1887

Chapter 4 : Molecular Biology of Epstein-Barr Virus

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Molecular Biology of Epstein-Barr Virus, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818289/9781555811303_Chap04-1.gif /docserver/preview/fulltext/10.1128/9781555818289/9781555811303_Chap04-2.gif

Abstract:

This chapter discusses the pathologies associated with Epstein-Barr virus (EBV) infection. Infection with EBV usually occurs early in childhood and results in an asymptomatic infection. The majority of EBV isolates in Western communities are type 1, while type 2 EBV isolates appear to be largely restricted to equatorial Africa and Papua New Guinea. EBV, in contrast to herpes simplex virus (HSV), has a limited host range. This restriction is at least partially due to absence of the cellular receptor CD21 for EBV, which is also the receptor for the C3d component of complement. In addition to the essential components, EBV DNA encodes two genes that augment viral DNA replication. It is likely that the role of BHRF1 in EBV is to protect latently infected cells in vivo when they switch from latent infection to lytic infection when there is an absence of or very low Bcl2 expression, thus delaying apoptosis induced by lytic replication and ensuring productive lytic replication. EBV-transformed and latently infected lymphoblastoid cell lines (LCLs) express nine proteins and two small RNAs when grown in tissue culture. The proteins are expressed either in the nucleus (Epstein-Barr nuclear antigen [EBNA]) or in the plasma membrane (latent membrane protein [LMP]), and recent work has elucidated many of their functions. EBNA1 binds the 20-bp sequence as a homodimer. The structure of EBNA1 bound to DNA has been solved. Key elements in that structure determination are discussed in the chapter.

Citation: Longnecker R. 1998. Molecular Biology of Epstein-Barr Virus, p 135-174. In McCance D (ed), Human Tumor Viruses. ASM Press, Washington, DC. doi: 10.1128/9781555818289.ch4

Key Concept Ranking

Major Histocompatibility Complex Class I
0.42447838
0.42447838
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Viral genes expressed in cells latently infected with EBV. The four forms of latent gene expression that have been demonstrated in EBV-infected cell lines, tumor biopsies, and in vivo in normal humans latently infected are shown. The four different programs are under the control of two transcriptional units which vary the expression of the six EBNAs or three LMPs. (A) HI restriction enzyme map for the B95-8 sequence used to designate promoters and exons in each latent gene transcript. (B) The four different identified EBV latency programs. In latency I, EBNA 1 is expressed. In latency in immune-competent human hosts (In Vivo), the same EBNA1 transcript is expressed as well as LMP2A. In latency II, the previous proteins are expressed with the addition of LMP1 and LMP2B. Finally, in latency III all EBNAs and LMPs are expressed. The EBERs and BARFs ( ) are expressed in all types of EBV latencies. Solid boxes indicate exons, and arrows indicate sites of promoters. Letters indicate relevant HI restriction fragment.

Citation: Longnecker R. 1998. Molecular Biology of Epstein-Barr Virus, p 135-174. In McCance D (ed), Human Tumor Viruses. ASM Press, Washington, DC. doi: 10.1128/9781555818289.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Structure of the region from the EBV viral genome. Shown are the 30-bp family of repeats, the 65-bp dyad symmetry, and the B95-8 consensus binding site for EBNA1 within the 30-bp family of repeats. Open boxes indicate EBNA1 binding regions.

Citation: Longnecker R. 1998. Molecular Biology of Epstein-Barr Virus, p 135-174. In McCance D (ed), Human Tumor Viruses. ASM Press, Washington, DC. doi: 10.1128/9781555818289.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

EBNA2 transactivation and EBNA3S modulation of RBPJ (CBF1) in EBV infection. EBNA2, an acidic transcriptional transactivator, is directed to EBNA2 response elements by interaction with sequence-specific host DNA binding proteins such as RBPJ. Once bound, EBNA2 stimulates transcription through interaction with components of TFIID. TFIID is a tightly associated protein complex of TBP (TATA binding protein) and eight or more TAFs (TBP-associated factors) ( ). EBNA2 interacts with TAF40, TFIIB, the p62 and p80 subunits of TFIIH, and p100. p100 associates with the p56 and p34 subunits of TFIIE ( ). The EBNA3S bind to RBPJ to modulate the expression of EBNA2-responsive promoters by preventing the interaction of RBPJ with DNA ( ).

Citation: Longnecker R. 1998. Molecular Biology of Epstein-Barr Virus, p 135-174. In McCance D (ed), Human Tumor Viruses. ASM Press, Washington, DC. doi: 10.1128/9781555818289.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

LMP1 activation of EBV-infected B cells. Signal transduction through TNF family receptors such as CD40 is initiated by clustering of the receptor by the binding of ligand. Receptor-associated proteins called TRAFs are then activated, leading to NK-B activation ( ). In EBV-immortalized B cells, LMP1 mimics a clustered TNF family receptor, thereby constitutively associating with the TRAFs and TRADD and activating the TNF signal transduction pathway, resulting in NF-B activation ( ). TRAF3 may interfere with LMP1 binding of TRAF1 and TRAF3, which may block LMP1 activation of NF-B ( ). The relevance of TRAF association with other cellular proteins such as A20, NIK, c-IAP, and RIP needs to be determined ( ).

Citation: Longnecker R. 1998. Molecular Biology of Epstein-Barr Virus, p 135-174. In McCance D (ed), Human Tumor Viruses. ASM Press, Washington, DC. doi: 10.1128/9781555818289.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

LMP2 effects on signal transduction through the B-cell antigen receptor complex (BCR). Ligation of the BCR induces the activation of the Src family and Syk PTKs, followed by activation of other transducing molecules (see reference for a detailed review). In latently infected B cells, LMP2A is expressed and the multiple hydrophobic domains of LMP2A mediate aggregation in the plasma membrane, where the ammo-terminal domains of LMP2A resemble cross-linked receptor tails and become tyrosine phosphorylated. The Src family PTKs and the Syk PTK bind. Other SH2-containing proteins may also bind. This complex then blocks signal transduction through the BCR, preventing activation of lytic replication following BCR ligation. The LMP2A complex does not block chemical inducers of gene transcription such as phorbol esters (PMA) or calcium ionophores (A23187). Activation to lytic replication may be mediated by an as yet unidentified pathway such as an interleukin cytokine pathway (IL-x and IL-xR) that is not blocked by LMP2A. LMP2B may aggregate in the plasma membrane with LMP2A. Lacking the ammo-terminal domain of LMP2A, LMP2B may increase the spacing between LMP2A amino-terminal domains, resulting in release of the Src family and Syk PTKs from LMP2A and restoring normal signal transduction through the BCR.

