1887

Chapter 21 : Mitochondrial mRNA Editing in Kinetoplastid Protozoa

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Mitochondrial mRNA Editing in Kinetoplastid Protozoa, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818296/9781555811334_Chap21-1.gif /docserver/preview/fulltext/10.1128/9781555818296/9781555811334_Chap21-2.gif

Abstract:

The mRNAs in the mitochondrion of kinetoplastid protozoa are often modified by the precise addition or deletion of uridylates (U's) by a process termed RNA editing. This chapter focuses on the molecular basis of RNA editing, and the integration of biochemical mechanism with the structure of the editing machinery. The mitochondrial mRNAs are translated on mitochondrial ribosomes and produce functional proteins. It is clear that while minicircles do not encode proteins directly, they play an important role in RNA maturation by encoding most of the guide RNAs (gRNAs) necessary for the editing of mitochondrial mRNAs. The secondary structures determined for the four gRNAs, while similar, have Gibbs free energies well below those predicted for the most stable structures for these RNAs. In a series of UV cross-linking studies, gRNAs binding proteins have also been identified from mitochondrial extracts. When different gRNAs specific to different mRNA editing sites are incubated with mitochondrial extracts, the same eight proteins are able to bind. Based entirely on analysis of genomic and cDNA sequences, we can predict with some certainty that RNA editing is obligatory for the formation of mitochondrial mRNAs with correct initiation and termination codons and continuous open reading frames to encode these mitochondrial proteins.

Citation: Hajduk S, Sabatini R. 1998. Mitochondrial mRNA Editing in Kinetoplastid Protozoa, p 377-393. In Grosjean H, Benne R (ed), Modification and Editing of RNA. ASM Press, Washington, DC. doi: 10.1128/9781555818296.ch21

Key Concept Ranking

Transcription Start Site
0.46154425
Electron Transport System
0.45384315
0.46154425
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Transcription maps of the maxicircle and minicircle of The upper part depicts the linear map of the 23,019 bp maxicircle ( ) of The genes above the line are transcribed from left to right, while the genes beneath the line are transcribed from right to left. The ribosomal RNAs (12S and 9S) have added U's at their 3′ ends ( ). Transcripts from cytochrome (CYb), cytochrome oxidase II (COII) and maxicircle unidentified reading frame (MURF) 2 have limited amounts of internal editing (black diamonds). The transcripts from the genes encoding NADH dehydrogenase 3, 7, 8, and 9 (ND3, ND7, ND8, and ND9), cytochrome oxidase III (COIII), ATPase subunit 6 (A6), small subunit ribosomal protein S12, and GC-rich regions 3 and 4 (CR3 and CR4) are all extensively edited (shaded boxes). The variable region of the maxicircle is indicated (VR). In the lower part, a linear map of a 1 kb minicircle of is given. The bent helical region of this minicircle (open box) and the origin of replication (ori) are within the conserved region of the minicircle. The gRNA genes (arrows) are flanked by 18 bp imperfect inverted repeat sequences (dark boxes). (Adapted from )

Citation: Hajduk S, Sabatini R. 1998. Mitochondrial mRNA Editing in Kinetoplastid Protozoa, p 377-393. In Grosjean H, Benne R (ed), Modification and Editing of RNA. ASM Press, Washington, DC. doi: 10.1128/9781555818296.ch21
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Genomic organization of minicircle gRNA genes. (A) Linear map of the minicircle of (see Fig. 1 ). The transcript Tl is probably a primer for DNA replication. (B) A single gRNA transcription unit, showing the 18 bp repeats, start site for transcription and spacing between upstream repeat and transcription start site. (C) General features of gRNAs. 5 indicates that gRNAs are primary transcripts, the anchor base pairs with the preedited mRNA, the guide sequence directs U addition or deletion, and the 3′ oligo(U) tail is added posttranscriptionally. (Adapted from )

Citation: Hajduk S, Sabatini R. 1998. Mitochondrial mRNA Editing in Kinetoplastid Protozoa, p 377-393. In Grosjean H, Benne R (ed), Modification and Editing of RNA. ASM Press, Washington, DC. doi: 10.1128/9781555818296.ch21
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Proposed structure of a gRNA hybridized to preedited and edited mRNA. Two distinct duplexes are formed between preedited mRNA and its cognate gRNA. An “anchor” duplex exists where the 5′ end of the gRNA hybridizes to the preedited RNA immediately 3′ to the first editing site. The first base pair mismatch of this duplex may direct the editing site-specific endonuclease reaction. A second duplex exists between the oligo(U) tail of the gRNA and the purine rich region 5′ to the editing site. This duplex may serve to hold the 5′ cleavage fragment after endonuclease cleavage occurs. The sequence of the gRNA between these two duplexes directs the editing at sites 1 through 4. Editing is complete when the gRNA is able to hybridize throughout its entire region with the mRNA.

