitochondria: the dicarboxylate and the 2-oxoglutarate carrier. Biochim. Biophys. Acta 933:229240.
8. Brade, L.,, K. Zych,, A. Rozalski,, P. Kosma,, K. Bock,, and H. Brade. 1997. Structural requirements of synthetic oligosaccharides to bind monoclonal antibodies against Chlamydia lipopolysaccharide. Glycobiology 7:819827.
9. Bruchhaus, I.,, T. Jacobs,, M. Denart,, and E. Tannich. 1996. Pyrophosphate-dependent phosphofruc-tokinase of Entamoeba histolytica: molecular cloning, recombinant expression and inhibition by pyrophosphate analogues. Biochem. J. 316:5763.
10. Carlisle, S. M.,, S. D. Blakeley,, S. M. Hemmingsen,, S. J. Trevanion,, T. Hiyoshi,, N. J. Kruger,, and D. T. Dennis. 1990. Pyrophosphate-dependent phosphofructokinase. Conservation of protein sequence between the alpha- and beta-subunits and with the ATP-dependent phosphofructokinase. J. Biol. Chem. 265:1836618371.
11. Chiappino, M. L.,, C. Dawson,, J. Schachter,, and B. A. Nichols. 1995. Cytochemical localization of glycogen in Chlamydia trachomatis inclusions. J. Bacteriol 177:53585363.
12. Cronan, J. E., Jr.,, and D. Laporte,. 1996. Tricarboxylic acid cycle and glyoxylate bypass, p. 206216. In F. C. Neidhardt,, R. CurtissIII,, J. L. Ingraham,, E. C. C. Lin,, K. B. Low,, B. Magasanik,, W. S. Reznikoff,, M. Riley,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd ed. American Society for Microbiology, Washington, D.C..
13. Cronan, J. E., Jr.,, and C. O. Rock,. 1996. Biosynthesis of membrane lipids, p. 612636. In F. C. Neidhardt,, R. CurtissIII,, J. L. Ingraham,, E. C. C. Lin,, K. B. Low,, B. Magasanik,, W. S. Reznikoff,, M. Riley,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd ed. American Society for Microbiology, Washington, D.C..
14. Curnow, A. W.,, M. Ibba,, and D. Soli. 1996. tRNA-dependent asparagine formation. Nature 382:589590.
15. Davidson, M.,, C. C. Kuo,, J. P. Middaugh,, L. A. Campbell,, S. P. Wang,, W. P. Newman III,, J. C. Finley,, and J. T. Grayston. 1998. Confirmed previous infection with Chlamydia pneumoniae (TWAR) and its presence in early coronary atherosclerosis. Circulation 98:628633.
16. Engel, J. N.,, and D. Ganem. 1987. Chlamydial rRNA operons: gene organization and identification of putative tandem promoters. J. Bacteriol. 169:56785685.
17. Engel, J. N.,, J. Pollack,, F. Malik,, and D. Ganem. 1990. Cloning and characterization of RNA polymerase core subunits of Chlamydia trachomatis by using the polymerase chain reaction. J. Bacteriol 172:57325741.
18. Entrican, G.,, J. Brown,, and S. Graham. 1998. Cytokines and the protective host immune response to Chlamydia psittaci. Comp. Immunol. Microbiol Infect. Dis. 21:1526.
19. Fan, H.,, G. McClarty,, and R. C. Brunham. 1991. Biochemical evidence for the existence of thymidylate synthase in the obligate intracellular parasite Chlamydia trachomatis. J. Bacteriol. 173:66706677.
20. Finbow, M. E.,, and M. A. Harrison. 1997. The vacuolar H+-ATPase: a universal proton pump of eukaryotes. Biochem. J. 324:697712.
21. Fiore, C.,, V. TVezeguet,, A. Le Saux,, P. Roux,, C. Schwimmer,, A. C. Dianoux,, F. Noel,, G. J. Lauquin,, G. Brandolin,, and P. V. Vignais. 1998. The mitochondrial ADP/ATP carrier: structural, physiological and pathological aspects. Biochimie 80:137150.
22. Fothergill-Gilmore, L. A.,, and P. A. M. Michels. 1993. Evolution of glycolysis. Prog. Biophys. Mol Biol 59:105235.
23. Fraenkel, D. G., 1996. Glycolysis, p. 189198. In F. C. Neidhardt,, R. Curtiss III,, J. L. Ingraham,, E. C. C. Lin,, K. B. Low,, B. Magasanik,, W. S. Reznikoff,, M. Riley,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd ed. American Society for Microbiology, Washington, D.C..