Citation: Longnecker R. 1998. Molecular Biology of Epstein-Barr Virus, p 135-174. In McCance D (ed), Human Tumor Viruses. ASM Press, Washington, DC. doi: 10.1128/9781555818289.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818289.chap4
1. Adldinger, H. K.,, H. Dellus,, U. K. Freese,, J. Clarke,, and G. W. Bornkamm. 1985. A putative transforming gene of Jijoye virus differs from that of Epstein-Barr virus prototypes. Virology 141:221234.
2. Ahearn, J. M.,, S. D. Hayward,, J. C. Hickey,, and D. T. Fearon. 1988. Epstein-Barr virus (EBV) infection of murine L cells expressing recombinant human EBV/C3d receptor. Proc. Natl. Acad. Sci. USA 85:93079311.
3. Alfieri, C.,, M. Birkenbach,, and E. Kieff. 1991. Early events in Epstein-Barr virus infection of human B lymphocytes. Virology 181:595608. (Erratum, Virology 185:946, 1991.)
4. Allan, G. J.,, G. J. Inman,, B. D. Parker,, D. T. Rowe,, and P. J. Farrell. 1992. Cell growth effects of Epstein-Barr virus leader protein J. Gen. Virol. 73:15471551.
5. Allday, M. J.,, D. H. Crawford,, and B. E. Griffin. 1989. Epstein-Barr virus latent gene expression during the initiation of B cell immortalization. J. Gen. Virol. 70:17551764.
6. Allday, M. J.,, D. H. Crawford,, and J. A. Thomas. 1993. Epstein-Barr virus (EBV) nuclear antigen 6 induces expression of the EBV latent membrane protein and an activated phenotype in Raji cells. J. Gen. Virol. 74:361369.
7. Allday, M. J.,, D. Kundu,, S. Finerty,, and B. E. Griffin. 1990. CpG methylation of viral DNA in EBV-associated tumours. Int. J. Cancer 45:11251130.
8. Ambinder, R. F.,, M. A. Mullen,, Y. N. Chang,, G. S. Hayward,, and S. D. Hayward. 1991. Functional domains of Epstein-Barr virus nuclear antigen EBNA-1. J. Virol. 65: 14661478.
9. Ambinder, R. F.,, W. A. Shah,, D. R. Rawlins,, G. S. Hayward,, and S. D. Hayward. 1990. Definition of the sequence requirements for binding of the EBNA-1 protein to its palindromic target sites in Epstein-Barr virus DNA. J. Virol. 64:23692379.
10. Anagnostopoulos, I.,, M. Hummel,, C. Kreschel,, and H. Stein. 1995. Morphology, immunophenotype, and distribution of latently and/or productively Epstein-Barr virus-infected cells in acute infectious mononucleosis: implications for the interindividual infection route of Epstein-Barr virus. Blood 85:744750.
11. Apolloni, A.,, and T. B. Sculley. 1994. Detection of A-type and B-type Epstein-Barr virus in throat washings and lymphocytes. Virology 202:978981.
12. Arrand, J. R.,, L. S. Young,, and J. D. Tugwood. 1989. Two families of sequences in the small RNA-encoding region of Epstein-Barr virus (EBV) correlate with EBV types A and B. J. Virol. 63:983986.
13. Austin, P. J.,, E. Flemington,, C. N. Yandava,, J. L. Strominger,, and S. H. Speck. 1988. Complex transcription of the Epstein-Barr virus BamHI fragment H rightward open reading frame 1 (BHRF1) in latently and lytically infected B lymphocytes. Proc. Natl. Acad. Sci. USA 85:36783682.
14. Baer, R.,, A. T. Bankier,, M. D. Biggin,, P. L. Deininger,, P. J. Farrell,, T. J. Gibson,, G. Hatfull,, G. S. Hudson,, S. C. Satchwell,, C. Seguin,, P. S. Tuffnell,, and B. G. Barrell. 1984. DNA sequence and expression of the B95-8 Epstein-Barr virus genome. Nature 310:207211.
15. Baichwal, V. R.,, and B. Sugden. 1987. Posttranslational processing of an Epstein-Barr virus-encoded membrane protein expressed in cells transformed by Epstein-Barr virus. J. Virol. 61:866875.
16. Baichwal, V. R.,, and B. Sugden. 1988. Transformation of Balb 3T3 cells by the BNLF-1 gene of Epstein-Barr virus. Oncogene 2:461467.
17. Bankier, A. T.,, P. L. Deininger,, S. C. Satchwell,, R. Baer,, P. J. Farrell,, and B. G. Barrell. 1983. DNA sequence analysis of the EcoRI Dhet fragment of B95-8 Epstein-Barr virus containing the terminal repeat sequences. Mol. Biol. Med. 1:425445.
18.Beisel, C, J. Tanner, T. Matsuo, D. Thorley Lawson, F. Kezdy, and E. Kieff. 1985. Two major outer envelope glycoproteins of Epstein-Barr virus are encoded by the same gene. J. Virol. 54:665674.
19. Bhat, R. A.,, and B. Thimmappaya. 1983. Two small RNAs encoded by Epstein-Barr virus can functionally substitute for the virus-associated RNAs in the lytic growth of adenovirus 5. Proc. Natl. Acad. Sci. USA 80:47894793.
20. Biggin, M.,, M. Bodescot,, M. Perricaudet,, and P. Farrell. 1987. Epstein-Barr virus gene expression in P3HRl-superinfected Raji cells. J. Virol. 61:31203132.
21. Biggin, M.,, P. J. Farrell,, and B. G. Barrell. 1984. Transcription and DNA sequence of the BamHI L fragment of B95-8 Epstein-Barr virus. EMBO J. 3:10831090.
22. Birkenbach, M.,, X. Tong,, L. E. Bradbury,, T. F. Tedder,, and E. Kieff. 1992. Characterization of an Epstein-Barr virus receptor on human epithelial cells. J. Exp. Med. 176: 14051414.
23. Bochkarev, A.,, J. A. Barwell,, R. A. Pfuetzner,, E. Bochkareva,, L. Frappier,, and A. M. Edwards. 1996. Crystal structure of the DNA-binding domain of the Epstein-Barr virus origin-binding protein, EBNA1, bound to DNA. Cell 84:791800.
24. Bochkarev, A.,, J. A. Barwell,, R. A. Pfuetzner,, W. Furey, Jr., A. M. Edwards, and L. Frappier. 1995. Crystal structure of the DNA-binding domain of the Epstein-Barr virus origin-binding protein EBNA 1. Cell 83:3946.
25. Bodescot, M.,, M. Perricaudet,, and P. J. Farrell. 1987. A promoter for the highly spliced EBNA family of RNAs of Epstein-Barr virus. J. Virol. 63:34243430.
26. Burkhardt, A. L.,, J. B. Bolen,, E. Kieff,, and R. Longnecker. 1992. An Epstein-Barr virus transformation-associated membrane protein interacts with src family tyrosine kinases. J. Virol. 66:51615167.
27. Burkitt, D. 1962. A children's cancer dependent on climatic factors. Nature 194: 232234.
28. Burkitt, D. P. 1983. The discovery of Burkitt's lymphoma. Cancer 51:17771786.
29. Busson, P.,, R. H. Edwards,, T. Tursz,, and N. Raab Traub. 1995. Sequence polymorphism in the Epstein-Barr virus latent membrane protein (LMP)-2 gene. J. Gen. Virol. 76:139145.
30. Cambler, J. C. 1995. New nomenclature for the Reth motif (or ARH1/TAM/ARAM/YXXL). Immunol. Today 16:110.
31. Carel, J. C, B. L. Myones, B. Frazier, and V. M. Holers. 1990. Structural requirements for C3d,g/Epstein-Barr virus receptor (CR2/CD21) ligand binding, internalization, and viral infection. J. Biol. Chem. 265:1229312299.
32. Challberg, M. D. 1986. A method for identifying the viral genes required for herpesvirus DNA replication. Proc. Natl. Acad. Sci. USA 83:90949098.
33. Chang, Y. N.,, D. L.-Y. Dong,, G. S. Hayward,, and S. D. Hayward. 1990. The Epstein-Barr virus Zta transactivator: a member of the bZIP family with unique DNA-binding specificity and a dimerization domain that lacks the characteristic heptad leucine zipper motif. J. Virol. 64:33583369.
34. Chee, M. S.,, A. T. Bankier,, S. Beck,, R. Bohni,, C. M. Brown,, R. Cerney,, T. Hornsnell,, C. A. Hutchinson,, T. Kouzarides,, J. A. Martignetti,, E. Preddie,, S. C. Satchwell,, P. Tomlinson,, K. M. Weston,, and B. G. Barrell. 1990. Analysis of the protein coding content of the sequence of human cytomegalovirus strain AD169. Curr. Top. Microbiol. Immunol. 154:125169.