Citation: Hajduk S, Sabatini R. 1998. Mitochondrial mRNA Editing in Kinetoplastid Protozoa, p 377-393. In Grosjean H, Benne R (ed), Modification and Editing of RNA. ASM Press, Washington, DC. doi: 10.1128/9781555818296.ch21
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Schematic drawing of the cleavage-ligation mechanism for insertional RNA editing. An edited cytochrome mRNA is formed by the sequential formation of the binary gRNA-mRNA structure (step 1). This is followed by endonuclease cleavage of the pre-mRNA at the editing site immediately adjacent to the duplex gRNA-mRNA anchor (step 2). The 5′ fragment of the pre-mRNA contains a 3′ terminal hydroxy 1 which is the substrate for the addition of U's by the mitochondrial TUTase (step 3). Following U addition the cleavage fragments are joined by the mitochondrial RNA ligase to form the edited mRNA product (step 4).

Citation: Hajduk S, Sabatini R. 1998. Mitochondrial mRNA Editing in Kinetoplastid Protozoa, p 377-393. In Grosjean H, Benne R (ed), Modification and Editing of RNA. ASM Press, Washington, DC. doi: 10.1128/9781555818296.ch21
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

Mitochondrial editing complex-associated protein 1 (REAP-1). Schematic drawing showing the general features of REAP-1. The sequence and relative position of the positively charged 21 amino acid repeats (positively charged residues are underlined) and a putative mitochondrial targeting sequence are shown. The role of the targeting sequence in mitochondrial localization has not been established.

Citation: Hajduk S, Sabatini R. 1998. Mitochondrial mRNA Editing in Kinetoplastid Protozoa, p 377-393. In Grosjean H, Benne R (ed), Modification and Editing of RNA. ASM Press, Washington, DC. doi: 10.1128/9781555818296.ch21
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6
Figure 6

Proposed model for assembly and maturation of editing complexes. gRNAs are associated with specific proteins in a 19S RNP which is the initial site of posttranscriptional U addition to the gRNAs. The 19S RNP can bind pre-mRNAs and associated proteins to form a 35–40S RNP. The assembly of 35-WS RNP probably requires base pairing of the anchor region of the gRNA and mRNA immediately 3′ to the preedited region (PER) of the mRNA. The complex may function to hold the 5′ mRNA fragment in position for the second step in editing. Specific proteins of 9, 21, and 90 kDa have been identified by UV cross-linking ( ), while RNA ligase, TUTase, and endonuclease activities have been assayed directly ( ).

