1887

Chapter 14 : Microsporidia in Insects

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Microsporidia in Insects, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818227/9781555811471_Chap14-1.gif /docserver/preview/fulltext/10.1128/9781555818227/9781555811471_Chap14-2.gif

Abstract:

This chapter highlights the biological and life cycle features of entomogenous microsporidia and provides some basic information on their taxonomic distribution. The development of all insect-parasitic microsporidia is restricted to the cytoplasm of the host cell. The development of all insect-parasitic microsporidia is restricted to the cytoplasm of the host cell. Specialized relationships between microsporidia and the host at the cellular level have been termed xenomas. Weiser distinguished two main types of xenomas in insects, syncytial and neoplastic. The chapter presents the major and minor pathways of transmission for insect microsporidia. Alternatively, the criteria used to establish the genera of microsporidia from aquatic insects may not truly reflect phylogenetic diversity but adaptations to specific habitats and host systems. A section lists a few genera for which insects are not the type hosts. This is because many species have been reported to occur in insects (such as , ) or because there are possible links to insect microsporidia (such as ). Finally, the chapter provides diagnostic information which is primarily restricted to the features of sporulation and the spore, with the addition of distinguishing life cycle characteristics when available. The type host and species are given followed by comments on distribution and other matters deemed of importance.

Citation: Becnel J, Andreadis T. 1999. Microsporidia in Insects, p 447-501. In Wittner M, Weiss L (ed), The Microsporidia and Microsporidiosis. ASM Press, Washington, DC. doi: 10.1128/9781555818227.ch14

Key Concept Ranking

Rough Endoplasmic Reticulum
0.50498337
0.50498337
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURES 1–5
FIGURES 1–5

Gross pathology of insects with microsporidian infections. Culex salinarius larva exhibiting fat body infection with . Magnification, ×4.6. larva exhibiting fat body infection with . Magnification, ×6.6. Gastric ceca of a larva infected with . White cysts are cells filled with spores. Magnification, ×13.2. Dissected exhibiting healthy, yellowish-appearing fat body. Magnification, ×1.3. Dissected infected with , demonstrating infected fat body tissue appearing as white cysts. Magnification, ×1.2. Reprinted from with permission from the authors and publisher ( Fig. 4 and 5 ).

Citation: Becnel J, Andreadis T. 1999. Microsporidia in Insects, p 447-501. In Wittner M, Weiss L (ed), The Microsporidia and Microsporidiosis. ASM Press, Washington, DC. doi: 10.1128/9781555818227.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURES 6–8
FIGURES 6–8

Gross pathology of healthy and microsporidia-infected Reprinted with permission from J. V. Maddox. Healthy dissected fat body tissue. Magnification, ×2. Dissected fat body tissue infected with Magnification, ×2. larvae; (left) healthy; (right) infected with (note pufly, dark appearance of posterior abdomen). Magnification, ×1.6.

Citation: Becnel J, Andreadis T. 1999. Microsporidia in Insects, p 447-501. In Wittner M, Weiss L (ed), The Microsporidia and Microsporidiosis. ASM Press, Washington, DC. doi: 10.1128/9781555818227.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURES 9 AND 10
FIGURES 9 AND 10

Navel orangeworm () larvae infected with . Reprinted with permission from W. Kellen, Horticultural Crops Research Laboratory, USDA, ARS, Fresno, Calif. Large, healthy control larvae on left, and stunted, infected larvae on right. Four weeks after infection. Pupae infected with . Large, healthy control pupae at left, and stunted, deformed, infected pupae on right.

Citation: Becnel J, Andreadis T. 1999. Microsporidia in Insects, p 447-501. In Wittner M, Weiss L (ed), The Microsporidia and Microsporidiosis. ASM Press, Washington, DC. doi: 10.1128/9781555818227.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURES 11 AND 12
FIGURES 11 AND 12

Gastric ceca of , demonstrating immune reaction to infection. Reprinted with permission from M.A. Johnson. Whole gastric cecum, exhibiting melanization of primary binucleate spores (arrows). Magnification, ×40. High magnification of infected area showing melanized spores. Magnification, ×250. S, spores.

Citation: Becnel J, Andreadis T. 1999. Microsporidia in Insects, p 447-501. In Wittner M, Weiss L (ed), The Microsporidia and Microsporidiosis. ASM Press, Washington, DC. doi: 10.1128/9781555818227.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURES 13–16
FIGURES 13–16

Electron micrographs of demonstrating developmental cycle within midgut epithelium cells of Early plasmodium at onset of nuclear division and microvilli (arrow). Magnification, ×5,600. Multinucleate plasmodium. Magnification, ×6,400. Multinucleate sporogonial plasmodium in early stages of multiple division by vacuolation. Magnification, ×4,250. Mature spores within polysporophorous vesicle. Magnification, ×5,900. Reprinted from with permission from the authors and publisher. HCN, host cell nucleus; N, nucleus; PSV, polysporophorous vesicle; S, spores.

Citation: Becnel J, Andreadis T. 1999. Microsporidia in Insects, p 447-501. In Wittner M, Weiss L (ed), The Microsporidia and Microsporidiosis. ASM Press, Washington, DC. doi: 10.1128/9781555818227.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURES 17-20
FIGURES 17-20

Microsporidia-infected host cells. Oenocyte in adult infected with . Magnification, ×4,400. Xenoma of . Magnification, ×250. Higher magnification of xenoma demonstrating multiple host cell nuclei. Magnification, ×350. Higher magnification of xenoma wall of . Magnification, ×6,500. Reprinted from ( Fig. 17 ) and ( Fig. 18 to 20 ) with permission of the authors and publishers. BM, basement membrane; CF, collagen fibrils; EmSP, empty spore; HCN , host cell nucleus; L, lipid; SV, sporophorous vesicle;W, wall.

Citation: Becnel J, Andreadis T. 1999. Microsporidia in Insects, p 447-501. In Wittner M, Weiss L (ed), The Microsporidia and Microsporidiosis. ASM Press, Washington, DC. doi: 10.1128/9781555818227.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 21
FIGURE 21

Diagram of the major and minor pathways of transmission for insect parasitic microsporidia.

Citation: Becnel J, Andreadis T. 1999. Microsporidia in Insects, p 447-501. In Wittner M, Weiss L (ed), The Microsporidia and Microsporidiosis. ASM Press, Washington, DC. doi: 10.1128/9781555818227.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 22
FIGURE 22

Diagram of The life cycle of in a larval midgut epithelial cell of Developmental stages of as seen in Giemsa-stained smears. Reprinted from with permission from the authors and publisher. Haplokaryotic schizonts. Schizonts undergoing binary fission. Ribbonlike schizonts, some dividing by budding or multiple fission. Sporogonial plasmodia exhibiting evidence of division by plasmotomy. Late-stage sporogonial plasmodium undergoing multiple fission to form sporoblasts. Group of spores. All magnifications, ×1,400.

Citation: Becnel J, Andreadis T. 1999. Microsporidia in Insects, p 447-501. In Wittner M, Weiss L (ed), The Microsporidia and Microsporidiosis. ASM Press, Washington, DC. doi: 10.1128/9781555818227.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURES 33–36
FIGURES 33–36

Electron micrographs of in midgut epithelial cells of Schizont in parasitophorous vacuole (PV) derived from cisternae of host cell rough endoplasmic reticulum. Magnification, ×34,600. Higher magnification of a schizont plasmalemma-parasitophorous vacuole interface. Double arrows indicate inner membrane without ribosomes closely associated with the plasmalemma, and single arrows indicate parasitophorous vacuole studded with ribosomes. Magnification, ×89,000. Uninucleate spore. Magnification, ×42,300. Infected midgut epithelial cell of Magnification, ×2,500. Reprinted from with permission from the authors and publisher ( Fig. 33-35 ). MV, microvilli; PV, parasitophorous vacuole; PM, peritrophic membrane; P, plasmalemma.

Citation: Becnel J, Andreadis T. 1999. Microsporidia in Insects, p 447-501. In Wittner M, Weiss L (ed), The Microsporidia and Microsporidiosis. ASM Press, Washington, DC. doi: 10.1128/9781555818227.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 37
FIGURE 37

Diagram of the life cycle of in midgut epithelial cells.

Citation: Becnel J, Andreadis T. 1999. Microsporidia in Insects, p 447-501. In Wittner M, Weiss L (ed), The Microsporidia and Microsporidiosis. ASM Press, Washington, DC. doi: 10.1128/9781555818227.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURES 38–39
FIGURES 38–39

Electron micrographs of spores formed in Reprinted with permission from I. Fries. Germinated primary binucleate spore of characterized by a thin spore wall and a large vacuole. Magnification, ×17,700. Binucleate spore (environmental spore) of characterized by a thick spore wall and a long polar filament. Magnification, ×17,000.