35. Chen, F.,, J. Z. Zou,, L. di Renzo,, G. Winberg,, L. F. Hu,, E. Klein,, G. Klein,, and I. Ernberg. 1995. A subpopulation of normal B Cells latently infected with Epstein-Barr virus resembles Burkitt lymphoma Cells in expressing EBNA-1 but not EBNA-2 or LMP1. J. Virol. 69:37523758.
36. Chen, M. L.,, C. N. Tsai,, C. L. Liang,, C. H. Shu,, C. R. Huang,, D. Sulitzeanu,, S. T. Liu,, and Y. S. Chang. 1992. Cloning and characterization of the latent membrane protein (LMP) of a specific Epstein-Barr virus variant derived from the nasopharyngeal carcinoma in the Taiwanese population. Oncogene 7:21312140.
37. Chen, M. R.,, J. Zong,, and S. D. Hayward. 1994. Delineation of a 16 amino acid sequence that forms a core DNA recognition motif in the Epstein-Barr virus EBNA-1 protein. Virology 205:486495.
38. Chen, W. G.,, Y. Y. Chen,, M. M. Bacchi,, C. E. Bacchi,, M. Alvarenga,, and L. M. Weiss. 1996. Genotyping of Epstein-Barr virus in Brazilian Burkitt's lymphoma and reactive lymphoid tissue. Type A with a high prevalence of deletions within the latent membrane protein gene. Am. J. Pathol. 148:1723.
39. Cheng, G.,, and D. Baltimore. 1996. TANK, a co-inducer with TRAF2 of TNF- and CD40L-mediated NF-kB activation. Genes Dev. 10:963973.
40. Chevallier Greco, A.,, E. Manet,, P. Chavrier,, C. Mosnier,, J. Daillie,, and A. Sergeant. 1986. Both Epstein-Barr virus (EBV)-encoded trans-acting factors, EB1 and EB2, are required to activate transcription from an EBV early promoter. EMBO J. 5:32433249.
41. Chittenden, T.,, S. Lupton,, and A. J. Levine. 1989. Functional limits of oriP, the Epstein-Barr virus plasmid origin of replication. J. Virol. 63:30163025.
42. Clarke, P. A.,, M. Schwemmle,, J. Schickinger,, K. Hilse,, and M. J. Clemens. 1991. Binding of Epstein-Barr virus small RNA EBER-1 to the double-stranded RNA-activated protein kinase DAI. Nucleic Acids Res. 19:243248.
43. Clemens, M. J. 1994. Functional significance of the Epstein-Barr virus-encoded small RNAs. EBV Rep. 5:107111.
44. Cohen, J. I.,, and E. Kieff. 1991. An Epstein-Barr virus nuclear protein 2 domain essential for transformation is a direct transcriptional activator. J. Virol. 65:58805885.
45. Cohen, J. I.,, F. Wang,, and E. Kieff. 1991. Epstein-Barr virus nuclear protein 2 mutations define essential domains for transformation and transactivation. J. Virol. 65: 25452554.
46. Cohen, J. I.,, F. Wang,, J. Mannick,, and E. Kieff. 1989. Epstein-Barr virus nuclear protein 2 is a key determinant of lymphocyte transformation. Proc. Natl. Acad. Sci. USA 86:95589562.
47. Contreras-Brodin, B.,, A. Karisson,, T. Nilsson,, L. Rymo,, and G. Klein. 1996. B Cell-specific activation of the Epstein-Barr virus encoded C promoter compared with the wide-range activation of the W promoter. J. Gen. Virol. 77:11591162.
48. Countryman, J.,, H. Jenson,, R. Seibl,, H. Wolf,, and G. Miller. 1987. Polymorphic proteins encoded within BZLF1 of defective and standard Epstein-Barr viruses disrupt latency. J. Virol. 61:36723679.
49. Countryman, J.,, and G. Miller. 1985. Activation of expression of latent Epstein-Barr herpesvirus after gene transfer with a small cloned subfragment of heterogeneous viral DNA. Proc. Natl. Acad. Sci. USA 82:40854089.
50. Cox, M. A.,, J. Leahy,, and J. M. Hardwick. 1990. An enhancer within the divergent promoter of Epstein-Barr virus responds synergistically to the R and Z transactivators. J. Virol. 64:313321.
51. Dambaugh, T.,, K. Hennessy,, L. Chamnankit,, and E. Kieff. 1984. U2 region of Epstein-Barr virus DNA may encode Epstein-Barr nuclear antigen 2. Proc. Natl. Acad. Sci. USA 81:76327636.
52. Davison, A. J.,, and J. E. Scott. 1986. The complete DNA sequence of variCella-zoster virus. J. Gen. Virol. 67:17591816.
53. Dawson, C. W.,, A. B. Rickinson,, and L. S. Young. 1990. Epstein-Barr virus latent membrane protein inhibits human epithelial Cell differentiation. Nature 344:777780.
54. Decker, L. L.,, L. D. Klaman,, and D. A. Thorley Lawson. 1996. Detection of the latent form of Epstein-Barr virus DNA in the peripheral blood of healthy individuals. J. Virol. 70:32863289.
55. DePamphilis, M. L. 1988. Transcriptional elements as components of eucaryotic origin of DNA replication. Cell 52:635638.
56. Devergne, O.,, E. Hatzivassillou,, K. M. Izumi,, K. M. Kaye,, M. F. Kleijnen,, E. Kieff,, and G. Mosialos. 1996. Association of TRAF1, TRAF2, and TRAF3 with an Epstein-Barr virus LMP1 domain important for B-lymphocyte transformation: role in NF-κB activation. Mol. Cell. Biol. 16:70987108.
57. Emini, E. A.,, J. Luka,, M. E. Armstrong,, P. M. Keller,, R. W. Ellis,, and G. R. Pearson. 1987. Identification of an Epstein-Barr virus glycoprotein which is antigenically homologous to the varicella-zoster virus glycoprotein II and the herpes simplex virus glycoprotein B. Virology 157:552555.
58. Epstein, M. A.,, B. G. Achong,, and Y. M. Barr. 1964. Virus particles in cultured lymphoblasts from Burkitt's lymphoma. Lancet 1:702703.
59. Fahraeus, R.,, A. Jansson,, A. Sjoblom,, T. Nilsson,, G. Klein,, and L. Rymo. 1993. Cell phenotype-dependent control of Epstein-Barr virus latent membrane protein 1 gene regulatory sequences. Virology 195:7180.
60. Fahraeus, R.,, L. Rymo,, J. S. Rhim,, and G. Klein. 1990. Morphological transformation of human keratinocytes expressing the LMP gene of Epstein-Barr virus. Nature 345: 447449.
61. Farrell, P. J.,, D. T. Rowe,, C. M. Rooney,, and T. Kouzarides. 1989. Epstein-Barr virus BZLF1 trans-activator specifically binds to a consensus AP-1 site and is related to c-fos. EMBO J. 8:127132.
62. Fingeroth, J. D.,, J. J. Weis,, T. F. Tedder,, J. L. Strominger,, P. A. Biro,, and D. T. Fearon. 1984. Epstein-Barr virus receptor of human B lymphocytes is the C3d receptor CR2. Proc. Natl. Acad. Sci. USA 81:45104514.
63. Fixman, E. D.,, G. S. Hayward,, and S. D. Hayward. 1992. trans-Acting requirements for replication of Epstein-Barr virus ori-Lyt. J. Virol. 66:50305039.
64. Fixman, E. D.,, G. S. Hayward,, and S. D. Hayward. 1995. Replication of Epstein-Barr virus oriLyt: lack of a dedicated virally encoded origin-binding protein and dependence on Zta in cotransfection assays. J. Virol. 69:29983006.
65. Flemington, E.,, and S. H. Speck. 1990. Identification of phorbol ester response elements in the promoter of Epstein-Barr virus putative lytic switch gene BZLF1. J. Virol. 64:12171226.
66. Frade, R.,, M. Barel,, B. Ehlin Henriksson,, and G. Klein. 1985. gpl40, the C3d receptor of human B lymphocytes, is also the Epstein-Barr virus receptor. Proc. Natl. Acad. Sci. USA 82:14901493.
67. Franken, M.,, B. Annis,, A. N. Ali,, and F. Wang. 1995. 5′ Coding and regulatory region sequence divergence with conserved function of the Epstein-Barr virus LMP2A homolog in herpesvirus papio. J. Virol. 69:80118019.