Citation: Hajduk S, Sabatini R. 1998. Mitochondrial mRNA Editing in Kinetoplastid Protozoa, p 377-393. In Grosjean H, Benne R (ed), Modification and Editing of RNA. ASM Press, Washington, DC. doi: 10.1128/9781555818296.ch21
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818296.chap21
1. Abraham, J. M., and K. Stuart. 1988. Characterization of cytochrome с oxidase III transcripts that are edited only in the 3′ region. Cell 55:267272.
2. Adler, B. K.,, and S. L. Hajduk. 1997. Guide RNA requirement for editing-site-specific endonucleolytic cleavage of preedited mRNA by mitochondrial ribonucleoprotein particles in Trypanosoma brucei. Mol. Cell. Biol. 17:53775385.
3. Adler, B. K.,, M. E. Harris,, K. I. Bertrand,, and S. L. Hajduk. 1991. Modification of Trypanosoma brucei mitochondrial rRNA by posttranscriptional 3′ polyuridine tail formation. Mol. Cell. Biol. 11:58785884.
4. Antenucci, S. M.,, R. S. Sabatini,, V. W. Pollard,, and S. L. Hajduk. Submitted for publication.
5. Arts, G. J.,, and R. Benne. 1996. Mechanism and evolution of RNA editing in kinetoplastida. Biochim. Biophys. Acta 1307:3954.
6. Arts, G. J.,, P. Sloof,, and R. Benne. 1995. A possible role for the guide RNA U-tail as a specificity determinant in formation of guide RNA-messenger RNA chimeras in mitochondrial extracts of Crithidia fasciculata. Mol. Biochem. Parasitol. 73:211222.
7. Arts, G. J.,, H. van der Spek,, d. Speijer,, J. van den Burg,, H. van Steeg,, P. Sloof,, and R. Benne. 1993. Implications of novel guide RNA features for the mechanism of RNA editing in Crithidia fasciculata. EMBO J. 12:15231532.
8. Avila, H. A.,, and L. Simpson. 1995. Organization and complexity of minicircle-encoded guide RNAs in Trypanosoma cruzi. RNA 1:939947.
9. Bakalara, N.,, A. M. Simpson,, and L. Simpson. 1989. The Leishmania kinetoplast-mitochondrion contains terminal uridylyl-transferase and RNA ligase activities. J. Biol. Chem. 264: 1867918686.
10. Benne, R. 1994. RNA editing in trypanosomes. Eur. J. Biochem. 221:923.
11. Benne, R.,, J. van den Burg,, J. P. J. Brakenhoff,, P. Sloof,, J. H. vanBoom,, and M. C. Tromp. 1986. Major transcript of the frameshifted coxll gene from trypanosome mitochondria contains four nucleotides that are not encoded in the DNA. Cell 46: 819816.
12. Bienen, E. J.,, M. Saric,, G. Pollakis,, R. W. Grady,, and A. B. Clarkson, Jr. 1991. Mitochondrial development in Trypanosoma brucei brucei transitional bloodstream forms. Mol. Biochem. Parasitai. 45:185192.
13. Blum, B.,, N. Bakalara,, and L. Simpson. 1990. A model for RNA editing in kinetoplast mitochondria: "guide" RNA molecules transcribed from maxicircle DNA provide the edited information. Cell 60:189198.
14. Blum, B.,, and L. Simpson. 1990. Guide RNAs in kinetoplastid mitochondria have a nonencoded 3′ oligo(U) tail involved in recognition of the preedited region. Cell 62:391397.
15. Blum, B.,, and L. Simpson. 1992. Formation of guide RNA/messenger RNA chimeric molecules in vitro, the initial step of RNA editing, is dependent on an anchor sequence. Proc. Natl. Acad. Sci. USA 89:1194411948.
16. Blum, B.,, N. R. Sturm,, A. M. Simpson,, and L. Simpson. 1991. Chimeric gRNA-mRNA molecules with oligo(U) tails covalently linked at sites of RNA editing suggest that U addition occurs by transesterification. Cell 65:543550.
17. Borst, P. 1991. Why kinetoplast DNA networks? Trends Genet. 7: 139141.
18. Bringaud, F.,, M. Peris,, K. H. Zen,, and L. Simpson. 1995. Characterization of two nuclear-encoded protein components of mitochondrial ribonucleo-protein complexes from Leishmania tarentolae. Mol. Biochem. Parasitol. 71:6579.
19. Bringaud, F.,, R. Stripeche,, G. C. Freeh,, S. Freedland,, C. Turck,, E. M. Byrne and,, L. Simpson. 1997. Mitochondrial glutamate dehydrogenase from Leishmania tarentolae is a guide RNA-binding protein. Mol. Cell. Biol. 17:39152913.
20. Byrne, E. M.,, G. J. Connell,, and L. Simpson. 1996. Guide RNA directed uridine insertion RNA editing in vitro. EMBO J. 15: 67586765.
21. Cech, T. R. 1991. RNA editing: world's smallest introns? Cell 64: 667669.
22. Clarkson, A. B., Jr.,, E. J. Bienen,, G. Pollakis,, and R. W. Grady. 1989. Respiration of bloodstream forms of the parasite Trypanosoma brucei brucei is dependent on a plant-like alternative oxidase. J. Biol. Chem. 264:1777017776.