24. Fraser, C. M.,, S. Casjens,, W. M. Huang,, G. G. Sutton,, R. Clayton,, R. Lathigra,, O. White,, K. A. Ketchum,, R. Dodson,, E. K. Hickey,, M. Gwinn,, B. Dougherty,, J. F. Tomb,, R. D. Fleischmann,, D. Richardson,, J. Peterson,, A. R. Kerlavage,, J. Quackenbush,, S. Salzberg,, M. Hanson,, R. van Vugt,, N. Palmer,, M. D. Adams,, J. Gocayne,, J. Weidman,, T. Utterback,, L. Watthey,, L. McDonald,, P. Artiach,, C. Bowman,, S. Garland,, C. Fujii,, M. D. Cotton,, K. Horst,, K. Roberts,, B. Hatch,, H. O. Smith,, and J. C. Venter. 1997. Genomic sequence of a Lyme disease spirochaete, Borrelia burgdorferi. Nature 390:580586.
25. Fraser, C. M.,, J. D. Gocayne,, O. White,, M. D. Adams,, R. A. Clayton,, R. D. Fleischmann,, C. J. Bult,, A. R. Kerlavage,, G. Sutton,, J. M. Kelley,, J. L. Fritchman,, J. F. Weidman,, K. V. Small,, M. Sandusky,, J. Fuhrmann,, D. Nguyen,, T. R. Utterback,, D. M. Saudek,, C. A. Phillips,, J. M. Merrick,, J.-F. Tomb,, B. A. Dougherty,, K. F. Bott,, P.-C. Hu,, T. S. Lucier,, S. N. Peterson,, H. O. Smith,, C. A. Hutchinson,, and J. C. Venter. 1995. The minimal gene complement of Mycoplasma genitalium. Science 270:397403.
26. Fraser, C. M.,, S. J. Norris,, G. M. Weinstock,, O. White,, G. G. Sutton,, R. Dodson,, M. Gwinn,, E. K. Hickey,, R. Clayton,, K. A. Ketchum,, E. Sodergren,, J. M. Hardham,, M. P. McLeod,, S. Salzberg,, J. Peterson,, H. Khalak,, D. Richardson,, J. K. Howell,, M. Chidambaram,, T. Utterback,, L. McDonald,, P. Artiach,, C. Bowman,, M. D. Cotton,, and J. C. Venter. 1998. Complete genome sequence of Treponema pallidum, the syphilis spirochete. Science 281:375388.
27. Gaugler, R. W.,, E. M. Neptune, Jr.,, G. M. Adams,, T. L. Sallee,, E. Weiss,, and N. N. Wilson. 1969. Lipid synthesis by isolated Chlamydia psittaci. J. Bacteriol. 100:823826.
28. Gennis, R. B.,, and V. Stewart,. 1996. Respiration, p. 217261. In F. C. Neidhardt,, R. Curtiss III,, J. L. Ingraham,, E. C. C. Lin,, K. B. Low,, B. Magasanik,, W. S. Reznikoff,, M. Riley,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd ed. American Society for Microbiology, Washington, D.C..
29. Green, J. M.,, B. P. Nichols,, and R. G. Matthews,. 1996. Folate biosynthesis, reduction and polyglutamylation, p. 665673. In F. C. Neidhardt,, R. Curtiss III,, J. L. Ingraham,, E. C. C. Lin,, K. B. Low,, B. Magasanik,, W. S. Reznikoff,, M. Riley,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd ed. American Society for Microbiology, Washington, D.C..
30. Gu, L.,, W. M. Wenman,, M. Remacha,, R. Meuser,, J. Coffin,, and R. Kaul. 1995. Chlamydia trachomatis RNA polymerase alpha subunit: sequence and structural analysis. J. Bacteriol. 177:25942601.
31. Hackstadt, T.,, E. R. Fischer,, M. A. Scidmore,, D. D. Rockey,, and R. A. Heinzen. 1997. Origins and functions of the chlamydial inclusion. Trends Microbiol. 5:288293.
32. Hackstadt, T.,, D. D. Rockey,, R. A. Heinzen,, and M. A. Scidmore. 1996. Chlamydia trachomatis interrupts an exocytic pathway to acquire endogenously synthesized sphingomyelin in transit from the Golgi apparatus to the plasma membrane. EMBO J. 15:964977.
