1887

Chapter 24 : Intracellular Locations of RNA-Modifying Enzymes

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Intracellular Locations of RNA-Modifying Enzymes, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818296/9781555811334_Chap24-1.gif /docserver/preview/fulltext/10.1128/9781555818296/9781555811334_Chap24-2.gif

Abstract:

This chapter talks about the subcellular locations in which the modifications to eukaryotic RNA occur, and focuses mainly on tRNA and rRNA. Most tRNA molecules are built to a common general design, giving rise to the well-known cloverleaf secondary structure and "inverted L" tertiary structure. Availability of the genes and the means of manipulating their expression is of great importance, as stressed for several examples in the chapter, including PUS1 in the section on cytoplasmic tRNA, TRM1 and MODS in the section on mitochondrial tRNA and DIM1 in the section on cytoplasmic rRNA. Although the chapter has concentrated on eukaryotes, in which the questions of intracellular locations and organization are fairly obvious, it should not be excluded that some level of intracellular organization of RNA-modifying enzymes could also occur in prokaryotes, for example by multienzyme interactions between RNA-modifying enzymes and other enzymes of RNA function, such as aminoacyl-tRNA synthases.

Citation: Maden B. 1998. Intracellular Locations of RNA-Modifying Enzymes, p 421-440. In Grosjean H, Benne R (ed), Modification and Editing of RNA. ASM Press, Washington, DC. doi: 10.1128/9781555818296.ch24

Key Concept Ranking

Bacteria and Archaea
0.65308756
RNA Polymerase II
0.5304054
RNA Polymerase III
0.5236486
0.65308756
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Sequential modifications to yeast tRNA precursors in oocytes. Modifications which occur on the 104-nt precursor, the 92-nt precursor, and the 78-nt mature tRNA are indicated. Reprinted from with permission.

Citation: Maden B. 1998. Intracellular Locations of RNA-Modifying Enzymes, p 421-440. In Grosjean H, Benne R (ed), Modification and Editing of RNA. ASM Press, Washington, DC. doi: 10.1128/9781555818296.ch24
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Classification of enzymes catalyzing tRNA modifications into two groups according to their sensitivities to the tRNA architecture. Enzymes of class I recognize fragments of tRNA structure, whereas enzymes of class II require the major features of the tRNA architecture to be intact. Reprinted from with permission; see that reference for further details.

Citation: Maden B. 1998. Intracellular Locations of RNA-Modifying Enzymes, p 421-440. In Grosjean H, Benne R (ed), Modification and Editing of RNA. ASM Press, Washington, DC. doi: 10.1128/9781555818296.ch24
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Schematic representation of translation start sites (in-frame ATG codons) and transcription start sites (starts of wavy lines) in the yeast genes (A), (B), and (C). Reproduced from with permission.

Citation: Maden B. 1998. Intracellular Locations of RNA-Modifying Enzymes, p 421-440. In Grosjean H, Benne R (ed), Modification and Editing of RNA. ASM Press, Washington, DC. doi: 10.1128/9781555818296.ch24
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818296.chap24
1. Auxilien, S.,, P. F. Crain,, R. W. Trewyn,, and H. Grosjean. 1996. Mechanism, specificity and general properties of the yeast enzyme catalyzing the formation of inosine-34 in the anticodon of transfer RNA. J. Mol. Biol. 262:437458.
2. Bass, B. L. 1997. RNA editing and hypermutation by adenosine deamination. Trends Biocbem. Sci. 22:157162.
3. Becker, H. F.,, Y. Motorin,, M. Sissler,, C. Florentz,, and H. Grosjean. 1997a. Major identity determinants for enzymatic formation of ribothymidine and pseudouridine in the TΨ-loop of yeast tRNAs. J. Mol. Biol. 274:505518.
4. Becker, H. F.,, Y. Motorin,, R. J. Planta,, and H. Grosjean. 1997b. The yeast gene YNL292w encodes a pseudouridine synthase (Pus4) catalyzing the formation of Ψ55 in both mitochondrial and cytoplasmic tRNAs. Nucleic Acids Res. 25:44934499.