23. Connell, G. J.,, E. M. Byrne,, and L. Simpson. 1997. Guide RNA-independent and guide RNA-dependent uridine insertion into cytochrome b mRNA in a mitochondrial extract from Leishmania tarentolae. J. Biol. Chem. 272:42124218.
24. Corell, R. A.,, L. K. Read,, G. R. Riley,, J. K. Nellissery,, T. E. Allen,, M. L. Kable,, M. D. Wachal,, S. D. Seiwert,, P. J. Myler,, and K. Stuart. 1996. Complexes from Trypanosoma brucei that exhibit deletion editing and other editing-associated properties. Mol. Cell. Biol. 16:14101418.
25. Corell, R. A.,, J. E. Feagin,, G. R. Riley,, T. Strickland,, J. A. Guderian,, P. J. Myler,, and K. Stuart. 1993. Trypanosoma brucei minicircles encode multiple guide RNAs which can direct editing of extensively overlapping sequences. Nucleic Acids Res. 21: 43134320.
26. Cruz-Reyes, J.,, and B. Sollner-Webb. 1996. Trypanosome U-deletional RNA editing involves gRNA-directed endonuclease cleavage, terminal U exonuclease, and RNA ligase activities. Broc. Natl. Acad. Sci. USA 93:89018906.
27. Decker, C. J.,, and B. Sollner-Webb. 1990. RNA editing involves indiscriminate U changes throughout precisely defined editing domains. Cell 61:10011011.
28. Fairlamb, A. H. 1989. Novel biochemical pathways in parasitic protozoa. Parasitology 99S:S93112.
29. Feagin, J. E.,, J. M. Abraham,, and K. Stuart. 1988. Extensive editing of the cytochrome c oxidase III transcript in Trypanosoma brucei. Cell 53:413422.
30. Feagin, J. E.,, D. P. Jasmer,, and K. Stuart. 1987. Developmentally regulated addition of nucleotides within apocytochrome b transcripts in Trypanosoma brucei. Cell 49:337345.
31. Feagin, J. E.,, J. M. Shaw,, L. Simpson,, and K. Stuart. 1988. Creation of AUG initiation codons by addition of uridines within cytochrome b transcripts of kinetoplasts. Broc. Natl. Acad. Sci. USA 85:539543.
32. Feagin, J. E.,, and K. Stuart. 1988. Developmental aspects of uridine addition with mitochondrial transcripts of Trypanosoma brucei. Mol. Cell. Biol. 8:12591265.
33. Freeh, G. C.,, N. Bakalara,, L. Simpson,, and A. M. Simpson. 1995. In vitro RNA editing-like activity in a mitochondrial extract from Leishmania tarentolae. EMBO J. 14:178187.
34. Freeh, G. C.,, and L. Simpson. 1996. Uridine insertion into pre-edited mRNA by a mitochondrial extract from Leishmania tarentolae: stereochemical evidence for the enzyme cascade model. Mol. Cell. Biol. 16:45844589.
35. Göringer, H. U.,, D. J. Koslowsky,, T. H. Morales,, and K. Stuart. 1994. The formation of mitochondrial ribonucleoprotein complexes involving guide RNA molecules in Trypanosoma brucei. Broc. Natl. Acad. Sci. USA 91:17761780.
36. Göringer, H. U.,, J. Roller,, and H. H. Shu. 1995. Multicomponent complexes involved in kinetoplastid RNA editing. Barasitol. Today 11:265267.
37. Gott, J. M.,, L. M. Visomirski,, and J. L. Hunter. 1993. Substitutional and insertional RNA editing of the cytochrome c oxidase subunit 1 messenger RNA of Physarum polycephalum. J. Biol. Chem. 268:2548325486.
38. Grams, J. M.,, and S. Hajduk. Unpublished data.
39. Hajduk, S. L.,, M. E. Harris,, and V. W. Pollard. 1993. RNA editing in kinetoplastid mitochondria. FASEB J. 7:5463.
40. Hajduk, S. L.,, and R. S. Sabatini,. 1996. RNA editing: post-transcriptional restructuring of genetic information, p. 134158. In D. F. Smith, and M. Parsons (ed.), Molecular Biology of Parasitic Protozoa. Oxford University Press, New York, N.Y.
41. Hancock, K.,, and S. L. Hajduk. 1990. The mitochondrial tRNAs of T. brucei axe nuclear encoded. J. Biol. Chem. 265: 1920819215.
42. Hancock, K.,, A. J. LeBlanc,, D. Donze,, and S. L. Hajduk. 1992. Identification of nuclear encoded precursor tRNAs within the mitochondrion of Trypanosoma brucei. J. Biol. Chem. 267: 2396323971.
43. Harris, M.,, C. Decker,, B. Sollner-Webb,, and S. Hajduk. 1992. Specific cleavage of pre-edited mRNAs in trypanosome mitochondrial extracts. Mol. Cell. Biol. 12:25912598.
44. Harris, M. E.,, and S. L. Hajduk. 1992. Kinetoplastid RNA editing: in vitro formation of cytochrome b gRNA-mRNA chimeras from synthetic substrate RNAs. Cell 68:10911099.
45. Hentze, M. W. 1994. Enzymes as RNA-binding proteins: role for (di)nucleotide-binding domains. Trends Biochem. Sci. 19: 101103.
46. Kable, M. L.,, S. D. Seiwert,, S. Heidmann,, and K. Stuart. 1996. RNA editing: a mechanism for gRNA-specified uridylate insertion into precursor mRNA. Science 273:11891195.