68. Franken, M.,, O. Devergne,, M. Rosenzwelg,, B. Annis,, E. Kieff,, and F. Wang. 1996. Comparative analysis identifies conserved tumor necrosis factor receptor-associated factor 3 binding sites in the human and simian Epstein-Barr virus oncogene LMP1. J. Virol. 70:78197826.
69. Frappier, L.,, K. Goldsmith,, and L. Bendell. 1994. Stabilization of the EBNA1 protein on the Epstein-Barr virus latent origin of DNA replication by a DNA looping mechanism. J. Biol. Chem. 269:10571062.
70. Frappier, L.,, and M. O'Donnell. 1991. Epstein-Barr nuclear antigen 1 mediates a DNA loop within the latent replication origin of Epstein-Barr virus. Proc. Natl. Acad. Sci. USA 88:1087510879.
71. Frappier, L.,, and M. O'Donnell. 1991. Overproduction, purification, and characterization of EBNA1, the origin binding protein of Epstein-Barr virus. J. Biol. Chem. 266: 78197826.
72. Frappier, L.,, and M. O'Donnell. 1992. EBNA1 distorts oriP, the Epstein-Barr virus latent replication origin. J. Virol. 66:17861790.
73. Fries, K. L.,, W. E. Miller,, and N. Raab-Traub. 1996. Epstein-Barr virus latent membrane protein 1 blocks p53-mediated apoptosis through the induction of the A20 gene. J. Virol. 70:86538659.
74. Fruehling, S.,, S. K. Lee,, R. Herrold,, B. Freeh,, G. Laux,, E. Kremmer,, F. A. Grasser,, and R. Longnecker. 1996. Identification of latent membrane protein 2A (LMP2A) domains essential for the LMP2A dominant-negative effect on B-lymphocyte surface immunoglobulin signal transduction. J. Virol. 70:62166226.
75. Fruehling, S.,, and R. Longnecker. 1997. The immunoreceptor tyrosine-based activation motif of Epstein-Barr virus LMP2A is essential for blocking BCR-mediated signal transduction. Virology 235:241251.
76. Furnari, F. B.,, V. Zacny,, E. B. Quinlivan,, S. Kenney,, and J. S. Pagano. 1994. RAZ, an Epstein-Barr virus transdominant repressor that modulates the viral reactivation mechanism. J. Virol. 68:18271836.
77. Gahn, T. A.,, and C. L. Schildkraut. 1989. The Epstein-Barr virus origin of plasmid replication, oriP, contains both the initiation and termination sites of DNA replication. Cell 58:527535.
78. Gahn, T. A.,, and B. Sugden. 1995. An EBNA-l-dependent enhancer acts from a distance of 10 kilobase pairs to increase expression of the Epstein-Barr virus IMP gene. J. Virol. 69:26332636.
79. Gibson, T.,, P. Stockwell,, M. Ginsburg,, and B. Barrell. 1984. Homology between two EBV early genes and HSV ribonucleotide reductase and 38K genes. Nucleic Acids Res. 12:50875099.
80. Gibson, T. J.,, B. G. Barrell,, and P. J. Farrell. 1986. Coding content and expression of the EBV B95-8 genome in the region from base 62,248 to base 82,920. Virology 152: 136148.
81. Gilbert, R.,, K. Ghosh,, L. Rasile,, and H. P. Ghosh. 1994. Membrane anchoring domain of herpes simplex virus glycoprotein gB is sufficient for nuclear envelope localization. J. Virol. 68:22722285.
82. Gompels, U. A.,, J. Nicholas,, G. Lawrence,, M. Jones,, B. J. Thomson,, M. E. Martin,, S. Efstathiou,, M. Craxton,, and H. A. Macaulay. 1995. The DNA sequence of human herpesvirus-6: structure, coding content, and genome evolution. Virology 209:2951.
83. Gong, M.,, and E. Kieff. 1990. IntraCellular trafficking of two major Epstein-Barr virus glycoproteins, gp350/220 and gpllO. J. Virol. 64:15071516.
84. Gong, M.,, T. Ooka,, T. Matsuo,, and E. Kieff. 1987. Epstein-Barr virus glycoprotein homologous to herpes simplex virus gB. J. Virol. 61:499508.
85. Gratama, J. W.,, E. T. Lennette,, B. Lonnqvist,, M. A. Oosterveer,, G. Klein,, O. Ring-den,, and I. Ernberg. 1992. Detection of multiple Epstein-Barr viral strains in allogeneic bone marrow transplant recipients. J. Med. Virol. 37:3947.
86. Gratama, J. W.,, M. A. Oosterveer,, F. E. Zwaan,, J. Lepoutre,, G. Klein,, and I. Emberg. 1988. Eradication of Epstein-Barr virus by allogeneic bone marrow transplantation: implications for sites of viral latency. Proc. Natl. Acad. Sci. USA 85:86938696.
87. Grogan, E. A.,, W. P. Summers,, S. Dowling,, D. Shedd,, L. Gradoville,, and G. Miller. 1983. Two Epstein-Barr viral nuclear neoantigens distinguished by gene transfer, serology, and chromosome binding. Proc. Natl. Acad. Sci. USA 80:76507653.
88. Grossman, S. R.,, E. Johannsen,, X. Tong,, R. Yalamanchill,, and E. Kieff. 1994. The Epstein-Barr virus nuclear antigen 2 transactivator is directed to response elements by the J kappa recombination signal binding protein. Proc. Natl. Acad. Sci. USA 91: 75687572.
89. Gruffat, H.,, O. Renner,, D. Pich,, and W. Hammerschmidt. 1995. Cellular proteins bind to the downstream component of the lytic origin of DNA replication of Epstein-Barr virus. J. Virol. 69:18781886.
90. Haddad, R. S.,, and L. M. Hutt Fletcher. 1989. Depletion of glycoprotein gp85 from virosomes made with Epstein-Barr virus proteins abolishes their ability to fuse with virus receptor-bearing Cells. J. Virol. 63:49985005.
91. Hammarskjold, M. L.,, and M. C. Simurda. 1992. Epstein-Barr virus latent membrane protein transactivates the human immunodeficiency virus type 1 long terminal repeat through induction of NF-κB activity. J. Virol. 66:64966501.
92. Hammerschmidt, W.,, and B. Sugden. 1988. Identification and characterization of oriLyt, a lytic origin of DNA replication of Epstein-Barr virus. Cell 55:427433.
93. Hammerschmidt, W.,, and B. Sugden. 1989. Genetic analysis of immortalizing functions of Epstein-Barr virus in human B lymphocytes. Nature 340:393397.
94. Harada, S.,, and E. Kieff. 1997. Epstein-Barr virus nuclear protein LP stimulates EBNA-2 acidic domain-mediated transcriptional activation. J. Virol. 71:66116618.
95. Hardwick, J. M.,, P. M. Lieberman,, and S. D. Hayward. 1988. A new Epstein-Barr virus transactivator, R, induces expression of a cytoplasmic early antigen. J. Virol. 62:22742284.
96. Harnett, M. M. 1994. Antigen receptor signalling: from the membrane to the nucleus. Immunol. Today 15:P1P2.
97. Harris, A.,, B. D. Young,, and B. E. Griffin. 1985. Random association of Epstein-Barr virus genomes with host cell metaphase chromosomes in Burkitt's lymphoma-derived cell lines. J. Virol. 56:328332.
98. Hatfull, G.,, A. T. Bankier,, B. G. Barrell,, and P. J. Farrell. 1988. Sequence analysis of Raji Epstein-Barr virus DNA. Virology 164:334340.
99. Hearing, J. C, and A. J. Levine. 1985. The Epstein-Barr virus nuclear antigen (BamHI K antigen) is a single-stranded DNA binding phosphoprotein. Virology 145:105116.
100. Heineman, T.,, M. Gong,, J. Sample,, and E. Kieff. 1988. Identification of the Epstein-Barr virus gp85 gene. J. Virol. 62:11011107.
101. Henderson, S.,, D. Huen,, M. Rowe,, C. Dawson,, G. Johnson,, and A. Rickinson. 1993. Epstein-Barr virus-coded BHRF1 protein, a viral homologue of Bcl-2, protects human B cells from programmed cell death. Proc. Natl. Acad. Sci. USA 90:84798483.
102. Henderson, S.,, M. Rowe,, C. Gregory,, D. Croom Carter,, F. Wang,, R. Longnecker,, E. Kieff,, and A. Rickinson. 1991. Induction of bcl-2 expression by Epstein-Barr virus latent membrane protein 1 protects infected B cells from programmed cell death. Cell 65:11071115.