5. Björk, G. R., 1995. Biosynthesis and function of modified nucleosides, p. 165205. In D. Soli, and U. L. RajBhandary (ed.), tRNA: Structure, Biosynthesis and Function. ASM Press, Washington, D.C..
6. Boguta, M.,, L. A. Hunter,, W.-C. Shen,, E. C. Gillman,, N. C. Martin,, and A. K. Hopper. 1994. Subcellular locations of MOD5 proteins: mapping of sequences sufficient for targeting to mitochondria and demonstration that mitochondrial and nuclear isoforms comingle with the cytosol. Mol. Cell. Biol. 14: 22982306.
7. Bousquet-Antonelli, C.,, Y. Henry,, J-P. Gélugne,, M. Caizergues-Ferrer,, and T. Kiss. 1997. A small nucleolar RNP protein is required for pseudouridylation of eukaryotic ribosomal RNAs. EMBO }. 16:47704776.
8. Brand, R. C.,, J. Klootwijk,, T. J. M. van Steenbergen,, A. J. de Kok,, and R. J. Planta. 1977. Secondary methylation of yeast ribosomal precursor RNA. Eur. J. Biocbem. 75:311318.
9. Brand, R.,, J. Klootwijk,, R. J. Planta,, and B. E. H. Maden. 1978. Biosynthesis of a hypermodified nucleotide in Saccharomyces carlsbergensis 17S and HeLa cell 18S ribosomal ribonucleic acid. Biochem. J. 169:7177.
10. Brand, R. C.,, J. Klootwijk,, R. P. Sibum,, and R. J. Planta. 1979. Pseudouridylation of yeast ribosomal precursor RNA. Nucleic Acids Res. 7:121134.
11. Carbon, P.,, E. Haumont,, S. De Henau,, G. Keith,, and H. Grosjean. 1982. Enzymatic replacement in vitro of the first anticodon base of yeast tRNAAsp: application to the study of tRNA maturation in vivo, after microinjection into frog oocytes. Nucleic Acids Res. 10:37153732.
12. Carmo-Fonesca, M.,, D. Tollervey,, R. Pepperkok,, S. M. L. Bara-bino,, A. Merdes,, C. Brunner,, P. D. Zamore,, M. R. Green,, E. Hurt,, and A. I. Lamond. 1991a. Mammalian nuclei contain foci which are highly enriched in components of the pre-mRNA splicing machinery. EMBO J. 10:195206.
13. Carmo-Fonesca, M.,, R. Pepperkok,, B. S. Sproat,, W. Ansorge,, M. S. Swanson,, and A. I. Lamond. 1991b. In vivo detection of snRNP-rich organelles in the nuclei of mammalian cells. EMBO. 10:18631873.
14. Cavaillé, J.,, M. Nicoloso,, and J.-P. Bachellerie. 1996. Targeted ribose methylation of RNA in vivo directed by tailored antisense RNA guides. Nature 383:732735.
15. Chen, J. Y.,, P. B. M. Joyce,, C. L. Wolfe,, M. C. Steffen,, and N. C. Martin. 1992. Cytoplasmic and mitochondrial tRNA nucleotidyl transferase activities are derived from the same gene in the yeast Saccbaromyces cerevisiae. J. Biol. Chem. 267: 1487914883.
16. Choffat, Y.,, B. Suter,, R. Behra,, and E. Kubli. 1988. Pseudouridine modification in the tRNATrr anticodon is dependent on the presence, but independent of the size and sequence, of the intron in eukaryotic tRNATyr genes. Mol. Cell. Biol. 8:33323337.
17. Choi, Y. C.,, and H. Busch. 1978. Modified nucleotides in Tl RNase oligonucleotides of 18S ribosomal RNA of the Novikoff hepatoma. Biochemistry 17:25512560.