Citation: Becnel J, Andreadis T. 1999. Microsporidia in Insects, p 447-501. In Wittner M, Weiss L (ed), The Microsporidia and Microsporidiosis. ASM Press, Washington, DC. doi: 10.1128/9781555818227.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 40
FIGURE 40

Diagram of the life cycle of in a midgut epithelial cell and fat body.

Citation: Becnel J, Andreadis T. 1999. Microsporidia in Insects, p 447-501. In Wittner M, Weiss L (ed), The Microsporidia and Microsporidiosis. ASM Press, Washington, DC. doi: 10.1128/9781555818227.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURES 41 AND 42
FIGURES 41 AND 42

Electron micrographs of spores. Reprinted from with permission from the authors and publisher. Binucleate spore (environmental spore) of characterized by a thick spore wall and a long polar filament. Magnification, ×8,700. Meiospore of . Magnification, ×19,600. .

Citation: Becnel J, Andreadis T. 1999. Microsporidia in Insects, p 447-501. In Wittner M, Weiss L (ed), The Microsporidia and Microsporidiosis. ASM Press, Washington, DC. doi: 10.1128/9781555818227.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 43
FIGURE 43

Diagram of the life cycle of in and .

Citation: Becnel J, Andreadis T. 1999. Microsporidia in Insects, p 447-501. In Wittner M, Weiss L (ed), The Microsporidia and Microsporidiosis. ASM Press, Washington, DC. doi: 10.1128/9781555818227.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURES 44-46
FIGURES 44-46

Longitudinal section of spores of Binucleate spore from a female mosquito, Magnification, ×7,500. Meiospore from a fourth instar larva of Magnification, ×11,200. Haploid spore from a copepod, Magnification, ×10,600. AD, anchoring disk; EN, endospore; EX, exospore; P, polaroplast; PF, polar filament; PV, posterior vacuole; N, nucleus.

Citation: Becnel J, Andreadis T. 1999. Microsporidia in Insects, p 447-501. In Wittner M, Weiss L (ed), The Microsporidia and Microsporidiosis. ASM Press, Washington, DC. doi: 10.1128/9781555818227.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURES 47-64
FIGURES 47-64

Life cycle stages of as seen in Giemsa-stained smears. Stages in larval ( Fig. 47-50 ) and adult ( Fig. 51 and 52 ) following oral ingestion of copepod spore. Uninucleate schizont. Dividing schizont. Gamete. Gametes undergoing plasmogamy. Sporoblast. Binucleate spores. Stages in larval following transovarial transmission. Diplokaryotic sporont. Sporont undergoing meiosis. Binucleate sporont. Quadrinucleate sporont. Eight sporoblasts within sporophorous vesicle. Live meiospores (phase-contrast). Stages in following ingestion of meiospores. Early sporont. Binucleate sporont. Sporogonial plasmodia. Sporoblasts. Live spores (phase-contrast).All magnifications, ×950.

Citation: Becnel J, Andreadis T. 1999. Microsporidia in Insects, p 447-501. In Wittner M, Weiss L (ed), The Microsporidia and Microsporidiosis. ASM Press, Washington, DC. doi: 10.1128/9781555818227.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURES 65–70
FIGURES 65–70

Developmental stages of from larval fat body tissue of Diplokaryotic meront. Magnification, ×5,000. Binucleate sporont. Magnification, ×5,200. Binucleate sporont during prophase of meiosis. Magnification, ×6,000. Sporont at metaphase I. Magnification, ×5,400. Multinucleated sporont within sporophorous vesicle. Magnification, ×3,700. Sporoblast. Magnification, ×9,600. AD, anchoring disk; C, chromosomes; MG, metabolic granules; N, nucleus; P, polaroplast; PF, polar filament; PV, posterior vacuole; SC, synaptonemal complex; SP, spindle plaque; SV, sporophorous vesicle; RER , rough endoplasmic reticulum; SW, spore wall.

Citation: Becnel J, Andreadis T. 1999. Microsporidia in Insects, p 447-501. In Wittner M, Weiss L (ed), The Microsporidia and Microsporidiosis. ASM Press, Washington, DC. doi: 10.1128/9781555818227.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURES 71–74
FIGURES 71–74

Histological sections of infections in copepod and mosquito hosts. Sagittal section of a female copepod, showing infection within the median ovary (Ov) and paired lateral oviducts (Od). Magnification, ×150. Infected epithelial cell (arrow) of the gastric cecum from a fourth instar larva. Magnification, ×250. Infected oenocyte cell (arrow) from a fourth instar larva. Magnification, ×340. Infected oenocyte containing binucleate spores (arrow) from the ovaries of an adult female O, host oocyte. Magnification, ×920

Citation: Becnel J, Andreadis T. 1999. Microsporidia in Insects, p 447-501. In Wittner M, Weiss L (ed), The Microsporidia and Microsporidiosis. ASM Press, Washington, DC. doi: 10.1128/9781555818227.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 75
FIGURE 75

Diagram of the life cycle of in .

Citation: Becnel J, Andreadis T. 1999. Microsporidia in Insects, p 447-501. In Wittner M, Weiss L (ed), The Microsporidia and Microsporidiosis. ASM Press, Washington, DC. doi: 10.1128/9781555818227.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURES 76–93
FIGURES 76–93

Life cycle stages of as seen in Giemsa-stained smears. Reproduced from with permission from the publisher. Sporulation sequence of in after horizontal transmission producing the primary binucleate spore. Uninucleate sporoplasm in gastric cecum. Schizont dividing. Gametes. Paired gametes undergoing plasmogamy. Primary binucleate spore. Sporulation sequence of in after horizontal transmission producing binucleate (transovarial) spores. Diplokaryotic sporont undergoing binary fission. Binucleate sporoblast. Binucleate (transovarial) spore (phase-contrast). Sporulation sequence of producing the uninucleate pyriform spore from nuclear dissociation in the filial generation. Diplokaryotic meront. Sporont undergoing cytokinesis after nuclear dissociation. Sporogonial plasmodium. Sporogonial plasmodium dividing into uninucleate sporoblasts. Uninucleate thin-walled pyriform spores from filial host larva (phase-contrast). Sporulation sequence of that involves meiosis to produce the meiospores in the filial generation. Diplokaryotic meront. Zygote or early sporont derived from a diplokaryotic meront. Sporont. Tetranucleate sporogonial plasmodium. Meiospores (arrows, phase-contrast). All magnifications, ×l,700.

Citation: Becnel J, Andreadis T. 1999. Microsporidia in Insects, p 447-501. In Wittner M, Weiss L (ed), The Microsporidia and Microsporidiosis. ASM Press, Washington, DC. doi: 10.1128/9781555818227.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURES 94–97
FIGURES 94–97

Electron micrographs of in after horizontal transmission. Reprinted from with permission from the publisher. Gamete with papilla (arrow). Magnification, ×11,200. A pair of gametes at the beginning of plasmogamy. Magnification, ×6,400. Diplokaryotic meront. The arrow indicates a papilla at the apex of the cell. Magnification, ×7,600. Diplokaryotic sporoblast. Magnification, ×9,900.

Citation: Becnel J, Andreadis T. 1999. Microsporidia in Insects, p 447-501. In Wittner M, Weiss L (ed), The Microsporidia and Microsporidiosis. ASM Press, Washington, DC. doi: 10.1128/9781555818227.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURES 98–103
FIGURES 98–103

Electron micrographs of in after transovarial transmission. Reprinted from with permission from the publisher. FIGURE 98Diplokaryotic meront. Magnification, ×8,300. Dissociation of diplokaryon. Magnification, ×7,650. Dividing schizont. Magnification, ×5,300. Sporogonial plasmodium in process of sporogony. Magnification, ×3,700. Early sporoblasts. Magnification, ×5,800. Sporoblast isolated in a sporophorous vesicle. Magnification, ×7,650.

Citation: Becnel J, Andreadis T. 1999. Microsporidia in Insects, p 447-501. In Wittner M, Weiss L (ed), The Microsporidia and Microsporidiosis. ASM Press, Washington, DC. doi: 10.1128/9781555818227.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURES 104–107
FIGURES 104–107

Electron micrographs of the four different spore types of in Primary binucleate spore. N, nucleus; PV, posterior vacuole;T, tubules. Magnification, ×16,000. Binucleate (transovarial) spore. AD, anchoring disk; PF, polar filament; P, polaroplast. Magnification, ×l5,400. Haploid, uninucleate (environmental) spore. Magnification, ×7,700. Meiospore. Magnification, ×12,700. Reprinted from with permission from the authors and publisher ( Fig. 104 ) and from with permission from the publisher ( Fig. 105-107 ).