103. Henkel, T.,, P. D. Ling,, S. D. Hayward,, and M. G. Peterson. 1994. Mediation of Epstein-Barr virus EBNA2 transactivation by recombination signal-binding protein J kappa. Science 265:9295.
104. Hennessy, K.,, S. Fennewald,, M. Hummel,, T. Cole,, and E. Kieff. 1984. A membrane protein encoded by Epstein-Barr virus in latent growth-transforming infection. Proc. Natl. Acad. Sci. USA 81:72077211.
105. Hennessy, K.,, F. Wang,, E. W. Bushman,, and E. Kieff. 1986. Definitive identification of a member of the Epstein-Barr virus nuclear protein 3 family. Proc. Natl. Acad. Sci. USA 83:56935697.
106. Herrold, R. E.,, A. Marchini,, S. Fruehling,, and R. Longnecker. 1996. Glycoprotein 110, the Epstein-Barr virus homolog of herpes simplex virus glycoprotein B, is essential for Epstein-Barr virus replication in vivo. J. Virol. 70:20492054.
107. Hitt, M. M.,, M. J. Allday,, T. Hara,, L. Karran,, M. D. Jones,, P. Busson,, T. Tursz,, I. Ernberg,, and B. E. Griffin. 1989. EBV gene expression in an NPC-related tumour. EMBO J. 8:26392651.
108. Howe, J. G.,, and M. D. Shu. 1988. Isolation and characterization of the genes for two small RNAs of herpesvirus papio and their comparison with Epstein-Barr virus-encoded EBER RNAs. J. Virol. 62:27902798.
109. Hsu, D. H.,, R. de Waal Malefyt,, D. F. Fiorentino,, M. N. Dang,, P. Vieira,, J. de Vries,, H. Spits,, T. R. Mosmann,, and K. W. Moore. 1990. Expression of interleukin-10 activity by Epstein-Barr virus protein BCRF1. Science 250:830832.
110. Hu, L. F.,, E. R. Zabarovsky,, F. Chen,, S. L. Cao,, I. Ernberg,, G. Klein,, and G. Winberg. 1991. Isolation and sequencing of the Epstein-Barr virus BNLF-1 gene (LMP1) from a Chinese nasopharyngeal carcinoma. J. Gen. Virol. 72:23992409.
111. Hudson, G. S.,, A. T. Bankier,, S. C. Satchwell,, and B. G. Barrell. 1985. The short unique region of the B95-8 Epstein-Barr virus genome. Virology 147:8198.
112. Hudson, G. S.,, P. J. Farrell,, and B. G. Barrell. 1985. Two related but differentially expressed potential membrane proteins encoded by the EcoRI Dhet region of Epstein-Barr virus B95-8. J. Virol. 53:528535.
113. Hudson, G. S.,, T. J. Gibson,, and B. G. Barrell. 1985. The BamHI F region of the B95-8 Epstein-Barr virus genome. Virology 147:99109.
114. Huen, D. S.,, S. A. Henderson,, D. Croom Carter,, and M. Rowe. 1995. The Epstein-Barr virus latent membrane protein-1 (LMP1) mediates activation of NF-kappa B and cell surface phenotype via two effector regions in its carboxy-terrninal cytoplasmic domain. Oncogene 10:549560.
115. Hummel, M.,, D. Thorley Lawson,, and E. Kieff. 1984. An Epstein-Barr virus DNA fragment encodes messages for the two major envelope glycoproteins (gp350/300 and gp220/200). J. Virol. 49:413417.
116. Hurley, E. A.,, and D. A. Thorley Lawson. 1988. B cell activation and the establishment of Epstein-Barr virus latency. J. Exp. Med. 168:20592075.
117. Hutt-Fletcher, L. M. 1995. Epstein-Barr virus glycoproteins—beyond gp350/220. EBV Rep. 2:4953.
118. Hurt Fletcher, L. M.,, E. Fowler,, J. D. Lambris,, R. J. Feighny,, J. G. Simmons,, and G. D. Ross. 1983. Studies of the Epstein Barr virus receptor found on Raji cells. II. A comparison of lymphocyte binding sites for Epstein Barr virus and C3d. J. Immunol. 130:13091312.
119. Ishida, T.,, T. Tojo,, T. Aoki,, N. Kobayashi,, T. Ohishi,, T. Watanabe,, T. Yamamoto,, and J. Inoue. 1996. TRAF5, a novel tumor necrosis factor receptor-associated factor family protein, mediates CD40 signaling. Proc. Natl. Acad. Sci. USA 93:94379442.
120. Itakura, O.,, S. Yamada,, M. Narita,, and H. Kikuta. 1996. High prevalance of a 30-base pair deletion and single-base mutations within the carboxy terminal end of the LMP-1 oncogene of Epstein-Barr virus in the Japanese population. Oncogene 13: 15491553.
120a. Izumi, K.,, and E. Kieff. 1997. The Epstein-Barr virus oncogene latent membrane protein 1 engages the tumor necrosis factor receptor-associated death domain protein to mediate B lymphocyte growth transformation and activate NF-κB. Proc. Natl. Acad. Sci. USA 94:1259212597.
121. Jiang, W. Q.,, L. Szekely,, V. Wendel Hansen,, N. Ringertz,, G. Klein,, and A. Rosen. 1991. Co-localization of the retinoblastoma protein and the Epstein-Barr virus-encoded nuclear antigen EBNA-5. Exp. Cell. Res. 197:314318.
122. Jin, X. W.,, and S. H. Speck. 1992. Identification of critical cis elements involved in mediating Epstein-Barr virus nuclear antigen 2-dependent activity of an enhancer located upstream of the viral BamHI C promoter. J. Virol. 66:28462852.
123. Johannsen, E.,, E. Koh,, G. Moslalos,, X. Tong,, E. Kieff,, and S. R. Grossman. 1995. Epstein-Barr virus nuclear protein 2 transactivation of the latent membrane protein 1 promoter is mediated by J kappa and PU.1. J. Virol. 69:253262.
124. Jones, C. H.,, S. D. Hayward,, and D. R. Rawlins. 1989. Interaction of the lymphocyte-derived Epstein-Barr virus nuclear antigen EBNA-1 with its DNA-binding sites. J. Virol. 63:101110.
125. Karlin, S.,, B. E. Blaisdell,, and G. A. Schachtel. 1990. Contrasts in codon usage of latent versus productive genes of Epstein-Barr virus: data and hypotheses. J. Virol. 64:42644273.
126. Karlin, S.,, E. S. Mocarski,, and G. A. Schachtel. 1994. Molecular evolution of herpesviruses: genomic and protein sequence comparisons. J. Virol. 68:18861902.
127. Kaye, K. M.,, O. Devergne,, J. N. Harada,, K. M. Izumi,, R. Yalamzanchili,, E. Kieff,, and G. Mosialos. 1996. Tumor necrosis factor receptor associated factor 2 is a mediator of NF-kappa B activation by latent infection membrane protein 1, the Epstein-Barr virus transforming protein. Proc. Natl. Acad. Sci. USA 93:1108511090.
128. Kaye, K. M.,, K. M. Izumi,, G. Mosialos,, and E. Kieff. 1995. The Epstein-Barr virus LMP1 cytoplasmic carboxy terminus is essential for B-lymphocyte transformation; fibroblast cocultivation complements a critical function within the terminal 155 residues. J. Virol. 69:675683.
129. Kenney, S.,, J. Kamine,, E. Holley Guthrie,, J. C. Lin,, E. C. Mar,, and J. Pagano. 1989. The Epstein-Barr virus (EBV) BZLF1 immediate-early gene product differentially affects latent versus productive EBV promoters. J. Virol. 63:17291736.
130. Khanim, F.,, Q. Y. Yao,, G. Niedobltek,, S. Sihota,, A. B. Rickinson,, and L. S. Young. 1996. Analysis of Epstein-Barr virus polymorphisms in normal donors and in virus-associated tumors from different geographic locations. Blood 88:34913501.
131. Kim, O. J.,, and J. L. Yates. 1993. Mutants of Epstein-Barr virus with a selective marker disrupting the TP gene transform B cells and replicate normally in culture. J. Virol. 67:76347640.
132. Kimball, A. S.,, G. Milman,, and T. D. Tullius. 1989. High-resolution footprints of the DNA-binding domain of Epstein-Barr virus nuclear antigen 1. Mol. Cell. Biol. 9: 27382742.
133. Kitay, M. K.,, and D. T. Rowe. 1996. Cell cycle stage-specific phosphorylation of the Epstein-Barr virus immortalization protein EBNA-LP. J. Virol. 70:78857893.