18. Ciampi, M. S.,, F. Arena,, and R. Córtese. 1977. Biosynthesis of pseudouridine in the in vitro transcribed tRNATyr precursor. FEBS Lett. 77:7582.
19. Clark, M. W.,, and J. Abelson. 1987. The subcellular localization of tRNA ligase in yeast. J. Cell Biol. 105:15151526.
20. Cunningham, P. R.,, C. J. Weitzmann,, D. Nègre,, J. G. Sinning,, V. Frick,, K. Nurse,, and J. Ofengand,. 1990. In vitro analysis of the role of rRNA in protein synthesis: site-specific mutation and methylation, p. 243253. In W. E. Hill,, A. Dahlberg,, R. A. Garrett,, P. B. Moore,, D. Schlessinger,, and J. R. Warner (ed.), The Ribosome: Structure, Function and Evolution. American Society for Microbiology, Washington, D.C..
21. Dietrich, A.,, I. Small,, A. Cosset,, J. H. Weil,, and L. Maréchel-Drouard. 1996. Editing and import: strategies for providing plant mitochondria with a complete functional set of transfer RNAs. Biochimie 78:518529.
22. Dirheimer, G.,, G. Keith,, P. Dumas,, and E. Westhof,. 1995. Primary, secondary and tertiary structures of tRNAs, p. 93126. In D. Soli, and U. L. RajBhandary (ed.), tRNA: Structure, Biosynthesis, and Function. ASM Press, Washington, D.C..
23. Doolittle, W. F., 1996. Some aspects of the biology of cells and their possible evolutionary significance, p. 121. In D. M. Roberts,, P. Sharp,, G. Anderson,, and M. A. Collins (ed.), Evolution of Microbial Life. Cambridge University Press, Cambridge, England.
24. Dubin, D. 1974. Methylated nucleotide content of mitochondrial ribosomal RNA from hamster cells. J. Mol. Biol. 84:257273.
25. Eichler, D. C. 1994. Characterization of a nuclear 2'-0-methyltransferase and its involvement in the methylation of mouse precursor ribosomal RNA. Biochimie 76:11151122.
26. Eladari, E.,, A. Hampe,, and F. Galibert. 1977. Nucleotide sequence neighbouring a late modified guanylic residue within the 28S ribosomal RNA of several eukaryotic cells. Nucleic Acids Res. 4: 17591767.
27. Ellis, S. R.,, M. J. Morales,, J. M. Li,, A. K. Hopper,, and N. C. Martin. 1986. Isolation and characterization of the TRM1 locus, a gene essential for the N2,N2-dimethylguanosine modification of both mitochondrial and cytoplasmic tRNA in Saccbaromyces cerevisiae.]. Biol. Chem. 261: 97039709.
28. Ellis, S. R.,, A. K. Hopper,, and N. C. Martin. 1987. Amino-terminal extension generated from an upstream AUG codon is not required for mitochondrial import of yeast N2,N2-dimethylguanosine-specific tRNA methylase. Proc. Natl. Acad. Set. USA 84:51725176.
29. Ellis, S. R.,, A. K. Hopper,, and N. C. Martin. 1989. Amino-terminal extension generated from an upstream AUG codon increases the efficiency of mitochondrial import of yeast N2,N2-dimethylguanosine-specific tRNA methyltransferase. Mol. Cell. Biol. 9:16111620.
30. Fournier, M.,, E. Haumont,, S. De Henau,, J. Gangloff,, and H. Grosjean. 1983. Post-transcriptional modification of the wobble nucleotide in anticodon-substituted yeast tRNAjf18 after microinjection into Xenopus laevis oocytes. Nucleic Acids Res. 11: 707718.
31. Ganot, P.,, M.-L. Bortolin,, and T. Kiss. 1997. Site-specific pseudouridine formation in preribosomal RNA is guided by small nucleolar RNAs. Cell 89:799809.
32. Greenberg, H.,, and S. Penman. 1966. Methylation and processing of ribosomal RNA in HeLa cells. J. Mol. Biol. 21:527535.