Citation: Becnel J, Andreadis T. 1999. Microsporidia in Insects, p 447-501. In Wittner M, Weiss L (ed), The Microsporidia and Microsporidiosis. ASM Press, Washington, DC. doi: 10.1128/9781555818227.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818227.chap14
1. Alger, N. E.,, and A. H. Undeen. 1970. The control of a microsporidian, Nosema sp., in an anopheline colony by an egg rinsing technique. J. Invertebr. Pathol. 15: 321 327.
2. Alger, N. E.,, J. V. Maddox,, and J. A. Shadduck. 1980. Nosema algerae: Infectivity and immune response in normal and nude mice. Mimeograph. VBC/80.778. World Health Organization, Rome.
3. Anderson, J. F. 1968. Microsporidia parasitizing mosquitoes collected in Connecticut. J. Invertebr. Pathol 11: 440 445.
4. Anderson, R. M.,, and R. M. May. 1981. The population dynamics of microparasites and their invertebrate hosts. Philos. Trans. R. Soc. London B 291: 451 524.
5. Andreadis, T. G. Unpublished data.
6. Andreadis, T. G. 1980. Nosema pyrausta infection in Macrocentrus grandii, a braconid parasite of the European corn borer, Ostrinia nubilalis. J. Invertebr. Pathol. 35: 229 233.
7. Andreadis, T. G. 1983. Life cycle and epizootiology of Amblyospora sp. (Microspora: Amblyosporidae) in the mosquito, Aedes cantator. J. Protozoology. 30: 509 518.
8. Andreadis, T. G. 1985a. Experimental transmission of a microsporidian pathogen from mosquitoes to an alternate copepod host. Proc. Nad. Acad. Sci. USA 82: 5574 5577.
9. Andreadis, T. G. 1985b. Life cycle, epizootiology, and horizontal transmission of Amblyospora sp. (Microspora: Amblysoporidae) in a univoltine mosquito, Aedes stimulans. J. Invertebr. Pathol. 46: 31 46.
10. Andreadis, T. G. 1987. Horizontal transmission of Nosema pyrausta (Microsporida: Nosematidae) in the European corn borer, Ostrinia nubilalis (Lepi-doptera: Pyralidae). Environ. Entomol. 16: 1124 1129.
11. Andreadis, T. G. 1988a. Comparative susceptibility of the copepod Acanthocyclops vernalis to a microsporidian parasite, Amblyospora connecticus, from the mosquito Aedes cantator. J. Invertebr. Pathol. 52: 73 77.
12. Andreadis, T. G. 1988b. Amblyospora connecticus sp. nov. (Microsporida: Amblyosporidae): horizontal transmission studies in the mosquito Aedes cantator and formal description. J. Invertebr. Pathol. 52: 90 101.
13. Andreadis, T. G. 1989. Host specificity of Amblyospora connecticus, a polymorphic microsporidian parasite of Aedes cantator. J. Med. Entomoi 26: 140 145.
14. Andreadis, T. G. 1990a. Polymorphic microsporidia of mosquitoes: potential for biological control. New Direct. Biol. Control 112: 175 188.
15. Andreadis, T. G. 1990b. Epizootiology of Amblyospora connecticus (Microsporida) in field populations of the saltmarsh mosquito, Aedes canator, and the cy-clopoid copepod, Acanthocyclops vernalis. J. Protozool. 37: 174 182.
16. Andreadis, T. G. 1994a. Host range tests with Edhazardia aedis (Microsporida: Culicosporidae) against northern Nearctic mosquitoes. J. Invertebr. Pathol. 64: 46 51.
17. Andreadis, T. G. 1994b. Ultrastructural characterization of meiospores of six new species of Amblyospora (Microsporida: Amblyosporidae) from northern Aedes (Diptera: Culicidae) mosquitoes. J. Eukaryot. Microbiol. 41: 147 154.
18. Andreadis, T. G.,, and D. W. Hall. 1979a. Development, ultrastructure, and mode of transmission of Amblyospora sp. (Microspora) in the mosquito. J. Protozool. 26: 444 452.
19. Andreadis, T. G.,, and D. W. Hall. 1979b. Significance of transovarial infections of Amblyospora sp. (Microspora: Thelohaniidae) in relation to parasite maintenance in the mosquito Culex salinarius. J. Invertebr. Pathol. 34: 152 157.
20. Andreadis, T. G.,, and J. L. Hanula. 1987. Ultra-structural study and description of Ovavesicula popilliae n. g., n. sp. (Microsporida: Pleistophori-dae) from the Japanese beetle, Popilla japonica (Coleoptera: Scarabaeidae). J. Protozool. 34: 15 21.
21. Avery, S. W.,, and A. H. Undeen. 1990. Horizontal transmission of Parathelohania anophelis to the copepod Microcyclops varicans, and the mosquito, Anopheles quadrimaculatus. J. Invertebr. Pathol. 56: 98 105.
22. Baker, M. D.,, C. R. Vossbrinck,, J. J. Becnel, andT. G. Andreadis. 1998. Phylogeny of Amblyospora (Microsporida: Amblyosporidae) and related genera based on small subunit ribosomal DNA data: a possible example of host parasite cospeciation. J. Invertebr. Pathol. 71: 199 206.
23. Baker, M. D.,, C. R. Vossbrinck,, J. V. Maddox,, and A. H. Undeen. 1994. Phylogenetic relationships among Vairimorpha and Nosema species (Microspora) based on ribosomal RNA sequence data. J. Invertebr. Pathol. 64: 100 106.
24. Balbiani, G. 1882. Sur les microsporidies ou psoros-permies des articules. C. R. Acad. Sci. 95: 1168 1171.
25. Balbiani, G. 1884. Leçons sur les Sporozoaires. Octave Doin, Paris.
26. Batson, B. S. 1983. A light and electron microscopic study of Hirusutusporos austrosimulii gen. n., sp. n. (Microspora: Nosematidae), a parasite of Aus-trosimulium sp. (Diptera: Simuliidae) in New Zealand. Protistologica 19: 263 280.
27. Bauer, L. S.,, and H. S. Pankratz. 1993. Nosema scripta n. sp. (Microsporida: Nosematidae), a microsporidian parasite of the cottonwood leaf beede, Chrysomela scripta (Coleoptera: Chrysomelidae). J. Eukaryot. Microbiol. 40: 135 141.
28. Beard, B.,, J. F. Butler,, and J. J. Becnel. 1990. Nolleria pulicis n. gen., n. sp. (Microsporida: Chytridiopsidae), a microsporidian parasite of the cat flea Ctenocephalides felis (Siphonaptera: Pulicidae). J. Protozool. 37: 90 99.
29. Becnel, J. J. 1992. Horizontal transmission and subsequent development of Amblyospora californica (Microsporida: Amblyosporidae) in the intermediate and definitive hosts. Dis.Aquat. Org. 13: 17 28.
30. Becnel, J. J. 1994. Life cycles and host-parasite relationships of microsporidia in culicine mosquitoes. Folia Parasitol. 41: 91 96.
31. Becnel, J. J., andT. G. Andreadis. 1998. Amblyospora salinaria n. sp. (Microsporidia: Amblyosporidae), parasite of Culex salinarius (Diptera: Culicidae): its life cycle stages in an intermediate host. J. Invertebr. Pathol. 71: 258 262.
32. Becnel, J. J.,, and T. Fukuda. 1991. Ultrastructure of Culicosporella lunata (Microsporidia: Culicosporell-idae fam. n.) in the mosquito Culex pilosus (Diptera: Culicidae) with new information on the development cycle. Eur.J. Protistol. 26: 319 329.
33. Becnel, J. J.,, J. J. Garcia,, and M. A. Johnson. 1995. Edhazardia aedis (Microspora: Culicosporidae) effects on the reproductive capacity of Aedes aegypti (Diptera: Culicidae) J. Med. Entomol. 32: 549 553.
34. Becnel, J.J.,, and C. J. Geden. 1994. Description of a new species of microsporidia from Muscidifurax raptor (Hymenoptera: Pteromalidae), a pupal parasitoid of muscoid flies. J. Eukaryot. Microbiol. 41: 236 243.
35. Becnel, J. J.,, E. I. Hazard,, and T. Fukuda. 1986. Fine structure and development of Pilosporella chapmani (Microspora:Thelohaniidae) in the mosquito, Aedes triseriatus (Say). J. Protozool. 33: 60 66.