47. Kable, M. L.,, S. Heidmann,, and K. D. Stuart. 1997. RNA editing: getting U into RNA. Trends Biochem. Sci. 22:162166.
48. Kapoor, M.,, Y. Vijayaraghavan,, R. Kadonaga,, and K. E. LaRue. 1993. NAD(+)-specific glutamate dehydrogenase of Neurospora crassa: cloning, complete nucleotide sequence, and gene mapping. Biochem. Cell Biol. 71:205219.
49. Kim, K. S.,, S. M. R. Teixeira,, L. V. Kirchhoff,, and J. E. Donelson. 1994. Transcription and editing of cytochrome oxidase II RNAs in Trypanosoma cruzi. J. Biol. Chem. 269:12061211.
50. Koller, J.,, U. F. Muller,, B. Schmid,, A. Missel,, K. Stuart,, and H. U. Göringer. 1997. Trypanosoma brucei gBP21: an argenine-rich mitochondrial protein that binds to guide RNA with high affinity. J. Biol. Chem. 272:37493757.
51. Köller, J.,, G. Nörskau,, A. S. Paul,, K. Stuart,, and H. U. Göringer. 1994. Different Trypanosoma brucei guide RNA molecules associate with an identical complement of mitochondrial proteins in vitro. Nucleic Acids Res. 22:19881995.
52. Koslowsky, D. J.,, G. J. Bhat,, A. L. Perrolaz,, J. E. Feagin,, and K. Stuart. 1990. The MURF3 gene of T. brucei contains multiple domains of extensive editing and is homologous to a subunit of NADH dehydrogenase. Cell 62:901911.
53. Koslowsky, D. J.,, G. J. Bhat,, L. K. Read,, and K. Stuart. 1991. Cycles of progressive realignment of gRNA with mRNA in RNA editing. Cell 67:537546.
54. Koslowsky, D. J.,, H. U. Göringer,, T. H. Morales,, and K. Stuart. 1992. In vitro guide RNA/mRNA chimaera formation in Trypanosoma brucei RNA editing. Nature 356:807809.
55. Koslowsky, D. J.,, S. M. Katus,, and K. Stuart. 1996. Distinct differences in the requirements for ribonucleoprotein complex formation on differentially regulated pre-edited mRNA in Trypanosoma brucei. Mol. Biochem. Parasitol. 80:114.
56. Leegwater, P.,, D. Speijer,, and R. Benne. 1995. Identification by UV cross-linking of oligo(U)-binding proteins in mitochondria of the insect trypanosomatid Crithidia fasciculata. Eur. J. Biochem. 227:780786.
57. Lukes, J.,, G. J. Arts,, J. Van den Burg,, A. de Haan,, F. Opperdoes,, P. Sloof,, and R. Benne. 1994. Novel pattern of editing regions in mitochondrial transcripts of the cryptobiid Trypanoplasma borrelt. EMBO J. 13:50865098.
58. Mahapatra, S.,, T. Ghosh,, and S. Adhya. 1994. Import of small RNAs into Leishmania mitochondria in vitro. Nucleic Acids Res. 22:33813386.
59. Mahendran, R.,, M. R. Spottswood,, and D. L. Miller. 1991. RNA editing by cytidine insertion in mitochondria of Physarum polycephalum. Nature 349:434438.
60. Maslov, D. A.,, H. A. Avila,, J. A. Lake,, and L. Simpson. 1994. Evolution of RNA editing in kinetoplastid protozoa. Nature 368:345348.
61. Maslov, D. A.,, and L. Simpson. 1994. RNA editing and mitochondrial genomic organization in the cryptobiid kinetoplastid protozoan Trypanoplasma borrelt. Mol. Cell. Biol. 14:81748182.
62. Maslov, D. A.,, and L. Simpson. 1992. The polarity of editing within a multiple gRNA-mediated domain is due to formation of anchors for upstream gRNAs by downstream editing. Cell 70: 459467.
63. Maslov, D. A.,, N. R. Sturm,, B. M. Niner,, E. S. Gruszynski,, M. Peris,, and L. Simpson. 1992. An intergenic G-rich region in Leishmania tarentolae kinetoplast maxicircle DNA is a pan-edited cryptogene encoding ribosomal protein S12. Mol. Cell. Biol. 12:5667.
64. McManus, M.,, and S. Hajduk. Unpublished data.
65. Michelotti, E. F.,, M. E. Harris,, B. K. Adler,, A. F. Torri,, and S. L. Hajduk. 1992. Mitochondrial ribosomal RNA synthesis, processing and developmentally regulated expression in Trypanosoma brucei. Mol. Biochem. Parasitol. 54:3142.
66. Missel, A.,, and H. U. Göringer. 1994. Trypanosoma brucei mitochondria contain RNA helicase activity. Nucleic Acids Res. 22: 40504056.
67. Missel, A.,, G. Nörskau,, H. H. Shu,, and H. U. Göringer. 1995. A putative RBA helicase of the DEAD-box family from Trypanosoma brucei. Mol. Biochem. Parasitol. 75:123126.
68. Missel, A.,, A. E. Souza,, G. Nörskau,, and H. U. Göringer. 1997. Disruption of a gene encoding a novel mitochondrial DEAD-box protein in Trypanosoma brucei affects edited mRNAs. Mol. Cell. Biol. 17:48954903.
69. Mottram, J. C.,, S. D. Bell,, R. G. Nelson,, and J. D. Barry. 1991. tRNAs of Trypanosoma brucei. Unusual gene organization and mitochondrial importation. J. Biol. Chem. 266:1831318317.