33. Grosjean, H.,, S. Auxilien,, F. Constantinesco,, C. Simon,, Y. Corda,, H. F. Becker,, D. Foiret,, A. Morin,, Y. X. Jin,, M. Fournier,, and J. L. Fourrey. 1996a. Enzymatic conversion of adenosine to in-osine and N'-methylinosine: a review. Biochimie 78:488501.
34. Grosjean, H.,, J. Edqvist,, K. B. Strâby,, and A. R. Giegé. 1996b. Enzymatic formation of modified nucleosides in tRNA: dependence on tRNA architecture. J. Mol. Biol. 255:6785.
35. Grosjean, H.,, M. Sprinzl,, and S. Steinberg. 1995. Posttranscrip-tionally modified nucleosides in transfer RNA: their locations and frequencies. Biochimie 77:139141.
36. Grosjean, H.,, Z. Szweykowska-Kulinska,, Y. Motorin,, F. Fasiolo,, and G. Simos. 1997. Intron-dependent enzymic formation of modified nucleosides in eukaryotic tRNAs: a review. Biochimie 79:293302.
37. Gu, X.,, and D. V. Santi. 1991. The T-arm of tRNA is a substrate for tRNA (msU54)-methyltransferase. Biochemistry 30: 29993002.
38. Hagler, J.,, and S. Shuman. 1992. A freeze-frame view of eukaryotic transcription during elongation and capping of nascent mRNA. Science 255:983986.
39. Hancock, K.,, and S. L. Hajduk. 1990. The mitochondrial tRNAs of Trypanosoma brucei are nuclear encoded. J. Biol. Chem. 265:1920819215.
40. Haumont, E.,, L. Droogmans,, and H. Grosjean. 1987. Enzymatic formation of queuosine and of glycosyl queuosine in yeast tRNAs microinjected into Xenopus laevis oocytes: the effect of the anticodon loop sequence. Eur. J. Biochem. 168:219225.
41. Hauser, R.,, and A. Schneider. 1995. tRNAs are imported into mitochondria of Trypanosoma brucei independently of their genomic context and genetic origin. EMBO J. 14:42124220.
42. Helser, T. L.,, J. E. Davies,, and J. E. Dahlberg. 1971. Change in methylation of 16S ribosomal RNA associated with mutation to kasugamycin resistance in Escherichia coli. Nat. New Biol. 233: 1214.
43. Hopper, A. K.,, A. H. Furukawa,, H. D. Pham,, and N. C. Martin. 1982. Defects in modification of cytoplasmic and mitochondrial transfer RNAs are caused by single nuclear mutations. Cell 28: 543550.
44. Jeanteur, P.,, F. Amaldi,, and G. Attardi. 1968. Partial sequence analysis of ribosomal RNA from HeLa cells. II Evidence for sequences of non-ribosomal type in 45S and 32S ribosomal precursors. J. Mol. Biol. 33:757775.
45. Jiang, H.-Q.,, Y. Motorin,, Y.-X. Jin,, and H. Grosjean. 1997. Plei-otropic effects of intron removal on base modification pattern of yeast tRNAphe: an in vitro study. Nucleic Acids Res. 25: 26942701.
46. Johnson, P. F.,, and J. Abelson. 1983. The yeast tRNATyr gene intron is essential for correct modification of its tRNA product. Nature 302:681687.
47. Kiss-László, Z.,, Y. Henry,, J.-P. Bachellerie,, M. Caizergues-Ferrer,, and T. Kiss. 1996. Site-specific ribose methylation of preribo-somal RNA: a novel function for small nucleolar RNAs. Cell 85: 10771088.
48. Kleinschmidt, A. M.,, J. R. Patton,, and T. Pederson. 1989. U2 small nuclear RNP assembly in vitro. Nucleic Acids Res. 17: 48174828.
49. Klootwijk, J.,, and R. J. Planta. 1973. Analysis of the methylation sites in yeast ribosomal RNA. Eur. J. Biocbem. 39:325333.