36. Becnel, J. J.,, E. I. Hazard,, T. Fukuda,, and V. Sprague. 1987. Life cycle of Culicospora magna (Kudo, 1920) (Microsporida, Culicosporidae) in Culex restuans Theobold with special reference to sexuality. J. Protozool. 34: 313 322.
37. Becnel, J. J.,, and M. A. Johnson. 1993. Mosquito host range and specificity of Edhazardia aedis (Microspora: Culicosporidae). J. Am. Mosq. Control Assoc. 9: 269 274.
38. Becnel, J. J.,, V. Sprague,, T. Fukuda,, and E. I. Hazard. 1989. Development of Edhazardia aedis (Kudo, 1930) n. g., n. comb. (Microsporida: Amblyosporidae) in the mosquito Aedes aegypti (L.) (Diptera: Culicidae). J. Protozool. 36: 119 130.
39. Beyer, T. V.,, and I. V. Issi. 1986. Microsporidia. Protozoology no. 10. Academy of Sciences of the USSR, Leningrad.
40. Blunck, H. 1954. Mikrosporidien bei Pieris brassicae L.: ihren Parasiten und Hyperparasiten. Z. Angew. Entomol. 36: 316 333.
41. Brooks, W. M. 1968. Transovarian transmission of Nosema heliothidis in the corn earworm, Heliothis zea. J. Invertebr. Pathol. 11: 510 512.
42. Brooks, W. M. 1973. Protozoa: Host-parasite-pathogen interrelationships. Misc. Publ. Entomol. Soc. Am. 9: 105 111.
43. Brooks, W. M. 1980. Production and efficacy of protozoa. Biotech. Bioeng. 22: 1415 1440.
44. Brooks, W. M., 1988. Entomogenous protozoa. p. 1 149. In C. M. Ignoffo (ed.), Handbook of Natural Pesticides, Vol. 5, CRC Press, Boca Raton, Fla.
45. Brooks, W. M., 1993. Host-parasitoid-pathogen interactions. p. 231 272. In N. Beckage,, S. Thompson,, and B. Federici (ed.), Parasites and Pathogens of Insects 2. Academic Press, New York, N.Y.
46. Brooks, W. M.,, J. J. Becnel,, and G. G. Kennedy. 1988. Establishment of Endoreticulatus n. g. for Pleistophora fidelis (Hostounsky & Weiser, 1975) (Microsporida: Pleistophoridae) based on the ultrastructure of a microsporidium in the Colorado potato beetle, Leptinotarsa decemlineata (Say) (Coleoptera: Chrysomelidae). J. Protozool. 35: 481 488.
47. Brooks, W. M.,, and J. D. Cranford. 1972. Microsporidoses of the hymenopterous parasites, Campoletis sonorensis and Cardiochiles nigriceps, larval parasites of Heliothis species. J. Invertebr. Pathol. 20: 77 94.
48. Brooks, W. M.,, E. I. Hazard,, and J. J. Becnel. 1985. Two new species of Nosema (Microsporida, Nose-matidae) from the Mexican bean beetle Epilachna varivestis (Coleoptera, Coccinellidae). J. Protozool. 32: 525 534.
49. Bulla, L. A.,, and T. C. Cheng (ed.). 1976. Comparative Pathobiology, vol. 1. Plenum Press, New York, N.Y.
50. Bulla, L. A.,, and T. C. Cheng (ed.). 1977. Comparative Pathobiology, vol. 2. Plenum Press, New York, N.Y.
51. Bylen, E. K. C.,, and J. I. R. Larsson. 1994. Ultrastructural study and description of Pernicivesicula gracilis gen. et sp. nov. (Microspora, Pereziidae), a rod-shaped microsporidium of midge larvae, Pentaneurella sp. (Diptera, Chironomidae), in Sweden. Eur. J. Protistol. 30: 139 150.
52. Bylén, E. K. C.,, and J. I. R. Larsson. 1996. Ultra-structural study and description of Mrazekia tetraspora Leger & Hesse, 1922 and transfer to a new genus Scipionospora n.g. (Microspora, Caudosporidae). Eur.J. Protistol. 32: 104 115.
53. Canning, E. U. 1960. Two new microsporidian parasites of the winter moth, Operophtera brumata (L.). J. Parasitol. 46: 755 763.
54. Canning, E. U. 1971. Transmission of Microsporida, p. 415 424. Proceedings of the 4th International Colloquium on Insect Pathology.
55. Canning, E. U. 1982. An evaluation of protozoal characteristics in relation to biological control of pests. Parasitology 84: 119 149.
56. Canning, E. U.,, R. J. Barker,, J. P. Nicholas,, and A. M. Page. 1985. The ultrastructure of three microsporidia from winter moth, Operophtera brumata (L.), and the establishment of a new genus Cystosporogenes n. g. for Pleistophora operophterae (Canning, 1960). Syst. Parasitol. 7: 213 225.
57. Canning, E. U.,, and E. I. Hazard. 1982. Genus Pleistophora Gurley, 1893: an assemblage of at least three genera. J. Protozool. 29: 39 49.
58. Canning, E. U.,, and R. H. Hulls. 1970. A microsporidan infection of Anopheles gambiae Giles, from Tanzania: interpretation of its mode of transmission and notes on Nosema infection in mosquitoes. J. Protozool. 17: 532 539.
59. Canning, E. U.,, R. Killick-Kendrick,, and M. Killick-Kendrick. 1991a. A new microsporidian parasite, Flabelliforma montana n. g., n. sp., infecting Phlebotomus ariasi (Diptera: Psychodidae) in France. J. Invertebr. Pathol. 57: 71 81.
60. Canning, E. U.,, P. F. Lai,, and K. J. Lie. 1974. Microsporidian parasites of trematode larvae from aquatic snails in West Malaysia. J. Protozool. 21: 19 25.
61. Canning, E. U.,, and J. Lom. 1986. The Microsporidia of Vertebrates. Academic Press, London.
62. Canning, E. U.,, P. J. Wigley,, and R. J. Barker. 1991b. Orthosomella nomen novum for the junior homonym Orthosoma Canning, Wigley and Barker, 1983. J. Invertebr. Pathol. 58: 464.
63. Chapman, H. C.,, D. B. Woodard,, W. R. Kellen,, and T. B. Clark. 1966. Host-parasite relationships of Thelohania associated with mosquitoes in Louisiana (Microsporidia: Nosematidae). J. Invertebr. Pathol. 8: 452 456.
64. Codreanu, R. 1966. On the occurrence of spore or sporont appendages in the microsporidia and their taxonomic significance, p. 602 603. In Proceedings of the 1st International Congress on Parasitology. Pergamon Press, New York, N.Y.
65. de Graaf, D. C.,, H. Raes,, G. Sabbe,, P. H. de Rycke,, and F. J. Jacobs. 1994a. Early development of Nosema apis (Microspora: Nosematidae) in the midgut epithelium of the honeybee (Apis mellifera). J. Invertebr. Pathol. 63: 74 81.
66. de Graaf, D. C.,, H. Raes,, and F. J. Jacobs. 1994b. Spore dimorphism in Nosema apis (Microsporida: Nosematidae) developmental cycle. J. Invertebr. Pathol. 63: 92 94.
67. Doby, J. M.,, and F. Saguez. 1964. Weiseria, genre nouveau de microsporidies et Weiseria laurenti n. sp., parasite de larves de Prosimulium inflatum Davies, 1957 (Dipteres: Paranematoceres). C. R. Acad. Sci. 259: 3614 3617.
68. Doflein, F. 1898. Studien zur Naturgeschichte der Protozoen. III. Ueber Myxosporidien. Zool. Jahrb. Abt.Anat. 11: 281 350.
69. Fine, P. E. M. 1975. Vectors and vertical transmission: an epidemiologic perspective. Ann. NY. Acad. Sci. 266: 173 194.
70. Flu, P. 1911. Studien über die im Darm der Stuben-fliege, Musca domestica, vorkommenden protozoären Gebilde. Centralbl. Bakteriol. Infect. Hyg.Abt. I. Orig. 57: 522 535.
71. Fries, I. 1993. Nosema apis: a parasite in the honey bee colony. Bee World 74: 5 19.
72. Furgala, B.,, and Mussen, E. C., 1978. Protozoa, p. 1 62. In R. A. Morse, (ed.), Honey Bee Pests, Predators, and Diseases. Comstock, Ithaca, N.Y.
73. Garcia, J. J. 1990. Un nuevo microsporidio patogeno de larvas de simulidos (Diptera: Simulidae) Ringueletium pillosa gen. et sp. nov. (Microspora: Caudosporidiae). Neotropica 36: 111 122.