134. Kitay, M. K.,, and D. T. Rowe. 1996. Protein-protein interactions between Epstein-Barr virus nuclear antigen-LP and cellular gene products: binding of 70-kilodalton heat shock proteins. Virology 220:9199.
135. Knecht, H.,, E. Bachmann,, P. Brousset,, K. Sandvej,, D. Nadal,, F. Bachmann,, B. F. Odermatt,, G. Delsol,, and G. Pallesen. 1993. Deletions within the LMP1 oncogene of Epstein-Barr virus are clustered in Hodgkin's disease and identical to those observed in nasopharyngeal carcinoma. Blood 82:29372942.
136. Knecht, H.,, F. Martius,, E. Bachmann,, T. Hoffman,, D. R. Zimmermann,, S. Rothenberger,, K. Sandvej,, W. Wegmann,, N. Hurwitz,, B. F. Odermatt,, H. Kummer,, and G. Pallesen. 1995. A deletion mutant of the LMP1 oncogene of Epstein-Barr virus is associated with evolution of angioimmunoblastic lymphadenopathy into B immunoblastic lymphoma. Leukemia 9:458465.
137. Kocache, M. M.,, and G. R. Pearson. 1990. Protein kinase activity associated with a cell cycle regulated, membrane-bound Epstein-Barr virus induced early antigen. InterVirology 31:113.
138. Krysan, P. J.,, and M. P. Calos. 1993. Epstein-Barr virus-based vectors that replicate in rodent cells. Gene 136:137143.
139. Laherty, C. D.,, H. M. Hu,, A. W. Opipari,, F. Wang,, and V. M. Dixit. 1992. The Epstein-Barr virus LMP1 gene product induces A20 zinc finger protein expression by activating nuclear factor kappa B. J. Biol. Chem. 267:2415724160.
140. Laux, G.,, A. Economou,, and P. J. Farrell. 1989. The terminal protein gene 2 of Epstein-Barr virus is transcribed from a bidirectional latent promoter region. J. Gen. Virol. 70:30793084.
141. Laux, G.,, U. K. Freese,, R. Fischer,, A. Polack,, E. Kofler,, and G. W. Bornkamm. 1988. TPA-inducible Epstein-Barr virus genes in Raji cells and their regulation. Virology 162:503507.
142. Laux, G.,, M. Perricaudet,, and P. J. Farrell. 1988. A spliced Epstein-Barr virus gene expressed in immortalized lymphocytes is created by circularization of the linear viral genome. EMBO J. 7:769774.
143. Le Roux, A.,, B. Kerdiles,, D. Walls,, J. F. Dedleu,, and M. Perricaudet. 1994. The Epstein-Barr virus determined nuclear antigens EBNA-3A, -3B, and -3C repress EBNA-2-mediated transactivation of the viral terminal protein 1 gene promoter. Virology 205:596602.
144. Lee, S. K.,, T. Compton,, and R. Longnecker. 1997. Failure to complement infectivity of EBV and HSV-1 glycoprotein B (gB) deletion mutants with gBs from different human herpesvirus subfamilies. Virology 237:170181.
146. 144a Lee, S. K.,, and R. Longnecker. 1997. The Epstein-Barr virus glycoprotein 110 carboxyl-terminal tail domain is essential for lytic virus replication. J. Virol. 71: 40924097.
145. Lerner, M. R.,, N. C. Andrews,, G. Miller,, and J. A. Steitz. 1981. Two small RNAs encoded by Epstein-Barr virus and complexed with protein are precipitated by antibodies from patients with lupus erythematosus. Proc. Natl. Acad. Sci. USA 78:805809.
146. Levitskaya, J.,, M. Coram,, V. Levitsky,, S. Imreh,, P. M. Steigerwald Mullen,, G. Klein,, M. G. Kurilla,, and M. G. Masucci. 1995. Inhibition of antigen processing by the internal repeat region of the Epstein-Barr virus nuclear antigen-1. Nature 375: 685688.
147. Li, Q.,, M. K. Spriggs,, S. Kovats,, S. M. Turk,, M. R. Comeau,, B. Nepom,, and L. M. Hutt-Fletcher. 1997. Epstein-Barr virus uses HLA class II as a cofactor for infection of B lymphocytes. J. Virol. 71:46574662.
148. Li, Q.,, S. M. Turk,, and L. M. Hutt Fletcher. 1995. The Epstein-Barr virus (EBV) BZLF2 gene product associates with the gH and gL homologs of EBV and carries an epitope critical to infection of B cells but not of epithelial cells. J. Virol. 69:39873994.
149. Li, Q. X.,, L. S. Young,, G. Niedobitek,, C. W. Dawson,, M. Birkenbach,, F. Wang,, and A. B. Rickinson. 1992. Epstein-Barr virus infection and replication in a human epithelial cell system. Nature 356:347350.
150. Lieberman, P. M.,, and A. J. Berk. 1990. In vitro transcriptional activation, dimerization, and DNA-binding specificity of the Epstein-Barr virus Zta protein. J. Virol. 64: 25602568.
151. Lieberman, P. M.,, J. M. Hardwick,, and S. D. Hayward. 1989. Responsiveness of the Epstein-Barr virus NotI repeat promoter to the Z transactivator is mediated in a cell-type-specific manner by two independent signal regions. J. Virol. 63:30403050.
152. Lieberman, P. M.,, J. M. Hardwick,, J. Sample,, G. S. Hayward,, and S. D. Hayward. 1990. The Zta transactivator involved in induction of lytic cycle gene expression in Epstein-Barr virus-infected lymphocytes binds to both AP-1 and ZRE sites in target promoter and enhancer regions. J. Virol. 64:11431155.
153. Lieberman, P. M.,, P. O'Hara,, G. S. Hayward,, and S. D. Hayward. 1986. Promiscuous trans activation of gene expression by an Epstein-Barr virus-encoded early nuclear protein. J. Virol. 60:140148.
154. Liebowitz, D.,, R. Kopan,, E. Fuchs,, J. Sample,, and E. Kieff. 1987. An Epstein-Barr virus transforming protein associates with vimentin in lymphocytes. Mol. Cell. Biol. 7:22992308.
155. Liebowitz, D.,, D. Wang,, and E. Kieff. 1986. Orientation and patching of the latent infection membrane protein encoded by Epstein-Barr virus. J. Virol. 58:233237.
156. Ling, P. D.,, D. R. Rawlins,, and S. D. Hayward. 1993. The Epstein-Barr virus immortalizing protein EBNA-2 is targeted to DNA by a Cellular enhancer-binding protein. Proc. Natl. Acad. Sci. USA 90:92379241.
157. Ling, P. D.,, J. J. Ryon,, and S. D. Hayward. 1993. EBNA-2 of herpesvirus papio diverges significantly from the type A and type B EBNA-2 proteins of Epstein-Barr virus but retains an efficient transactivation domain with a conserved hydrophobic motif. J. Virol. 67:29903003.
158. Longnecker, R.,, B. Druker,, T. M. Roberts,, and E. Kieff. 1991. An Epstein-Barr virus protein associated with cell growth transformation interacts with a tyrosine kinase. J. Virol. 65:36813692.
159. Longnecker, R.,, and E. Kieff. 1990. A second Epstein-Barr virus membrane protein (LMP2) is expressed in latent infection and colocalizes with LMP1. J. Virol. 64: 23192326.
160. Longnecker, R.,, C. L. Miller,, X. Q. Miao,, A. Marchini,, and E. Kieff. 1992. The only domain which distinguishes Epstein-Barr virus latent membrane protein 2A (LMP2A) from LMP2B is dispensable for lymphocyte infection and growth transformation in vitro; LMP2A is therefore nonessential. J. Virol. 66:64616469.
161. Longnecker, R.,, C. L. Miller,, X. Q. Miao,, B. Tomkinson,, and E. Kieff. 1993. The last seven transmembrane and carboxy-terminal cytoplasmic domains of Epstein-Barr virus latent membrane protein 2 (LMP2) are dispensable for lymphocyte infection and growth transformation in vitro. J. Virol. 67:20062013.
162. Longnecker, R.,, C. L. Miller,, B. Tomkinson,, X. Q. Miao,, and E. Kieff. 1993. Deletion of DNA encoding the first five transmembrane domains of Epstein-Barr virus latent membrane proteins 2A and 2B. J. Virol. 67:50685074.