50. Klootwijk, J.,, I. Klein,, and L. A. Grivell. 1975. Minimal post-transcriptional modification of yeast mitochondrial ribosomal RNA. J. Mol. Biol. 97:337350.
51. Koonin, E. V. 1996. Pseudouridine synthases: four families of enzymes containing a putative uridine-binding motif also conserved in dUTPases and dCTP deaminases. Nucleic Acids Res. 24:24112415.
52. Koski, R. A.,, and S. G. Clarkson. 1982. Synthesis and maturation of Xenopus laevis methionine tRNA gene transcripts in homologous cell-free extracts. J. Biol. Chem. 257:45144521.
53. Lafontaine, D.,, J. Delcour,, A.-L. Glasser,, J. Desgrès,, and J. Van-denhaute. 1994. The DIM1 gene responsible for the conserved mjAnijA dimethylation in the 3' terminal loop of 18S rRNA is essential in yeast. J. Mol. Biol. 241:492497.
54. Lafontaine, D.,, J. Vandenhaute,, and D. Tollervey. 1995. The 18S rRNA dimethylase Dimlp is required for pre-ribosomal RNA processing in yeast. Genes Dev. 9:24702481.
55. Lafontaine, D. L. J.,, C. Bousquet-Antonelli,, Y. Henry,, M. Caizergues-Ferrer,, and D. Tollervey. 1998. The box H+ACA snoRNAs carry Cbf5p, the putative rRNA pseudouridine synthase. Genes Dev. 12:527537.
56. Lambowitz, A. M.,, and D. J. L. Luck. 1976. Studies on the Poky mutant of Neurospora crassa: fingerprint analysis of mitochondrial ribosomal RNA. J. Biol. Chem. 251:30813095.
57. Lecointe, F.,, G. Simos,, A. Sauer,, E. C. Hurt,, Y. Motorin,, and H. Grosjean. 1998. Characterization of the yeast protein Degl as pseudouridine synthase (Pus3) catalyzing the formation of Ψ;38 and Ψ39 in the tRNA anticodon loop. J. Biol. Chem. 273: 13161323.
58. Li, J. M.,, A. K. Hopper,, and N. C. Martin. 1989. N2N2-dimethylguanosine-specific tRNA methyltransferase contains both nuclear and mitochondrial targeting signals in Saccharo-myces cerevisiae.}. Cell Biol. 109:14111419.
59. Liau, M. C.,, and R. B. Hurlbert. 1975. The topographical order of 18S and 28S ribosomal ribonucleic acids within the 45S precursor molecule.J. Mol. Biol. 98:321332.
60. Limbach, P. A.,, P. F. Crain,, and J. A. McCloskey. 1994. Summary: the modified nucleosides of RNA. Nucleic Acids Res. 22: 21832196.
61. Lye, L. F.,, D. H. T. Chen, and Y. Suyama. 1993. Selective import of nuclear-encoded tRNAs into mitochondria of the protozoan Leishmania tarentolae. Mol. Biocbem. Parasitol. 58:233246.
62. Maden, B. E. H. 1986. Identification of the locations of the methyl groups in 18S ribosomal RNA from Xenopus laevis and man.J. Mol. Biol. 189:681699.
63. Maden, B. E. H. 1988. Locations of methyl groups in 28S rRNA of Xenopus laevis and man: clustering in the conserved core of molecule.J. Mol. Biol. 201:289314.
64. Maden, B. E. H., 1990a. The modified nucleotides in ribosomal RNA of man and other eukaryotes, p. B265301. In C. W. Gehrke, and C. T. Kuo (ed.), Chromatography and Modification of Nucleosides, part B. Biological Roles and Functions of Modification. Elsevier, New York, N.Y..
65. Maden, B. E. H. 1990b. The numerous modified nucleotides in eukaryotic ribosomal RNA. Prog. Nucleic Acid Res. Mol. Biol. 39:241303.
66. Maden, B. E. H.,, and J. M. X. Hughes. 1997. Eukaryotic ribosomal RNA: the recent excitement in the nucleotide modification problem. Chromosoma 105:391400.