74. Garcia, J. J. 1991. Estudios sobre el cicly de vida y ultrastructura de Spherospora andinae gen. et sp. nov. (Microspora: Thelohaniidae), un nuevo microsporidio de simulidos neotropicales. Neotropica 37: 15 23.
75. Gaugler, R. R.,, and W. M. Brooks. 1975. Sublethal effects of infection by Nosema heliothidis in the corn earworm, Heliothis zea. J. Invertebr. Pathol. 26: 57 63.
76. Geden, C. J.,, S. J. Long,, D. A. Rutz,, and J. J. Becnel. 1995. Nosema disease of the parasitoid Muscidifurax raptor (Hymenoptera: Pteromalidae): prevalence, patterns of transmission, management, and impact. Biol. Control 5: 607 614.
77. Gluge, G. 1838. Notice sur quelques points d'anatomie pathologique comparée, suivie de quelques observations sur la structure des branchies dans epinoches. Bull Acad. R. Belg. 5: 771 772.
78. Gochnauer, T. A.,, B. Furgala,, and H. Shimanuki. 1975. Diseases and enemies of the honey bee, p. 1 615. In The Hive and the Honey Bee. C. Dadant and Sons, Hamilton, III.
79. Goetze, G., and B. Zeutzschel. 1959. Nosema disease of honeybees, and its control with drugs: review of research work since 1954. Bee World 40: 217.
80. Golberg, A. M. 1971. Mikrosporidiozy komarov Culex pipiens L. Med. Parasitol. Parazitol Bolezni 2: 204 207.
81. Gurley, R. 1893. On the classification of the Myxosporidia, a group of protozoan parasites infecting fishes. Article 10 Bull. U.S. Fish Comm. for 1891 11: 407 420.
82. Haque, M. A.,, W. S. Hollister,, A. Willcox,, and E. U. Canning. 1993. The antimicrosporidial activity of albendazole. J. Invertebr. Pathol. 62: 171 177.
83. Hamm J. J.,, D. A. Nordlund,, and B. G. Mullinix, Jr. 1983. Interaction of the microsporidium Vairimorpha sp. with Microplitis croceipes (Cresson) and Cotesia marginiventris (Cresson) (Hymenoptera: Braconidae), two parasitoids of Heliothis zea (Boddie) (Lepidoptera: Noctuidae). Environ. Entomol. 12: 1547 1550.
84. Hazard, E. I.,, and T. Fukuda. 1974. Stempellia milleri sp. n. (Microsporida: Nosematidae) in the mosquito Culex pipiens quinquifasciatus Say. J. Protozool. 21: 497 504.
85. Hazard, E. I.,, T. Fukuda,, and J. J. Becnel. 1984. Life cycle of Culicosporella lunata (Hazard & Savage, 1970) Weiser, 1977 (Microspora) as revealed in the light microscope with a redescription of the genus and species. J. Protozool. 31: 385 391.
86. Hazard, E. I.,, T. Fukuda,, and J. J. Becnel. 1985. Gametogenesis and plasmogamy in certain species of Microspora. J. Invertebr. Pathol. 46: 63 69.
87. Hazard, E. I.,, and S. W. Oldacre. 1975. Revision of Microsporidia (Protozoa) close to Thelohania, with descriptions of one new family, eight new genera and thirteen new species. U.S. Dept.Agric. Tech. Bull. 1530: 1 104.
88. Hazard, E. I.,, and K. E. Savage. 1970. Stempellia lunata sp. n. (Microsporida: Nosematidae) in larvae of the mosquito Culex pilosus collected in Florida. J. Invertebr. Pathol. 15: 49 54.
89. Hazard, E. I.,, and J. Weiser. 1968. Spores of Thelohania in adult female Anopheles: development and transovarial transmission, and redescriptions of T legeri Hesse and T. obesa Kudo. J. Protozool. 15: 817 823.
90. Hembree, S. 1982. Dose-response studies of a new species of per os and vertically transmittable mi-crosporidian pathogens of Aedes aegypti from Thailand. Mosquito News 42: 55 61.
91. Hembree, S. C.,, and J. R. Ryan. 1982. Observations on the vertical transmission of a new microsporidian pathogen of Aedes aegypti from Thailand. Mosquito News 42: 49 54.
92. Henneguy, F.,, and P. Thélohan. 1892. Myxosporidies parasites des muscles chez quelques crustacés décapodes. Ann. Microgr. 4: 617 641.
93. Henry, J. 1972. Epizootiology of infections by Nosema locustae Canning (Microsporida: Nosematidae) in grasshoppers. Acrida 1: 111 120.
94. Hesse, E. 1904. Thelohania legeri n. sp., microsporidie nouvelle, parasite des larves d' Anopheles maculipennis Meig. C.R. Soc. Biol 57: 570 571.
95. Hesse, E. 1935. Sur quelques microsporidies parasites de Megacyclops viridis Jurine. Arch. Zool. Exp. Gen. 75: 651 661.
96. Hostounsky, Z.,, and J. Weiser. 1975. Nosema polygrammae sp. n. and Plistophora jidelis sp. n. (Microsporidia, Nosematidae) infecting Polygramma undecimlineata (Coleoptera: Chrysomelidae) in Cuba. Vest. Cesk. Spol. Zool. 39: 104 110.
97. Inoue, S.,, S. Yokota,, C. Yasunaga,, M. Funakoshi,, T. Kawarabata,, and S. Hayasaka. 1995. Continuous culture of Vairimorpha sp. Nis ml 2 (Microsporida: Protozoa) in insect cell lines. J. Seric. Sci. Jpn. 64: 515 522.
98. Issi, I. V. 1986. Microsporidia as a phylum of parasitic protozoa. Protozoology 10: 6 136.
99. Issi, I. V.,, S. V. Krylova,, and V. M. Nicolaeva. 1993. The ultrastructure of the microsporidium Nosema meligethi and establishment of the new genus An-ncaliia. Parazitologiya 27: 127 133.
100. Issi, I. V.,, and V. A. Maslennikova. 1966. Role of Apanteles glomeratus (Hymenoptera, Braconidae) in the transmission of Nosema polyvora (Protozoa, Microsporidia). Entomol. Obozr. 45: 494 499.
101. Issi, I. V.,, D. F. Radischcheva,, and V. T. Dolzhenko. 1983. Microsporidia of flies of genus Delia (Diptera, Muscidae), harmful to farm crops. Trans. Vses. Nauchno-Issled. Inst. Zashch. Rast. 55: 3 9.
102. Issi, I. V.,, and V. N. Voronin. 1979. The contemporary state of the problem on bispore genera of microsporidians. Parazitologiya 13: 150 158.
103. Iwano, H.,, and R. Ishihara. 1989. Intracellular germination of spores of a Nosema sp. immediately after their formation in cultured cell. J. Invertebr. Pathol. 54: 125 127.
104. Iwano, H.,, and R. Ishihara. 1991a. Dimorphism of spores of Nosema spp. in cultured cell. J. Invertebr. Pathol 57: 211 219.
105. Iwano, H.,, and R. Ishihara. 1991b. Dimorphic development of Nosema bombycis spores in gut epithelium of larvae of the silkworm, Bombyx mori. J. Seric. Sci.Jpn. 60: 249 256.
106. Janda, V. 1928. Über Microorganismen aus der Leibeshöhle von Criodrilus lacuum Hoffm. und eigenartige Neubildungen in der Körperwand dieses Tieres. Arch. Protistenkd. 63: 84 93.
107. Jaronski, S.T. 1984. Microsporida in cell culture. Adv. Cell Cult. 3: 183 229.
108. Jeffords, M. R.,, J. V. Maddox,, and K. W. O'Hayer. 1987. Microsporidian spores in gypsy moth larval silk: a possible route of horizontal transmission. J. Invertebr. Pathol. 49: 332 333.
109. Jírovec, O. 1943. Revision der in Simulium-larven parasitierenden Mikrosporidien. Zool. Anz. 142: 173 179.
110. Johnson, M. A.,, J. J. Becnel,, and A. H. Undeen. 1997. A new sporulation sequence in Edhazardia aedis (Microsporidia: Culicosporidae), a parasite of the mosquito Aedes aegypti (Diptera: Culicidae). J. Invertebr. Pathol. 70: 69 75.
111. Jouvenaz, D. P.,, and E. I. Hazard. 1978. New family, genus, and species of microsporida (Protozoa: Microsporida) from the tropical fire ant, Solenopsis geminata (Fabricius) (Insecta: Formicidae). J. Protozool 25: 24 29.
112. Jouvenaz, D. P.,, C. S. Lofgren,, and G. E. Allen. 1981. Transmission and infectivity of spores of Burenella dimorpha (Microsporida: Burenellidae). J. Invertebr. Pathol. 37: 265 268.