163. Lowell, C. A.,, L. B. Klickstein,, R. H. Carter,, J. A. Mitchell,, D. T. Fearon,, and J. M. Ahearn. 1989. Mapping of the Epstein-Barr virus and C3dg binding sites to a common domain on complement receptor type 2. J. Exp. Med. 170:19311946.
164. Lupton, S.,, and A. J. Levine. 1985. Mapping genetic elements of Epstein-Barr virus that facilitate extrachromosomal persistence of Epstein-Barr virus-derived plasmids in human cells. Mol. Cell. Biol. 5:25332542.
165. Malinin, N. L.,, M. P. Boldin,, A. V. Kovalenko,, and D. Wallach. 1997. MAP3K-related kinase involved in NF-kB induction by TNF, CD95 and IL-1. Nature 385: 540544.
166. Mann, K. P.,, D. Staunton,, and D. A. Thorley Lawson. 1985. Epstein-Barr virus-encoded protein found in plasma membranes of transformed cells. J. Virol. 55: 710720.
167. Mann, K. P.,, and D. Thorley Lawson. 1987. Posttranslational processing of the Epstein-Barr virus-encoded p63/LMP protein. J. Virol. 61:21002108.
168. Mannick, J. B.,, J. I. Cohen,, M. Birkenbach,, A. Marchini,, and E. Kieff. 1991. The Epstein-Barr virus nuclear protein encoded by the leader of the EBNA RNAs is important in B-lymphocyte transformation. J. Virol. 65:68266837.
169. Mannick, J. B.,, X. Tong,, A. Hemnes,, and E. Kieff. 1995. The Epstein-Barr virus nuclear antigen leader protein associates with hsp72/hsc73. J. Virol. 69:81698172.
170. Marchini, A.,, B. Tomkinson,, J. I. Cohen,, and E. Kieff. 1991. BHRF1, the Epstein-Barr virus gene with homology to Bcl2, is dispensable for B-lymphocyte transformation and virus replication. J. Virol. 65:59916000.
171. Marschall, M.,, F. Schwarzmann,, U. Leser,, B. Oker,, P. Alliger,, H. Mairhofer,, and H. Wolf. 1991. The BL'LF4 trans-activator of Epstein-Barr virus is modulated by type and differentiation of the host cell. Virology 181:172179.
172. Marshall, D.,, and C. Sample. 1995. Epstein-Barr virus nuclear antigen 3C is a transcriptional regulator. J. Virol. 69:36243630.
173. Martin, D. R.,, A. Yuryev,, K. R. Kalli,, D. T. Fearon,, and J. M. Ahearn. 1991. Determination of the structural basis for selective binding of Epstein-Barr virus to human complement receptor type 2. J. Exp. Med. 174:12991311.
174. Martin, J. M.,, D. Veis,, S. J. Korsmeyer,, and B. Sugden. 1993. Latent membrane protein of Epstein-Barr virus induces cellular phenotypes independently of expression of Bcl-2. J. Virol. 67:52695278.
175. McGeoch, D. J.,, M. A. Dalrymple,, A. J. Davison,, A. Dolan,, M. C. Frame,, D. McNab,, L. J. Perry,, J. E. Scott,, and P. Taylor. 1988. The complete DNA sequence of the long terminal unique region in the genome of herpes simplex virus 1. J. Gen. Virol. 69: 15311574.
176. McGeoch, D. J.,, A. Dolan,, S. Donald,, and F. J. Rixon. 1985. Sequence determination and genetic content of the short unique region in the genome of herpes simplex type 1. J. Mol. Biol. 181:113.
177. Middleton, T.,, and B. Sugden. 1992. EBNA1 can link the enhancer element to the initiator element of the Epstein-Barr virus plasmid origin of DNA replication. J. Virol. 66:489495.
178. Miller, C. L.,, A. L. Burkhardt,, J. H. Lee,, B. Stealey,, R. Longnecker,, J. B. Bolen,, and E. Kieff. 1995. Integral membrane protein 2 of Epstein-Barr virus regulates reactivation from latency through dominant negative effects on protein-tyrosine kinases. Immunity 2:155166.
179. Miller, C. L.,, J. H. Lee,, E. Kieff,, A. L. Burkhardt,, J. B. Bolen,, and R. Longnecker. 1994. Epstein-Barr virus protein LMP2A regulates reactivation from latency by negatively regulating tyrosine kinases involved in sLg-mediated signal transduction. Infect. Agents Dis. 3:128136.
180. Miller, C. L.,, J. H. Lee,, E. Kieff,, and R. Longnecker. 1994. An integral membrane protein (LMP2) blocks reactivation of Epstein-Barr virus from latency following surface immunoglobulin crosslinking. Proc. Natl. Acad. Sci. USA 91:772776.
181. Miller, C. L.,, R. Longnecker,, and E. Kieff. 1993. Epstein-Barr virus latent membrane protein 2A blocks calcium mobilization in B lymphocytes. J. Virol. 67:30873094.
182. Miller, G.,, M. Rabson,, and L. Heston. 1984. Epstein-Barr virus with heterogeneous DNA disrupts latency. J. Virol. 50:174182.
183. Miller, N.,, and L. M. Hutt Fletcher. 1988. A monoclonal antibody to glycoprotein gp85 inhibits fusion but not attachment of Epstein-Barr virus. J. Virol. 62:23662372.
184. Miller, N.,, and L. M. Hutt Fletcher. 1992. Epstein-Barr virus enters B cells and epithelial cells by different routes. J. Virol. 66:34093414.
185. Miller, W. E.,, G. Mosialos,, E. Kieff,, and N. Raab-Traub. 1997. Epstein-Barr virus LMP1 induction of the epidermal growth factor receptor is mediated through a TRAF signaling pathway distinct from NF-kB activation. J. Virol. 71:586594.
186. Milman, G.,, and E. S. Hwang. 1987. Epstein-Barr virus nuclear antigen forms a complex that binds with high concentration dependence to a single DNA-binding site. J. Virol. 61:465471.
187. Mitchell, T.,, and B. Sugden. 1995. Stimulation of NF-kappa B-mediated transcription by mutant derivatives of the latent membrane protein of Epstein-Barr virus. J. Virol. 69:29682976.
188. Miyashita, E. M.,, B. Yang,, K. M. Lam,, D. H. Crawford,, and D. A. Thorley Lawson. 1995. A novel form of Epstein-Barr virus latency in normal B cells in vivo. Cell 80: 593601.
191. Montgomery, R. I.,, M. W. Warner,, B. J. Lum,, and P. G. Spear. 1996. Herpes simplex virus 1 entry into cells mediated by a novel member of the TNF/NGF receptor family. Cell 87:427436.
189. Moore, M. D.,, N. R. Cooper,, B. F. Tack,, and G. R. Nemerow. 1987. Molecular cloning of the cDNA encoding the Epstein-Barr virus/C3d receptor (complement receptor type 2) of human B lymphocytes. Proc. Natl. Acad. Sci. USA 84:91949198.
190. Moorthy, R.,, and D. A. Thorley Lawson. 1990. Processing of the Epstein-Barr virus-encoded latent membrane protein p63/LMP. J. Virol. 64:829837.
191. Moorthy, R. K.,, and D. A. Thorley Lawson. 1993. All three domains of the Epstein-Barr virus-encoded latent membrane protein LMP-1 are required for transformation of rat-1 fibroblasts. J. Virol. 67:16381646.
192. Moorthy, R. K.,, and D. A. Thorley Lawson. 1993. Biochemical, genetic, and functional analyses of the phosphorylation sites on the Epstein-Barr virus-encoded oncogenic latent membrane protein LMP-1. J. Virol. 67:26372645.
193. Mosialos, G.,, M. Birkenbach,, R. Yalamanchill,, T. VanArsdale,, C. Ware,, and E. Kieff. 1995. The Epstein-Barr virus transforming protein LMP1 engages signaling proteins for the tumor necrosis factor receptor family. Cell 80:389399.
194. Nemerow, G. R.,, and N. R. Cooper. 1984. Early events in the infection of human B lymphocytes by Epstein-Barr virus: the internalization process. Virology 132:186198.
195. Nemerow, G. R.,, C. Mold,, V. K. Schwend,, V. Tollefson,, and N. R. Cooper. 1987. Identification of gp350 as the viral glycoprotein mediating attachment of Epstein-Barr virus (EBV) to the EBV/C3d receptor of B cells: sequence homology of gp350 and C3 complement fragment C3d. J. Virol. 61:14161420.