67. Maden, B. E. H.,, and M. Salim. 1974. The methylated nucleotide sequences in HeLa cell ribosomal RNA and its precursors. J. Mol. Biol. 88:133164.
68. Maden, B. E. H.,, and J. A. Wakeman. 1988. Pseudouridine distribution in mammalian 18S ribosomal RNA: a major cluster in the central region of the molecule. Biocbem. J. 249:459464.
69. Maden, B. E. H.,, M. Salim,, and D. F. Summers. 1972. Maturation pathway for ribosomal RNA in the HeLa Cell nucleolus. Nat. New Biol. 237:59.
70. Maden, B. E. H.,, M. E. Corbett,, P. A. Heeney,, K. Pugh,, and P. M. Ajuh. 1995. Classical and novel approaches to the detection and localization of the numerous modified nucleotides in eukaryotic ribosomal RNA. Biochimie 78:2229.
71. Martin, N. C.,, and A. K. Hopper. 1994. How single genes provide tRNA processing enzymes to mitochondria, nuclei and the cytosol. Biochimie 76:11611167.
72. Melton, D. A.,, E. M. De Robertis, and R. Córtese. 1980. Order and intracellular location of the events involved in the maturation of a spliced tRNA. Nature 284:143148.
73. Morin, M.,, S. Auxilien,, S. Senger,, R. Tewari,, and H. Grosjean. 1998. Structural requirements for enzymatic formation of threonylcarbamoyladenosine (t6A) in tRNA: an in vivo study with Xenopus oocytes. RNA 4:2436.
74. Ni, J.,, A. L. Tien,, and M. J. Fournier. 1997. Small nucleolar RNAs direct site-specific synthesis of pseudouridine in ribosomal RNA. Cell 89:565573.
75. Nicoloso, M.,, L.-H. Qu,, B. Michot,, and J.-P. Bachellerie. 1996. Intron-encoded, antisense small nucleolar RNAs: the characterization of nine novel species points to their direct role as guides for the 2'-0-ribose methylation of rRNAs. J. Mol. Biol. 260: 178195.
76. Nierras, C. R.,, S. W. Liebman,, and J. R. Warner. 1997. Does Saccharomyces need an organized nucleolus? Chromosoma 105: 444451.
77. Nishikura, K.,, and E. M. De Robertis. 1981. RNA processing in microinjected Xenopus oocytes. Sequential addition of base modifications in a spliced transfer RNA. J. Mol. Biol. 145:405420.
78. Ofengand, J.,, and A. Bakin. 1997. Mapping to nucleotide resolution of pseudouridine residues in large subunit ribosomal RNAs from representative eukaryotes, prokaryotes, archaebac-teria, mitochondria and chloroplasts. J. Mol. Biol. 266:246268.
79. Patton, J. R. 1993a. Multiple pseudouridine synthase activities for small nuclear RNAs. Biocbem. J. 290:595600.
80. Patton, J. R. 1994. Formation of pseudouridine in U5 small nuclear RNA. Biochemistry 33:1042310427.
81. Patton, J. R. 1994b. Pseudouridine formation in small nuclear RNAs. Biochimie 76:11291132.
82. Patton, J. R.,, R. J. Patterson,, and T. Pederson. 1987. Reconstitution of the Ul small nuclear ribonucleoprotein particle. Mol. Cell. Biol. 7:40304037.
83. Patton, J. R.,, M. R. Jacobson,, and T. Pederson. 1994. Pseudouridine formation in U2 small nuclear RNA. Proc. Natl. Acad. Set. USA 91:33243328.
84. Qian, Q.,, and G. R. Björk. 1997. Structural requirements for the formation of 1-methylguanosine in vivo in tRNAggc of Salmonella typhimurium. J. Mol. Biol. 266:283296.
85. Raué, H. A.,, J. Klootwijk,, and W. Musters. 1988. Evolutionary conservation of structure and function of high molecular weight ribosomal RNA. Prog. Biophys. Mol. Biol. 51:77129.