113. Kellen, W. R.,, H. C. Chapman,, T. B. Clark,, and J. E. Lindegren. 1965. Host-parasite relationships of some Thelohania from mosquitoes (Nosematidae: Microsporidia). J. Invertebr. Pathol. 7: 161 166.
114. Kellen, W. R.,, H. C. Chapman,, T. B. Clark,, and J. E. Lindegren. 1966. Transovarian transmission of some Thelohania (Nosematidae: Microsporidia) in mosquitoes of California and Louisiana . J. Invertebr. Pathol. 8: 355 359.
115. Kellen, W. R.,, and J. E. Lindegren. 1971. Modes of transmission of Nosema plodia Kellen and Lindegren, a pathogen of Plodia interpunctella (Hübner). J. Stored Prod. Res. 7: 31 34.
116. Kellen, W. R.,, and J. E. Lindegren. 1973a. Nosema invadens sp. n. (Microsporida: Nosematidae), a pathogen causing inflammatory response in Lepidoptera. J. Invertebr. Pathol. 21: 293 300.
117. Kellen, W. R.,, and J. E. Lindegren. 1973b. Transovarian transmission of Nosema plodiae in the Indian meal moth Plodia interpunctella. J. Invertebr. Pathol. 21: 248 254.
118. Kellen, W. R.,, and J. J. Lipa. 1960. Thelohania californica n. sp., a microsporidian parasite of Culex tarsalis Coquillett. J. Insect Pathol. 2: 1 12.
119. Kellen, W. R.,, and W. Wills. 1962. The transovarian transmission of Thelohania californica Kellen and Lipa in Culex tarsalis Coquillett. J. Insect Pathol. 4: 321 326.
120. Khodzhaeva, L. F.,, and I. V. Issi. 1989. New genus of microsporidiae, Cristulospora gen. n. (Amblyosporidae), with three new species from bloodsucking mosquitoes from the Uzbekistan. Parazitologiya 23: 140 145.
121. Koella, J. C.,, and P. Agnew. 1997. Blood-feeding success of the mosquito Aedes aegypti depends on the transmission route of its parasite Edhazardia aedis. Oikos 78: 311 316.
122. Kramer, J. P. 1959a. On Nosema heliothidis Lutz and Splendor, a microsporidian parasite of Heliothis zea (Boddie) and Heliothis virescens (Fabricius) (Lepi-doptera, Phalaenidae). J. Invertebr. Pathol. 1: 297 303.
123. Kramer, J. P. 1959b. Some relationships between Perezia pyraustae Paillot (Sporozoa, Nosematidae) and Pyrausta nubilalis (Hubner) (Lepidoptera, Pyralidae). J. Insect Pathol. 1: 25 33.
124. Kramer, J. P. 1965. Nosema necatrix sp. n. and Thelohania diazoma sp. n., microsporidians from the army-worm Pseudaletia unipuncta (Haworth). J. Invertebr. Pathol 7: 117 121.
125. Kramer, J. P. 1970. Longevity of microsporidian spores with special reference to Octosporea muscaedomesticae Flu. Acta Protozool. 8: 127 135.
126. Kramer, J. P., 1976. The extra-corporeal ecology of microsporidia, p. 127 136. In L. A. Bulla, and T. C. Cheng (ed.), Comparative Pathobiology, vol. 1. Plenum Press, New York, N.Y.
127. Kudo, R. 1920. On the structure of some microsporidian spores. J. Parasitol. 6: 178 182.
128. Kudo, R. 1921. Microsporidia parasitic in copepods. J. Parasitol. 7: 137 143.
129. Kudo, R. 1924. A biologic and taxonomic study of the Microsporidia. III. Biol. Monogr. 9: 268.
130. Kudo, R. 1925. Microsporidia. Science 61: 366.
131. Kudo, R. 1930. Studies on microsporidia parasitic in mosquitoes. VIII. On a microsporidian, Nosema aedis nov. spec, parasitic in a larva of Aedes aegypti of Puerto Rico. Arch. Protistenkd. 69: 23 28.
132. Kurtti, T. J.,, S. E. Ross,, Y. Liu,, and U. G. Munderloh. 1994. In vitro developmental biology and spore production in Nosema furnacalis (Microspora: Nosematidae). J. Invertebr. Pathol. 63: 188 196.
133. Labbe, A., 1899. Sporozoa. p. v-xiii, 1 180. In Butschi, O. (ed.), Das Tierrich. Friedlander und Sohn, Berlin, Germany.
134. Laigo, F. M.,, and M. Tamashiro. 1967. Interactions between a microsporidian pathogen of the lawn armyworm and the hymenopterous parasite Apan-teles marginiventris. J. Invertebr. Pathol. 9: 546 554.
135. Lange, C. E.,, J. J. Becnel,, E. Razafindratiana,, J. Przybyszewski,, and H. Razafindrafara. 1996. Johenrea locustae n. g., n. sp. (Microspora: Glugeidae): a pathogen of migratory locusts (Orthoptera: Acrididae: Oedipodinae) from Madagascar. J. Invertebr. Pathol. 68: 28 40.
136. Lange, C. E.,, C. M. Macvean,, J. E. Henry,, and D. A. Streett. 1995. Heterovesicula cowani n. g., n. sp. (Heterovesiculidae n. fam.), a microsporidian parasite of Mormon crickets, Anabrus simplex Haldeman, 1852 (Orthoptera: Tettigoniidae). J. Eukaryot. Microbiol. 42: 552 558.
137. Larsson, J. I. R. 1980. Insect pathological investigations on Swedish Thysanura. II. A new microsporidian parasite of Petrobius brevistylis (Microcoryphia, Machilidae): description of the species and creation of two new genera and a new family. Protistologica 16: 85 101.
138. Larsson, J. I. R. 1982. Cytology and taxonomy of Helmichia aggregata gen. et sp. nov. (Microspora,Thelohaniidae), a parasite of Endochironomus larvae (Diptera, Chironomidae). Protistologica 18: 355 370.
139. Larsson, J. I. R. 1983. A revisionary study of the taxon Tuzetia Maurand, Fize, Fenwick and Michel, 1971, and related forms (Microspora, Tuzetiidae). Protistologica 19: 323 355.
140. Larsson, J. I. R. 1984. Ultrastructural study and description of Chapmanium dispersus n. sp. (Microspora,Thelohaniidae) a microsporidian parasite of Endochironomus larvae (Diptera, Chironomidae). Protistologica 20: 547 563.
141. Larsson, J. I. R. 1985. On the cytology, development and systematic position of Thelohania asterias Weiser, 1963, with creation of the new genus Bohuslavia (Microspora,Thelohaniidae). Protistologica 21: 235 248.
142. Larsson, J. I. R. 1986a. Ultrastructure, function, and classification of microsporidia. Prog. Protistol. 1: 325 390.
143. Larsson, J. I. R. 1986b. Ultracytology of a tetrasporoblastic microsporidium of the caddis fly Holocentropus picicomis (Trichoptera, Polycentropodidae),with a description of Episeptum inversum gen. et sp. nov. (Microspora, Gurleyidae). Arch. Protistenkd. 131: 257 280.
144. Larsson, J. I. R. 1986c. Ultrastructural investigation of two microsporidia with rod-shaped spores, with descriptions of Cylindrospora fasciculata sp. nov. and Resiomeria odonatae gen. et sp. nov. (Microspora: Thelohaniidae). Protistologica 22: 379 398.
145. Larsson, J. I. R. 1988. Identification of microsporidian genera: a guide with comments on the taxonomy. Arch. Protistenkd. 136: 1 37.
146. Larsson, J. I. R. 1990a. Description of a new microsporidium of the water mite Limnochares aquatica and establishment of the new genus Napamichum (Microspora, Thelohaniidae). J. Invertebr. Pathol. 55: 152 161.
147. Larsson, J. I. R. 1990b. On the cytology and taxonomic position of Nudispora biformis n. g., n. sp. (Microspora, Thelohaniidae), a microsporidian parasite of the dragon fly Coenagrion hastulatum in Sweden. J. Protozool. 37: 310 318.
148. Larsson, J. I. R. 1994. Trichoctosporea pygopellita gen. et sp. nov. (Microspora,Thelohaniidae), a microsporidian parasite of the mosquito Aedes vexans (Diptera, Culicidae). Arch. Protistenkd. 144: 147 161.