33. Hackstadt, T.,, M. A. Scidmore,, and D. D. Rockey. 1995. Lipid metabolism in Chlamydia trachomatis-infected cells: directed trafficking of Golgi-derived sphingolipids to the chlamydial inclusion. Proc. Natl. Acad. Sci. USA 92:48774881.
34. Harold, F. M.,, and P. C. Maloney,. 1996. Energy transduction by ion currents, p. 283306. In F. C. Neidhardt,, R. Curtiss III,, J. L. Ingraham,, E. C. C. Lin,, K. B. Low,, B. Magasanik,, W. S. Reznikoff,, M. Riley,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd ed. American Society for Microbiology, Washington, D.C..
35. Hatch, G. M.,, and G. McClarty. 1998. Phospholipid composition of purified Chlamydia trachomatis mimics that of the eukaryotic host cell. Infect. Immun. 66:37273735.
36. Hatch, T. P. 1975. Utilization of L-cell nucleoside triphosphates by Chlamydia psittaci for ribonucleic acid synthesis. J. Bacteriol. 122:393400.
37. Hatch, T. P., 1988. Metabolism of Chlamydia, p. 97109. In A. L. Barron (ed.), Microbiology of Chlamydia. CRC Press, Boca Raton, Fla..
38. Hatch, T. P.,, E. Al-Hossainy,, and J. A. Silverman. 1982. Adenine nucleotide and lysine transport in Chlamydia psittaci. J. Bacteriol. 150:662667.
39. Hayashi, M.,, Y. Nakayama,, and T. Unemoto. 1996. Existence of Na+-translocating NADH-quinone reductase in Haemophilus influenzae. FEBS Lett. 381:174176.
40. Hilario, E.,, and J. P. Gogarten. 1998. The prokaryote-to-eukaryote transition reflected in the evolution of the V/F/A-ATPase catalytic and proteolipid subunits. J. Mol. Evol. 46:703715.
41. Hilario, E.,, and G. McClarty. 1998. Unpublished data.
42. Iliffe, E. R.,, and G. McClarty. Glucose metabolism in Chlamydia trachomatis: the "energy parasite" hypothesis revisited. Submitted for publication.
43. Ingalls, R. R.,, P. A. Rice,, N. Qureshi,, K. Takayama,, J. S. Lin,, and D. J. Golenbock. 1995. The inflammatory cytokine response to Chlamydia trachomatis infection is endotoxin mediated. Infect. Immun. 63:31253130.
44. Island, M. D.,, B. Y. Wei,, and R. J. Kadner. 1992. Structure and function of the uhp genes for the sugar phosphate transport system in Escherichia coli and Salmonella typhimurium. J. Bacteriol. 174:27542762.
45. Kalman, S.,, W. P. Mitchell,, R. Marathe,, C. Lammel,, J. Fan,, R. W. Hyman,, L. Olinger,, J. Grimwood,, R. W. Davis,, and R. S. Stephens. Comparative genomes of Chlamydia pneumoniae and C. trachomatis. Submitted for publication.
46. Kaneda, T. 1991. Iso- and anteiso-fatty acids in bacteria: biosynthesis and taxonomic significance. Microbiol. Rev. 55:288302.
47. Kaneko, T.,, S. Sato,, H. Kotani,, A. Tanaka,, E. Asamizu,, Y. Nakamura,, N. Miyajima,, M. Hirosawa,, M. Sugiura,, S. Sasamoto,, T. Kimura,, T. Hosouchi,, A. Matsuno,, A. Muraki,, N. Nakazaki,, K. Naruo,, S. Okumura,, S. Shimpo,, C. Takeuchi,, T. Wada,, A. Watanabe,, M. Yamada,, M. Yasuda,, and S. Tabata. 1996. Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA Res. 3:109136.
48. Kaul, R.,, G. J. Gray,, N. R. Koehncke,, and J. J. Gu. 1992. Cloning and sequence analysis of the Chlamydia trachomatis spc ribosomal protein gene cluster. J. Bacteriol. 174:12051212.
49. Koehler, J. E.,, R. R. Burgess,, N. E. Thompson,, and R. S. Stephens. 1990. Chlamydia trachomatis RNA polymerase major sigma subunit. Sequence and structural comparison of conserved and unique regions with Escherichia coli sigma 70 and Bacillus subtilis sigma 43. J. Biol. Chem. 265:1320613214.