70. Myler, P. J.,, D. L. Glick,, J. E. Feagin,, T. H. Morales,, and K. Stuart. 1993. Structural organisation of the maxicircle variable region in Trypanosoma brucei: identification of potential replication origins and topoisomerase II binding sites. Nucleic Acids Res. 21:687694.
71. Neupert, W. 1997. Protein import into mitochondria. Annu. Rev. Biochem. 66:863917.
72. Opperdoes, F. R. 1987. Compartmentation of carbohydrate metabolism in trypanosomes. Annu. Rev. Microbiol. 4:127151.
73. Peris, M.,, G. C. Freeh,, A. M. Simpson,, F. Bringuad,, E. Byrne,, A. Bakker,, and L. Simpson. 1994. Characterization of two classes of ribonucleoprotein complexes possibly involved in RNA editing from Leishmania tarentolae mitochondria. EMBO J. 13: 16641672.
74. Peris, M.,, A. M. Simpson,, J. Grunstein,, J. E. Lilietal,, G. C. Freeh,, and L. Simpson. 1997. Native gel analysis of ribonucleoprotein complexes from a Leishmania tarentolae mitochondrial extract. Mol Biochem. Parasitol. 85:924.
75. Piller, K. J.,, C. J. Decker,, L. N. Rusché,, M. E. Harris,, S. L. Hajduk,, and B. Sollner-Webb. 1995a. Editing domains of Trypanosoma brucei mitochondrial RNAs identified by secondary structure. Mol. Cell. Biol. 15:29162924.
76. Piller, K. J.,, C. J. Decker,, C. J. Rusché,, and B. Sollner-Webb. 1995b. Trypanosoma brucei mitochondrial guide RNA-mRNA chimera-forming activity cofractionates with an editing-domain-specific endonuclease and RNA ligase and is mimicked by heterologous nuclease and RNA ligase. Mol. Cell. Biol. 15: 29252932.
77. Piller, K. J.,, C. J. Rusché,, J. Cruz-Reyes,, and B. Sollner-Webb. 1997. Resolution of the RNA editing gRNA-directed endonuclease from two other endonucleases of Trypanosoma brucei mitochondria. RNA 3:279290.
78. Pollard, V. W.,, and S. L. Hajduk. Unpublished data.
79. Pollard, V. W.,, and S. L. Hajduk. 1991. Trypanosoma equiperdum minicircles encode three distinct primary transcripts which exhibit guide RNA characteristics. Mol. Cell. Biol. 11:16681675.
80. Pollard, V. W.,, M. E. Harris,, and S. L. Hajduk. 1992. Native messenger RNA editing complexes from Trypanosoma brucei mitochondria. EMBO J. 11:44294438.
81. Pollard, V. W.,, S. P. Rohrer,, E. F. Michelotti,, K. Hancock,, and S. L. Hajduk. 1990. Organization of minicircle genes for guide RNAs in Trypanosoma brucei. Cell 63:783790.
82. Preiss, T.,, A. G. Hall,, and R. N. Lightowlers. 1993. Identification of bovine glutamate dehydrogenase as an RNA-binding protein. J. Biol. Chem. 268:2452324526.
83. Priest, J. W.,, and S. L. Hajduk. 1992. Cytochrome c reductase purified from Crithidia fasciculata contains an atypical cytochrome C1. J. Biol. Chem. 267:2018620195.
84. Priest, J. W.,, and S. L. Hajduk. 1994. Developmental regulation of mitochondrial biogenesis in Trypanosoma brucei. Bioenerg. Biomembr. 26:179191.
85. Read, L. K.,, R. A. Corell,, and K. Stuart. 1992. Chimeric and truncated RNAs in Trypanosoma brucei suggest transesterifications at non-consecutive sites during RNA editing. Nucleic Acids Res. 20:23412347.
86. Read, L. K.,, H. U. Göringer,, and K. Stuart. 1994a. Assembly of mitochondrial ribonucleoprotein complexes involves specific guide RNA (gRNA)-binding proteins and gRNA domains but does not require preedited mRNA. Mol. Cell. Biol. 14: 26292639.
87. Read, L. K.,, K. A. Stankey,, W. R. Fish,, A. M. Muthiani,, and K. Stuart. 1994b. Developmental regulation of RNA editing and polyadenylation in four life cycle stages of Trypanosoma congolense. Mol. Biochem. Parasitol. 68:297306.
88. Read, L. K.,, P. J. Myler,, and K. Stuart. 1992. Extensive editing of both processed and preprocessed maxicircle CR6 transcripts in Trypanosoma brucei. J. Biol. Chem. 267:11231128.
89. Read, L. K.,, K. D. Wilson,, P. J. Myler,, and K. Stuart. 1994. Editing of Trypanosoma brucei maxicircle CR5 mRNA generates variable carboxy terminal predicted protein sequences. Nucleic Acids Res. 22:14891495.
90. Riley, G. R.,, R. A. Corell,, and K. Stuart. 1994. Multiple guide RNAs for identical editing of Trypanosoma brucei apocyto-chrome b mRNA have an unusual minicircle location and are developmentally regulated. J. Biol. Chem. 269:61016108.