149. Larsson, J. I. R.,, and E. K. C. Bylen. 1992. Tardivesicula duplicata gen. et sp. nov. (Microspora, Duboscqiidae), a microsporidian parasite of the caddis fly Limnephilus centralis (Trichoptera, Limnephilidae) in Sweden. Eur.J. Protistol. 28: 25 36.
150. Leblanc, L. 1930. Deux microsporidies nouvelles des copepodes: Gurleya cyclopis et Plistophora cyclopis. Ann. Soc. Sci. Brux. Ser. B 59: 272 275.
151. Leger, L. 1926. Une microsporidie nouvelle à sporontes èpineux. C. R. Acad. Sci. 182: 727 729.
152. Leger, L.,, and O. Duboscq. 1909. Perezia lankesterle, n. g., n. sp., microsporidie parasite de Lankesteria ascidae (Ray-Lank). Arch. Zool. Exp. Gen. Ser. 5,1, N. et R.: 89 93.
153. Léger, L.,, and E. Hesse. 1910. Cnidosporidies des larves d' éphémères. C. R. Acad. Sci. 150: 411 414.
154. Léger, L.,, and E. Hesse. 1921. Microsporidies a spores spheriques. C R. Acad. Sci. 173: 1419 1421.
155. Léger, L.,, and E. Hesse. 1922. Microsporidies bactériformes et essai de sytematique du groupe. C. R. Acad. Sci. 174: 327 330.
156. Léger, L.,, and E. E. Hesse. 1924. Microsporidies nouvelles parasites des animaux d'eau dounce. Trav. Lab. Hydrobiol. Pise. Univ. Grenoble 14: 49 56.
157. Lord, J. C.,, and D.W. Hall. 1983. Sporulation of Amblyospora (Microspora) in female Culex salinarius: induction by 20-hydroxyecdysone. Parasitol. 87: 377 383.
158. Lord J. C.,, D. W. Hall,, and E. A. Ellis. 1981. Life cycle of a new species of Amblyospora (Microspora: Amblyosporidae) in the mosquito Aedes taeniorhynchus. J. Invertebr. Pathol. 37: 66 72.
159. Lucarotti, C. J.,, and T. G. Andreadis. 1995. Reproductive strategies and adaptations for survival among obligatory microsporidian and fungal parasites of mosquitoes: a comparative analysis of Amblyospora and Coelomomyces. J. Am. Mosquito Control Assoc. 11: 111 121.
160. Lutz, A.,, and A. Splendore. 1908. Ueber pebrine und verwandte Mikrosporidien. Zweite Mitteilung. Zentbl. Bakteriol. Parasitenkd. Infektionskr. Hyg.Abt. 1 Orig. 46: 311 315.
161. Maddox, J. V. 1973. The persistence of the Microsporida in the environment. Misc. Publ. Entomol. Soc.Am. 9: 99 104.
162. Maddox, J. V. 1977. Stability of entomopathogenic Protozoa: environmental stability of microbial insecticides. Misc. Publ. Entomol. Soc.Am. 10: 3 18.
163. Maddox, J. V.,, W. M. Brooks,, and J. R. Fuxa,. 1981. Vairimorpha necatrix a pathogen of agricultural pests: potential for pest control, p. 587 594. In H. D. Burges (ed.), Microbial Control of Pests and Plant Diseases 1970-1980. Academic Press, New York, N.Y.
164. Maurand, J.,, A. Fize,, B. Fenwick,, and R. Michel. 1971. Etude au microscope électronique de Nosema infirmum Kudo, 1921, microsporidie parasite d'un copépode cyclopoïde; création du genre nouveau Tuzetia a propos de cette espece. Protistologica 7: 221 225.
165. McNeil, J. N.,, and W. M. Brooks. 1974. Interactions of the hyperparasitoids Catolaccus aeneoviridis [Hym.: Pteromalidae] and Spilochalcis side [Hym.: Chalcididae] with the microsporidians Nosema heliothidis and N campoletidis. Entomophaga 19: 195 204.
166. Moniez, R. 1887. Observations pour la revision des Microsporidies. C. R. Acad. Sci. 104: 1312 1314.
167. Moore, C. B.,, and W. M. Brooks. 1992. An ultrastructural study of Vairimorpha necatrix (Microspora, Microsporida) with particular reference to episporontal inclusions during octosporogony. J. Protozool. 39: 392 398.
168. Naegeli, C. 1857. Über die neue Krankheit der Seidenraupe und verwandte Organismen. Botan. Zeit. 15: 760 761.
169. Ormières, R.,, and V. Sprague. 1973. A new family, new genus, and new species allied to the Microsporida. J. Invertebr. Pathol. 21: 224 240.
170. Own, O. S.,, and W. M. Brooks. 1986. Interactions of the parasite Pediobiusfoveolatus (Hymenoptera: Eulophidae) with two Nosema spp. (Microsporida: Nosematidae) of the Mexican bean beetle (Coleoptera: Coccinellidae). Environ. Entomol. 15: 32 39.
171. Pell, J. K.,, and E. U. Canning. 1992. Ultrastructure of Tricornia muhezae n. g., n. sp. (Microspora, Thelohaniidae), a parasite of Mansonia africana (Diptera, Culicidae) from Tanzania. J. Protozool. 39: 242 247.
172. Pell, J. K.,, and E. U. Canning. 1993. Ultrastructure and life cycle of Merocinta davidii gen. et sp. nov., a dimorphic microsporidian parasite of Mansonia africana (Diptera, Culicidae) from Tanzania. J. Invertebr. Pathol 61: 267 274.
173. Pérez, C. 1908. Sur Duboscqia legeri, microsporidie nouvelle parasite de Termes lucifugus et sur la classification des microsporidies. C. R. Soc. Biol. 65: 631 633.
174. Pilley, B. M. 1976. A new genus, Vairimorpha (Protozoa: Microsporida), for Nosema necatrix Kramer 1965: pathogenicity and life cycle in Spodoptera ex-empta (Lepidoptera: Noctuidae). J. Invertebr. Pathol. 28: 177 183.
175. Poisson, R., 1953. Ordre des Microsporidies. p. 1042 1070. In P. P. Grasse (ed.), Traite de Zoologie, vol. 1. Masson et Cie, Paris, France.
176. Raun, E. S. 1961. Elimination of microsporidiosis in laboratory-reared European corn borers by the use of heat. J. Insect Pathol. 3: 446 448.
177. Rühl, H.,, and H. Korn. 1979. Ein Mikrosporidier, Geusia gamocysti n. gen., n. sp. als Hyperparsit bei Gamocystis ephemerae. Arch. Protistenkd. 121: 349 355.
178. Schneider, A. 1884. Sur le développement du Stylorhynchus longicollis. Arch. Zool. Exp. Gen. 2: 1 36.
179. Siegel, J. P.,, J. V. Maddox,, and W. G. Ruesink. 1986a. Lethal and sublethal effects of Nosema pyrausta on the European corn borer ( Ostrinia nubilalis) in central Illinois. J. Invertebr. Pathol. 48: 167 173.
180. Siegel, J. P.,, J. V. Maddox,, and W. G. Ruesnik. 1986b. Impact of Nosema pyrausta on a braconid, Macrocentrus grandii, in central Illinois. J. Invertebr. Pathol. 47: 271 276.
181. Solter, L. F.,, and J. V. Maddox. 1998. Timing of an early sporulation sequence of microsporidia in the genus Vairimorpha (Microsporidia: Burenellidae). J. Invertebr. Pathol. 72: 323 329.
182. Solter, L. F.,, J. V. Maddox,, and M. L. McManus. 1997. Host specificity of Microsporidia (Protista: Microspora) from European populations of Lymantria dispar (Lepidoptera: Lymantriidae) to indigenous North American Lepidoptera. J. Invertebr. Pathol. 69: 135 150.
183. Sprague, V., 1970. Some protozoan parasites and hyperparasites in marine decapod Crustacea, p. 416 430. In S. F. Snieszko (ed.), American Fisheries Society Special Publication 5. A Symposium on Diseases of Fishes and Shellfishes. American Fisheries Society, Washington, D.C.
184. Sprague, V. 1976. Implications of dimorphism in taxonomy of the Microsporidia, p. 454 457. In Proceedings of the 1st Colloquium on Invertebrate Pathology, Kingston, Ontario, Canada.
185. Sprague, V., 1977. Systematics of the Microsporidia, p. 1 510. In L. A. Bulk, and T. C. Cheng (ed.), Comparative Pathobiology 2. Plenum Press, New York, NY.
186. Sprague, V.,, J. J. Becnel,, and E. I. Hazard. 1992. Taxonomy of phylum Microspora. Crit. Rev. Microbiol. 18: 285 395.