50. Krause, D. C.,, H. H. Winkler,, and D. O. Wood. 1985. Cloning and expression of the Rickettsia prowazekii ADP/ATP translocator in Escherichia coli. Proc. Natl. Acad. Sci. USA 82:30153019.
51. Lukacova, M.,, M. Baumann,, L. Brade,, U. Mamat,, and H. Brade. 1994. Lipopolysaccharide smooth-rough phase variation in bacteria of the genus Chlamydia. Infect. Immun. 62:22702276.
52. McClarty, G. 1994. Chlamydiae and the biochemistry of intracellular parasitism. Trends Microbiol. 2: 157164.
53. McClarty, G.,, and G. Tipples. 1991. In situ studies on the incorporation of nucleic acid precursors into Chlamydia trachomatis DNA. J. Bacteriol. 173:49224931.
54. Mertens, E. 1991. Pyrophosphate-dependent phosphofructokinase, an anaerobic glycolytic enzyme? FEBSLett. 285:15.
55. Mohlmann, T.,, J. Tjaden,, C. Schwoppe,, H. H. Winkler,, K. Kampfenkel,, and H. E. Neuhaus. 1998. Occurrence of two plastidic ATP/ADP transporters in Arabidopsis thaliana L.—molecular characterisation and comparative structural analysis of similar ATP/ADP translocators from plastids and Rickettsia prowazekii. Eur. J. Biochem. 252:353359.
56. Montfort, W. R.,, and A. Weichsel. 1997. Thymidylate synthase: structure, inhibition, and strained conformations during catalysis. Pharmacol. Then 76:2943.
57. Moulder, J. W. 1962. The Biochemistry of Intracellular Parasitism. The University of Chicago Press, Chicago, Ill..
58. Moulder, J. W. 1974. Intracellular parasitism: life in an extreme environment. J. Infect. Dis. 130:300306.
59. Moulder, J. W. 1979. The cell as an extreme environment. Proc. R. Soc. London Sect. B 204:199210.
60. Moulder, J. W. 1985. Comparative biology of intracellular parasitism. Microbiol. Rev. 49:298337.
61. Moulder, J. W., 1988. Characteristics of chlamydiae, p. 120. In A. L. Baron (ed.), Microbiology of Chlamydiae. CRC Press, Boca Raton, Fla..
62. Moulder, J. W. 1991. Interactions of chlamydiae and host cells in vitro. Microbiol. Rev. 55:143190.
63. Moulder, J. W. 1993. Why is Chlamydia sensitive to penicillin in the absence of peptidoglycan? Infect. Agents Dis. 2:8799.
64. Moulder, J. W.,, D. L. Grisso,, and R. B. Brubaker. 1965. Enzymes of glucose catabolism in a member of the psittacosis group. J. Bacteriol. 89:810812.
65. Nakayama, Y.,, M. Hayashi,, and T. Unemoto. 1998. Identification of six subunits constituting Na+-translocating NADH-quinone reductase from the marine Vibrio alginolyticus. FEBS Lett. 422:240242.
66. Neidhardt, F. C.,, J. L. Ingraham,, and M. Schaechter. 1990. Physiology of the Bacterial Cell. A Molecular Approach. Sinauer Associates, Inc., Sutherland, Mass..
67. Neuhard, J.,, and R. A. Kelln,. 1996. Biosynthesis and conversion of pyrimidines, p. 580599. In F. C. Neidhardt,, R. Curtiss III,, J. L. Ingraham,, E. C. C. Lin,, K. B. Low,, B. Magasanik,, W. S. Reznikoff,, M. Riley,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd ed. American Society for Microbiology, Washington, D.C..
68. Newhall, W. J., 1988. Macromolecular and antigenic composition of chlamydiae, p. 4770. In A. L. Baron (ed.), Microbiology of Chlamydiae. CRC Press, Boca Raton, Fla..
69. Ojcius, D. M.,, H. Degani,, J. Mispelter,, and A. Dautry-Varsat. 1998. Enhancement of ATP levels and glucose metabolism during an infection by Chlamydia. NMR studies of living cells. J. Biol. Chem. 273:70527058.
70. Park, J. T., 1996. The murein sacculus, p. 4857. In F. C. Neidhardt,, R. Curtiss III,, J. L. Ingraham,, E. C. C. Lin,, K. B. Low,, B. Magasanik,, W. S. Reznikoff,, M. Riley,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd ed. American Society for Microbiology, Washington, D.C..