91. Riley, G. R.,, P. J. Myler,, and K. Stuart. 1995. Quantitation of RNA editing substrates, products and potential intermediates: implications for developmental regulation. Nucleic Acids Res. 23: 708712.
92. Rusché, L. N.,, J. Cruz-Reyes,, K. J. Piller,, and B. Sollner-Webb. 1997. Purification of a functional enzymatic editing complex from Trypanosoma brucei mitochondria. EMBO J. 16: 40694081.
93. Rusché, L. N.,, K. J. Piller,, and B. Sollner-Webb. 1995. Guide RNA-mRNA chimeras, which are potential RNA editing intermediates, are formed by endonuclease and RNA ligase in a try panosome mitochondrial extract. Mol. Cell. Biol. 15: 29332941.
94. Russell, D.. Personal communication.
95. Sabatini, R.,, and S. L. Hajduk. 1995. RNA ligase and its involvement in guide RNA/mRNA chimera formation: evidence for a cleavage-ligation mechanism of Trypanosoma brucei mRNA editing. J. Biol. Chem. 270:72337240.
96. Schmid, B.,, G. R. Riley,, K. Stuart,, and H. U. Göringer. 1995. The secondary structure of guide RNA molecules from Trypanosoma brucei. Nucleic Acids Res. 23:30933102.
97. Schneider, A. 1994. Import of RNA into mitochondria. Trends Cell. Biol. 4:282286.
98. Schneider, A.,, J. Martin,, and N. Agabian. 1994. A nuclear encoded tRNA of Trypanosoma brucei is imported into mitochondria. Mol. Cell. Biol. 14:23172322.
99. Seiwert, D. S.,, S. Heidmann,, and K. Stuart. 1996. Direct visualization of uridylate deletion in vitro suggests a mechanism for kinetoplastid RNA editing. Cell 84:831841.
100. Seiwert, S. D.,, and K. Stuart. 1994. RNA editing: transfer of genetic information from gRNA to precursor mRNA in vitro. Science 266:114117.
101. Seiwert, S. D. 1995. The ins and outs of editing RNA in kinetoplastids. Parasitol. Today 11:362368.
102. Shapiro, T. A.,, and P. T. Englund. 1995. The structure and replication of kinetoplast DNA. Annu. Rev. Microbiol. 49:117143.
103. Shaw, J. M.,, D. Campbell,, and L. Simpson. 1989. Internal frame-shifts within the mitochondrial genes for cytochrome oxidase subunit II and maxicircle unidentified reading frame 3 of Leishmania tarentolae are corrected by RNA editing: evidence for translation of the edited cytochrome oxidase II mRNA. Proc. Natl. Acad. Sci. USA 86:62206224.
104. Shaw, J. M.,, J. E. Feagin,, K. Stuart,, and L. Simpson. 1988. Editing of kinetoplastid mitochondrial mRNAs by uridine addition and deletion generates conserved amino acid sequences and AUG initiation codons. Cell 52:401411.
105. Simpson, A. M.,, Y. Suyama,, H. Dewes,, D. A. Campbell,, and S. Simpson. 1989. Kinetoplastid mitochondria contain functional tRNAs which are encoded in nuclear DNA and also contain small minicircle and maxicircle transcripts of unknown function. Nucleic Acids Res. 17:54275445.
106. Simpson, A. M.,, N. Bakalara,, and L. Simpson. 1992. A ribonuclease activity is activated by heparin or by digestion with proteinase K in mitochondrial extracts of Leishmania tarentolae. J. Biol. Chem. 267:67826788.
107. Simpson, L. 1986. Kinetoplast DNA in trypanosomatid flagellates. Int. Rev. Cytol. 99:119.
108. Simpson, L.,, and D. A. Maslov. 1994. Ancient origin of RNA editing in kinetoplastid protozoa. Curr. Opin. Genet. Dev. 4: 887894.
109. Simpson, L.,, and O. H. Thiemann. 1995. Sense from nonsense: RNA editing in mitochondria of kinetoplastic protozoa and slime molds. Cell 81:837840.
110. Singh, R.,, and M. R. Green. 1993. Sequence-specific binding of transfer RNA by glyceraldehyde-3-phosphate dehydrogenase. Science 259:365368.
111. Sloof, P.,, A. de Haan,, W. Eier,, M. van Iersel,, E. Boel,, H. van Steeg,, and R. Benne. 1992. The nucleotide sequence of the variable region in Trypanosoma brucei completes the sequence analysis of the maxicircle component of mitochondrial kinetoplast DNA. Mol. Biochem. Parasitol. 56:289300.
112. Souza, A. E.,, P. J. Myler,, and K. Stuart. 1992. Maxicircle CR1 transcripts of Trypanosoma brucei are edited and developmentally regulated and encode a putative iron-sulfur protein homologous to an NADH dehydrogenase subunit. Mol. Cell. Biol. 12:21002107.
113. Souza, A. E.,, H. H. Shu,, L. K. Read,, P. J. Myler,, and K. D. Stuart. 1993. Extensive editing CR2 maxicircle transcripts of Trypanosoma brucei predicts a protein with homology to a subunit of NADH dehydrogenase. Mol. Cell. Biol. 13:68326840.