187. Stempell, W. 1909. Über Nosema bombycis Nageli. Arch. Protistenkd. 16: 281 358.
188. Sweeney, A. W.,, and J. J. Becnel. 1991. Potential of microsporidia for the biological control of mosquitoes. Parasitol Today 7: 217 220.
189. Sweeney, A. W.,, S. L. Doggett,, and G. Gullick. 1989. Laboratory experiments on infection rates of Amblyospora dyxenoides in the mosquito Culex annulirostris. J. Invertebr. Pathol. 53: 83 92.
190. Sweeney, A. W.,, S. L. Doggett,, and R. G. Piper. 1990. Host specificity studies of Amblyospora indi-cola and Amblyospora dyxenoides (Microspora: Amblyosporidae) in mosquitoes and copepods. J. Invertebr. Pathol. 56: 415 418.
191. Sweeney, A. W.,, S. L. Doggett,, and R. G. Piper. 1993. Life cycle of a new species of Duboscquia (Microsporida:Thelohaniidae) infecting the mosquito Anopheles hilli and an intermediate copepod host, Apocyclops dengizicus. J. Invertebr. Pathol. 62: 137 146.
192. Sweeney, A. W.,, E. I. Hazard,, and M. F. Graham. 1985. Intermediate host for an Amblyospora sp. (Microspora) infecting the mosquito Culex annulirostris. J. Invertebr. Pathol. 46: 98 102.
193. Sweeney, A. W.,, E. I. Hazard,, and M. F. Graham. 1988. Life cycle of Amblyospora dyxenoides sp. nov. in the mosquito Culex annulirostris and the copepod Mesocyclops albicans. J. Invertebr. Pathol. 51: 46 57.
194. Tanada, Y., 1976. Epizootiology and microbial control, p. 247 280. In L. A. Bulla, and T. C. Cheng (ed.), Comparative Pathobiology, vol. 2. Plenum Press, New York.
195. Thomson, H. M. 1958. Some aspects of the epidemiology of a microsporidian parasite of the spruce budworm, Choristoneura fumiferana (Clem.). Can. J Zool. 36: 309 316.
196. Trammer, T.,, F. Dombrowski,, M. Doehring,, W. A. Maier,, and H. M. Seitz. 1997. Opportunistic properties of Nosema algerae (Microspora), a mosquito parasite, in immunocompromised mice. J. Eukaryot. Microbiol. 44: 258 262.
197. Undeen, A. H., 1975. Growth of Nosema algerae in pig kidney cell cultures. J. Protozool. 22: 107 110.
198. Undeen, A. H.,, and N. E. Alger. 1976. Nosema algerae: Infection of the white mouse by a mosquito parasite. Exp. Parasitol. 40: 86 88.
199. Undeen, A. H.,, and J. V. Maddox. 1973T he infection of nonmosquito hosts by injection with spores of the microsporidian Nosema algerae. J. Invertebr. Pathol. 22: 258 265.
200. Undeen, A. H.,, and J. Vávra,. 1997. Research methods for entomopathogenic Protozoa, p. 117 151. In L. L. Lacey (ed.), Manual of Techniques on Insect Pathology. Academic Press, San Diego, Calif.
201. Vávra, J.,, J. I. R. Larsson,, and M. D. Baker. 1997. Light and electron microscopic cytology of Trichotuzetia guttata gen. et sp. n. (Microspora,Tuzetiidae), a microsporidian parasite of Cyclops vicinus Uljanin, 1875 (Crustacea, Copepoda). Arch. Protistenkd. 147: 293 306.
202. Vávra, J.,, and A. H. Undeen. 1970. Nosema algerae n. sp. (Cnidospora, Microsporida) a pathogen in a laboratory colony of Anopheles stephensi Liston (Diptera: Culicidae). J. Protozool. 17: 240 249.
203. Vedmed, A. I.,, S. V. Krylova,, and I. V. Issi. 1991. The Pulicispora xenopsyllae new genus new species microsporidium from fleas of the genus Xenopsylla. Parazitologiya 25: 13 19.
204. Voronin, V. N. 1993. The microsporidium Toxospora volgae gen. n., sp. n. from chironomidae larvae of the genus Corynoneura. Parazitologiya 27: 148 154.
205. Vossbrinck, C. R.,, T. G. Andreadis,, and B. A. Debrunner-Vossbrinck. 1998. Verification of intermediate hosts in the life cycles of microsporidia by small subunit rDNA sequencing. J. Eukaryot. Microbiol. 45: 290 292.
206. Watson, P. L. 1979. The biology and computer simulation of the population dynamics of Tribolium confusum (order Coleoptera, family Tenebrion-idae) with an introduced pathogen, Nosema whitei (order Microsporidia, family Nosematidae). Ph.D. dissertation. University of Illinois, Urbana-Champaign.
207. Weiser, J. 1946. The microsporidia of insect larvae. Vest. Cesk. Spol. Zool. 10: 245 272.
208. Weiser, J. 1947. Klí k urování Mikrosporidií. Acta Soc. Sci. Nat. Moravicae 18: 1 64.
209. Weiser, J. 1958. Transovariale Ubertragung der Nosema otiorrhynchi W. Vest. Cesk. Spot. Zool. 22: 10 12.
210. Weiser, J. 1961. Die Mikrosporidien als Parasiten der Insekten. Monogr. Angew. Entomol. 17: 1 149.
211. Weiser, J., 1963a. Sporozoan infections, p. 291 334. In E. A. Steinhaus (ed.), Insect Pathology: An Advanced Treatise, vol. 2. Academic Press, New York, N.Y.
212. Weiser, J. 1963b. Zur Kenntnis der Mikrosporidien aus Chironomiden Larven. III. Zool.Anz. 170: 226 230.
213. Weiser, J. 1976. The Pleistophora debaisieuxi xenoma. Z. Parasitenkd. 48: 263 270.
214. Weiser, J. 1977. Contribution to the classification of microsporidia. Vest. Cesk. Spot. Zool. 41: 308 321.
215. Weiser, J.,, and L. David. 1997. A light and electron microscopic study of Larssoniella resinellaen. n. gen., n. sp. (Microspora, Unikaryonidae), a parasite of Petrova resinella (Lepidoptera, Tortricidae) in Central Europe. Arch. Prostistenkd. 147: 405 410.
216. Weiser, J.,, and K. Purrini. 1980. Seven new microsporidian parasites of springtails (Collembola) in the Federal Republic of Germany. Z. Parasitenkd. 62: 75 84.
217. Weiser, J.,, R. Wegensteiner,, and Z. Zizka. 1995. Canningia spinidentis gen. et sp. n. (Protista: Microspora), a new pathogen of the fir bark beetle Pityokteines spimdens. Folia Parasitol. 42: 1 10.
218. White, S. E.,, T. Fukuda,, and A. H. Undeen. 1994. Horizontal transmission of Amblyospora opacita (Microspora: Amblyosporidae) between the mosquito, Culex territans, and the copepod, Paracyclops fimbriatus Chiltoni. J. Invertebr. Pathol. 63: 19 25.
219. Wilson, G. G. 1977. The effects of feeding microsporidian (Nosema fumiferanae) spores to naturally infected spruce budworm (Choristoneura fumiferana). Can. J. Zool. 55: 249 250.
220. Wilson, G. G. 1982. Preliminary observations of life stages of a microsporidian parasite in the white pine weevil Pissodes strobe. J. Protozool. 29: 484.
221. Wilson, G. G. 1984. The transmission and effects of Nosema fumiferanae and Pleistophora schubergi (Microsporida) on Choristoneura fumiferana (Lepidoptera: Tortricidae). Proc. Entomol. Soc. Ont. 115: 71 75.
222. Windels, M. B.,, H. C. Chiang,, and B. Furgala. 1976. Effects of Nosema pyrausta on pupa and adult stages of the European corn borer Ostrinia nubi-lalis. J. Invertebr. Pathol. 27: 239.
223. Xie, W. D. 1988. Propagation of Cystosporogenes operophterae, a microsporidian parasite of the winter moth, Operophtera brumata, in a Spodoptera frugiperda cell line. Parasitology 97: 229 239.

Tables

Generic image for table
TABLE 1

Distribution by insect order of microsporidia with insects as type hosts

Citation: Becnel J, Andreadis T. 1999. Microsporidia in Insects, p 447-501. In Wittner M, Weiss L (ed), The Microsporidia and Microsporidiosis. ASM Press, Washington, DC. doi: 10.1128/9781555818227.ch14

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error