196. Nemerow, G. R.,, J. J. Mullen III,, P. W. Dickson,, and N. R. Cooper. 1990. Soluble recombinant CR2 (CD21) inhibits Epstein-Barr virus infection. J. Virol. 64:13481352.
197. Nemerow, G. R.,, R. Wolfert,, M. E. McNaughton,, and N. R. Cooper. 1985. Identification and characterization of the Epstein-Barr virus receptor on human B lymphocytes and its relationship to the C3d complement receptor (CR2). J. Virol. 55:347351.
198. Nitsche, F.,, A. Bell,, and A. Rickinson. 1997. Epstein-Barr virus leader protein enhances EBNA-2-mediated transactivation of latent membrane protein 1 expression: a role for the W1W2 repeat domain. J. Virol. 71:66196628.
199.Nonkwelo, C, E. B. Henson, and J. Sample. 1995. Characterization of the Epstein-Barr virus Fp promoter. Virology 206:183195.
200.Nonkwelo, C, I. K. Ruf, and J. Sample. 1997. The Epstein-Barr virus EBNA-1 promoter Qp requires an initiator-like element. J. Virol. 71:354361.
201.Nonkwelo, C, J. Skinner, A. Bell, A. Rickinson, and J. Sample. 1996. Transcription start sites downstream of the Epstein-Barr virus (EBV) Fp promoter in early-passage Burkitt lymphoma cells define a fourth promoter for expression of the EBV EBNA-1 protein. J. Virol. 70:623627.
202. Oh, S. J.,, T. Chittenden,, and A. J. Levine. 1991. Identification of cellular factors that bind specifically to the Epstein-Barr virus origin of DNA replication. J. Virol. 65: 514519.
203. Ohno, S.,, J. Luka,, T. Lindahl,, and G. Klein. 1977. Identification of a purified complement-fixing antigen as the Epstein-Barr virus nuclear antigen (EBNA) by its binding to metaphase chromosomes. Proc. Natl. Acad. Sci. USA 74:16051609.
204. Orlowski, R.,, and G. Miller. 1991. Single-stranded structures are present within plasmids containing the Epstein-Barr virus latent origin of replication. J. Virol. 65: 677686.
205. Palefsky, J. M.,, J. Berline,, M. E. Penaranda,, E. T. Lennette,, D. Greenspan,, and J. S. Greenspan. 1996. Sequence variation of latent membrane protein-1 of Epstein-Barr virus strains associated with hairy leukoplakia. J. Infect. Dis. 173:710714.
206. Pari, G. S.,, and D. G. Anders. 1993. Eleven loci encoding trans-acting factors are required for transient complementation of human cytomegalovirus oriLyt-dependent DNA replication. J. Virol. 67:69796988.
207. Parker, B. D.,, A. Bankier,, S. Satchwell,, B. Barrell,, and P. J. Farrell. 1990. Sequence and transcription of Raji Epstein-Barr virus DNA spanning the B95-8 deletion region. Virology 179:339346.
208. Pearson, G. R.,, J. Luka,, L. Petti,, J. Sample,, M. Birkenbach,, D. Braun,, and E. Kieff. 1987. Identification of an Epstein-Barr virus early gene encoding a second component of the restricted early antigen complex. Virology 160:151161.
209. Pellett, P. E.,, M. D. Biggin,, B. Barrell,, and B. Roizman. 1985. Epstein-Barr virus genome may encode a protein showing significant amino acid and predicted secondary structure homology with glycoprotein B of herpes simplex virus 1. J. Virol. 56: 807813.
210. Pereira, L. 1994. Function of glycoprotein B homologues of the family herpesviridae. Infect. Agents Dis. 3:928.
211. Petti, L.,, and E. Kieff. 1988. A sixth Epstein-Barr virus nuclear protein (EBNA3B) is expressed in latently infected growth-transformed lymphocytes. J. Virol. 62: 21732178.
212. Petti, L.,, C. Sample,, and E. Kieff. 1990. Subnuclear localization and phosphorylation of Epstein-Barr virus latent infection nuclear proteins. Virology 176:563574.
213. Petti, L.,, J. Sample,, F. Wang,, and E. Kieff. 1988. A fifth Epstein-Barr virus nuclear protein (EBNA3C) is expressed in latently infected growth-transformed lymphocytes. J. Virol. 62:13301338.
214. Pfitzner, A. J.,, E. C. Tsai,, J. L. Strominger,, and S. H. Speck. 1987. Isolation and characterization of cDNA clones corresponding to transcripts from the BamHI H and F regions of the Epstein-Barr virus genome. J. Virol. 61:29022909.
215. Polvino Bodnar, M.,, J. Kiso,, and P. A. Schaffer. 1988. Mutational analysis of Epstein-Barr virus nuclear antigen 1 (EBNA 1). Nucleic Acids Res. 16:34153435.
216. Puglielli, M. T.,, N. Desai,, and S. H. Speck. 1997. Regulation of EBNA gene transcription in lymphoblastoid cell lines: characterization of sequences downstream of BCR2 (Cp). J. Virol. 71:120128.
217. Puglielli, M. T.,, M. Woisetschlaeger,, and S. H. Speck. 1996. oriP is essential for EBNA gene promoter activity in Epstein-Barr virus-immortalized lymphoblastoid cell lines. J. Virol. 70:57585768.
218. Qu, L.,, and D. T. Rowe. 1992. Epstein-Barr virus latent gene expression in uncultured peripheral blood lymphocytes. J. Virol. 66:37153724.
219. Quinlivan, E. B.,, E. A. Holley Guthrie,, M. Norris,, D. Gutsch,, S. L. Bachenheimer,, and S. C. Kenney. 1993. Direct BRLF1 binding is required for cooperative BZLF1/BRLF1 activation of the Epstein-Barr virus early promoter, BMRF1. Nucleic Acids Res. 21:19992007.
220. Raab-Traub, N.,, T. Dambaugh,, and E. Kieff. 1980. DNA of Epstein-Barr virus. VIII. B95-8, the previous prototype, is an unusual deletion derivative. Cell 22:257267.
221. Rawlins, D. R.,, G. Milman,, S. D. Hayward,, and G. S. Hayward. 1985. Sequence-specific DNA binding of the Epstein-Barr virus nuclear antigen (EBNA-1) to clustered sites in the plasmid maintenance region. Cell 42:859868.
222. Reisman, D.,, and B. Sugden. 1986. trans activation of an Epstein-Barr viral transcriptional enhancer by the Epstein-Barr viral nuclear antigen 1. Mol Cell. Biol. 6: 38383846.
223. Reisman, D.,, J. Yates,, and B. Sugden. 1985. A putative origin of replication of plasmids derived from Epstein-Barr virus is composed of two cis-acting components. Mol. Cell. Biol. 5:18221832.
224. Reth, M. 1989. Antigen receptor clue. Nature 338:383384.
225. Rickinson, A. B.,, and E. Kieff,. 1996. Epstein-Barr virus, p. 23972446. In B. N. Fields,, D. M. Knipe,, and P. M. Howley (ed.), Fields Virology. Lippincott-Raven Publishers, Philadelphia.
226. Rickinson, A. B.,, L. S. Young,, and M. Rowe. 1987. Influence of the Epstein-Barr virus nuclear antigen EBNA 2 on the growth phenotype of virus-transformed B cells. J. Virol. 61:13101317.
227. Roberts, M. L.,, A. T. Luxembourg,, and N. R. Cooper. 1996. Epstein-Barr virus binding to CD21, the virus receptor, activates resting B cells via an intracellular pathway that is linked to B cell infection. J. Gen. Virol. 77:30773085.
228. Robertson, E. S.,, S. Grossman,, E. Johannsen,, C. Miller,, J. Lin,, B. Tomkinson,, and E. Kieff. 1995. Epstein-Barr virus nuclear protein 3C modulates transcription through interaction with the sequence-specific DNA-binding protein J kappa. J. Virol. 69: 31083116.
229. Robertson, E. S.,, J. Lin,, and E. Kieff. 1996. The ammo-terminal domains of Epstein-Barr virus nuclear proteins 3A, 3B, and 3C interact with RBPJκ. J. Virol. 70:30683074.
230. Robertson, K. D.,, A. Manns,,