71. Pos, K. M.,, P. Dimroth,, and M. Bott. 1998. The Escherichia coli citrate carrier CitT: a member of a novel eubacterial transporter family related to the 2-oxoglutarate/malate translocator from spinach chloroplasts. J. Bacteriol. 180:41604165.
72. Postma, P. W.,, J. W. Lengeler,, and G. R. Jacobson,. 1996. Phosphoenolpyruvate:carbohydrate phosphotransferase systems, p. 11491174. In F. C. Neidhardt,, R. Curtiss III,, J. L. Ingraham,, E. C. C. Lin,, K. B. Low,, B. Magasanik,, W. S. Reznikoff,, M. Riley,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd ed. American Society for Microbiology, Washington, D.C..
73. Qureshi, N.,, I. Kaltashov,, K. Walker,, V. Doroshenko,, R. J. Cotter,, K. Takayama,, T. R. Sievert,, P. A. Rice,, J. S. Lin,, and D. T. Golenbock. 1997. Structure of the monophosphoryl lipid A moiety obtained from the lipopolysaccharide of Chlamydia trachomatis. J. Biol. Chem. 272:1059410600.
74. Raetz, C. R. H., 1996. Bacterial lipopolysaccharides: a remarkable family of bioactive macroamphiphiles, p. 10351063. In F. C. Neidhardt,, R. Curtiss III,, J. L. Ingraham,, E. C. C. Lin,, K. B. Low,, B. Magasanik,, W. S. Reznikoff,, M. Riley,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd ed. American Society for Microbiology, Washington, D.C..
75. Read, T.,, and R. C. Brunham. 1999. Unpublished data.
76. Reed, S. I.,, L. A. Anderson,, and H. M. Jenkins. 1981. Use of cycloheximide to study independent lipid metabolism of Chlamydia trachomatis cultivated in mouse L cells grown in serum free medium. Infect. Immun. 31:668673.
77. Reichard, P. 1993. From RNA to DNA, why so many ribonucleotide reductases? Science 260:17731777.
78. Reichard, P. 1997. The evolution of ribonucleotide reduction. Trends Biochem. Sci. 22:8185.
79. Russell, R. 1993. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature 362:801809.
80. Schwartz, C. J.,, A. J. Valente,, and E. A. Sprague. 1993. A modern view of atherogenesis. Am. J. Cardiol. 71:9B14B.
81. Scidmore, M. A.,, E. R. Fischer,, and T. Hackstadt. 1996. Sphingolipids and glycoproteins are differentially trafficked to the Chlamydia trachomatis inclusion. J. Cell. Biol. 134:363374.
82. Solioz, M.,, and K. Davies. 1994. Operon of vacuolar-type Na(+)-ATPase of Enterococcus hirae. J. Biol. Chem. 269:94539459.
83. Stephens, R. S. 1993. Challenge of Chlamydia research. Infect. Agents Dis. 1:279293.
84. Stephens, R. S.,, S. Kalman,, C. Fenner,, and R. W. Davis. 1997. The Chlamydia Genome Project. URL: http: / /chlamydia-www.berkeley.edu:4231 /.
85. Stephens, R. S.,, S. Kalman,, C. Lammel,, J. Fan,, R. Marathe,, L. Aravind,, W. P. Mitchell,, L. Olinger,, R. L. Tatusov,, Q. Zhao,, E. V. Koonin,, and R. W. Davis. 1998. Genome sequence of an obligate intracellular pathogen of humans: Chlamydia trachomatis. Science 282:754759.
86. Takase, K.,, S. Kakinuma,, I. Yamato,, K. Konishi,, K. Igarashi,, and Y. Kakinuma. 1994. Sequencing and characterization of the ntp gene cluster for vacuolar-type Na(+)-translocating ATPase of Enterococcus hirae. J. Biol. Chem. 269:1103711044.
87. Thomson, G. J.,, G. J. Howlett,, A. E. Ashcroft,, and A. Berry, 1998. The dhnA gene of Escherichia coli encodes a class I fructose bisphosphate aldolase. Biochem. J. 331:437445.
88. Tipples, G.,, and G. McClarty. 1991. Isolation and initial characterization of a series of Chlamydia trachomatis isolates selected for hydroxyurea resistance by a stepwise procedure. J. Bacteriol. 173:49324940.
89. Tipples, G.,, and G. McClarty. 1993. The obligate intracellular bacterium Chlamydia trachomatis is auxotrophic for three of the four ribonucleoside triphosphates. Mol. Microbiol. 8:11051114.