114. Speijer, D.,, A. O. Muijsers,, H. Dekker,, A. de Haan,, C. K. D. Breek,, S. P. J. Albracht,, and R. Benne. 1996a. Purification and characterization of cytochrome c oxidase from the insect trypanosomatid Crithidia fasciculata. Mol. Biochem. Parasitol. 79: 4759.
115. Speijer, D.,, C. K. D. Breek,, A. O. Muijsers,, P. X. Groenevelt,, H. Dekker,, A. de Haan,, and R. Benne. 1996b. The sequence of a small subunit of cytochrome c oxidase from Crithidia fasciculata which is homologous to mammalian subunit IV. FEBS Lett. 381: 123126.
116. Speijer, D.,, C. K. D. Breek,, A. O. Muijsers,, A. F. Hartog,, J. A. Berden,, S. P. J. Albracht,, B. Samyn,, J. Van Beeumen,, and R. Benne. 1997. Characterization of the respiratory chain from cultured Crithidia fasciculata. Mol. Biochem. Parasitol. 85: 171186.
117. Stuart, K.,, T. E. Allen,, S. Heidmann,, and S. D. Seiwert. 1997. RNA editing in kinetoplastid protozoa. Microbiol. Mol. Biol. Rev. 61:105120.
118. Sturm, N. R.,, D. A. Maslov,, B. Blum,, and L. Simpson. 1992. Generation of unexpected editing patterns in Leishmania tarentolae mitochondrial mRNAs: misediting produced by misguiding. Cell 70:469476.
119. Sturm, N. R.,, and L. Simpson. 1990a. Kinetoplast DNA minicircles encode guide RNAs for editing of cytochrome oxidase subunit-III messenger RNA. Cell 61:879884.
120. Sturm, N. R.,, and L. Simpson. 1990b. Partially edited mRNAs for cytochrome b and subunit-IH of cytochrome oxidase from Leishmania tarentolae mitochondria: RNA editing intermediates. Cell 61:871878.
121. Sturm, N. R.,, and L. Simpson. 1991. Leishmania tarentolae mini-circles of different sequence classes encode single guide RNAs located in the variable region approximately 150 bp from the conserved region. Nucleic Acids Res. 19:62776281.
122. Thiemann, O. H.,, D. A. Maslov,, and L. Simpson. 1994. Disruption of RNA editing in Leishmania tarentolae by the loss of minicircle-encoded guide RNA genes. EMBO J. 13:56895700.
123. Thiemann, O. H.,, and L. Simpson. 1996. Analysis of the 3′ uridylation sites of guide RNAs from Leishmania tarentolae. Mol. Biochem. Parasitol. 79:229234.
124. Torri, A. F.,, K. I. Bertrand,, and S. L. Hajduk. 1993. Protein stability regulates the expression of cytochrome c during the developmental cycle of Trypanosoma brucei. Mol. Biochem. Parasitol. 57:305316.
125. van der Spek, H.,, G. J. Arts,, R. R. Zwaai,, J. vandenBurg,, P. Sloof,, and R. Benne. 1991. Conserved genes encode guide RNAs in mitochondria of Crithidia fasciculata. EMBO J. 10: 12171224.
126. van der Spek, H.,, D. Speijer,, G. J. Arts,, J. vandenBurg,, H. vanSteeg,, P. Sloof,, and R. Benne. 1990. RNA editing in transcripts of the mitochondrial genes of the insect trypanosome Crithidia fasciculata. EMBO J. 9:257262.
127. van der Spek, H.,, J. vandenBurg,, A. Croiset,, M. vandenBroek,, P. Sloof,, and R. Benne. 1988. Transcripts from the frameshifted MURF3 gene from Crithidia fasciculata are edited by U insertion at multiple sites. EMBO J. 7:25092514.
128. Vickerman, K., 1976. The diversity of the kinetoplastid flagellates, p. 134. In W. H. R. Lumsden, and D. A. Evans (ed.), Biology of the Kinetoplastida. Academic Press, Inc., London, United Kingdom.
129. Vickerman, K. 1994. The evolutionary expansion of the trypanosomatid flagellates. Int. J. Parasitol. 24:13171331.
130. Vickerman, K. 1985. Developmental cycle and biology of pathogenic trypanosomes. Br. Med. Bull. 41:105.
131. White, T. C, and P. Borst. 1987. RNA end-labeling and RNA ligase activities can produce a circular rRNA in whole cell extracts from trypanosomes. Nucleic Acids Res. 15:32753290.
132. Yasuhira, S.,, and L. Simpson. 1995. Minicircle-encoded guide RNAs from Crithidia fasciculata. RNA 1:634643.
133. Yasuhira, S.,, and L. Simpson. 1996. Guide RNAs and guide RNA genes in the cryptobiid kinetoplastid protozoan, Trypanoplasma borreli. RNA 2:11531160.
134. Yasuhira, S., and L. Simpson. 1997. Phylogenetic affinity of mitochondria of Euglena gracilis and kinetoplastids using cytochrome oxidase I and hsp60. J. Mol. Evol. 44:341347.

Tables

Generic image for table
Table 1

mRNAs in

Citation: Hajduk S, Sabatini R. 1998. Mitochondrial mRNA Editing in Kinetoplastid Protozoa, p 377-393. In Grosjean H, Benne R (ed), Modification and Editing of RNA. ASM Press, Washington, DC. doi: 10.1128/9781555818296.ch21

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error