90. Tipples, G.,, and G. McClarty. 1995. Cloning and expression of the Chlamydia trachomatis gene for CTP synthetase. J. Biol. Chem. 270:79087914.
91. Todd, J. F.,, S. D. Blakeley,, and D. T. Dennis. 1995. Structure of the genes encoding the alpha- and beta-subunits of castor pyrophosphate-dependent phosphofructokinase. Gene 152:181186.
92. Tomb, J. E.,, O. White,, A. R. Kerlavage,, R. A. Clayton,, G. G. Sutton,, R. D. Fleischmann,, K. A. Ketchum,, H. P. Klenk,, S. Gill,, B. A. Dougherty,, K. Nelson,, J. Quackenbush,, L. Zhou,, E. F. Kirkness,, S. Peterson,, B. Loftus,, D. Richardson,, R. Dodson,, H. G. Khalak,, and A. Glodek. 1997. The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature 388:539547.
93. Unemoto, T.,, and M. Hayashi. 1993. Na(+)-translocating NADH-quinone reductase of marine and halophilic bacteria. J. Bioenerg. Biomembr. 25:385391.
94. Vender, J.,, and J. W. Moulder. 1967. Initial catabolism of glucose by the meningopneumonitis agent. J. Bacteriol. 94:867869.
95. Wagar, E. A.,, M. J. Giese,, B. Yasin,, and M. Pang. 1995. The glycyl-tRNA synthetase of Chlamydia trachomatis. J. Bacteriol. 177:51795185.
96. Wagar, E. A.,, and M. Pang. 1992. The gene for the S7 ribosomal protein of Chlamydia trachomatis: characterization within the chlamydial str operon. Mol. Microbiol. 6:327335.
97. Weber, A.,, E. Menzlaff,, B. Arbinger,, M. Gutensohn,, C. Eckerskorn,, and U. I. Flugge. 1995. The 2-oxoglutarate/malate translocator of chloroplast envelope membranes: molecular cloning of a transporter containing a 12-helix motif and expression of the functional protein in yeast cells. Biochemistry 34:26212627.
98. Weiss, E. 1967. Transaminase and other enzymatic reactions involving pyruvate and glutamate in Chlamydia (psittacosis trachoma group). J. Bacteriol. 93:177184.
99. Winkler, H. H.,, and H. E. Neuhaus. 1999. Unpublished data.
100. Wylie, J. L.,, J. D. Berry,, and G. McClarty. 1996a. Chlamydia trachomatis CTP synthetase: molecular characterization and developmental regulation of expression. Mol. Microbiol. 22:631642.
101. Wylie, J. L.,, G. M. Hatch,, and G. McClarty. 1997a. Host cell phospholipids are trafficked to and then modified by Chlamydia trachomatis. J. Bacteriol 179:72337242.
102. Wylie, J. L.,, E. R. Iliffe,, L. L. Wang,, and G. McClarty. 1997b. Identification, characterization, and developmental regulation of Chlamydia trachomatis 3-deoxy-D-manno-octulosonate (KDO)-8-phosphate synthetase and CMP-KDO synthetase. Infect. Immun. 65:15271530.
103. Wylie, J. L.,, L. L. Wang,, G. Tipples,, and G. McClarty. 1996b. A single point mutation in CTP synthetase of Chlamydia trachomatis confers resistance to cyclopentenyl cytosine. J. Biol. Chem. 271:1539315400.
104. Zalkin, H.,, and P. Nygaard,. 1996. Biosynthesis of purine nucleotides, p. 561579. In F. C. Neidhardt,, R. Curtiss,, J. L. Ingraham,, E. C. C. Lin,, K. B. Low,, B. Magasanik,, W. S. Reznikoff,, M. Riley,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd ed. American Society for Microbiology, Washington, D.C..
105. Zhang, D. J.,, H. Fan,, G. McClarty,, and R. C. Brunham. 1995. Identification of the Chlamydia trachomatis RecA-encoding gene. Infect. Immun. 63:676680.

Tables

Generic image for table
Table 1

Precursor metabolites and their products in chlamydiae

Citation: McClarty G. 1999. Chlamydial Metabolism as Inferred from the Complete Genome Sequence, p 69-100. In Stephens R (ed), Chlamydia. ASM Press, Washington, DC. doi: 10.1128/9781555818203.ch4

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error