86. Rose, A. M.,, H. G. Bedford,, W. C. Shen,, C. L. Greer,, A. K. Hopper,, and N. C. Martin. 1995. Location of N2,N2-dimethylguanosine-specific tRNA methyltransferase. Biochimie 77:4553.
87. Rose, A. M.,, P. B. Joyce,, A. K. Hopper,, and N. C. Martin. 1992. Separate information required for nuclear and subnuclear localization: additional complexity in localizing an enzyme shared by mitochondria and nuclei. Mol. Cell. Biol. 12:56525658.
88. Rottman, F. M.,, J. A. Bokar,, P. Narayan,, M. E. Shambaugh,, and R. Ludwiczak. 1994. N6-adenosine methylation in mRNA: substrate specificity and enzyme complexity. Biochimie 76:11091114.
89. Sakano, H.,, Y. Shimura,, and H. Ozeki. 1974. Selective modification of nucleosides of tRNA precursors accumulated in a temperature sensitive mutant of Escherichia coli. FEBS Lett. 48: 117121.
90. Salim, M.,, and B. E. H. Maden. 1973. Early and late methylations in HeLa cell ribosome maturation. Nature 244:334336.
91. Saponara, A. G.,, and M. D. Enger. 1974. The isolation from ribonucleic acid of substituted uridines containing a-amino-butyrate moieties derived from methionine. Biochim. Biophys. Acta 349:6177.
92. Schaefer, K. P.,, S. Altman,, and D. Soli. 1973. Nucleotide modification in vitro of transfer RNATl,r of Escherichia coli. Proc. Natl. Acad. Set. USA 70:36263630.
93. Schneider, A.,, J. Martin,, and N. Agabian. 1994a. A nuclear encoded tRNA of Trypanosoma brucei is imported into mitochondria. Mol. Cell. Biol. 14:23172322.
94. Schneider, A.,, K. P. McNally,, and N. Agabian. 1994b. Nuclear-encoded mitochondiral tRNAs of Trypanosom brucei have a modified cytidine in the anticodon loop. Nucleic Acids Res. 22: 36993705.
95. Segal, D. M.,, and D. C. Eichler. 1991. A nucleolar 2'0-methyltransferase: specificity and evidence for its role in the methylation of mouse 28S precursor ribosomal RNA. J. Biol. Chem. 266:2438524389.
96. Shen, W.-C.,, D. Selvakumar,, D. R. Stanford,, and A. K. Hopper. 1993. The Saccharomyces cerevisiae LOS1 gene involved in pre-tRNA splicing encodes a nuclear protein that behaves as a component of the nuclear matrix. J. Biol. Chem. 268:1943619444.
97. Shuman, S. 1995. Capping enzyme in eukaryotic mRNA synthesis. Prog. Nucleic Acid Res. Mol. Biol. 50:101129.
98. Simos, G.,, H. Tekotte,, H. Grosjean,, A. Segref,, K. Sharma,, D. Tollervey,, and E. C. Hurt. 1996. Nuclear pore proteins are involved in the biogenesis of functional tRNA. EMBO J. 15: 22702284.
99. Simpson, A. M.,, Y. Suyama,, H. Dewes,, D. Campbell,, and L. Simpson. 1989. Kinetoplastid mitochondria contain functional tRNAs which are encoded in nuclear DNA and also contain small min-icircle and maxicircle transcripts of unknown function. Nucleic Acids Res. 17:54275445.
100. Sirum-Connolly, K.,, and T. L. Mason. 1993. Functional requirement of a site-specific ribose methylation in ribosomal RNA. Science 262:18861889.
101. Sirum-Connolly, K.,, J. M. Peltier,, P. F. Crain,, J. A. McCloskey,, and T. L. Mason. 1995. Implications of a functional large ribosomal RNA with only three modified nucleotides. Biochimie 77:3039.
102. Smolar, N.,, and I. Svensson. 1974. Transfer RNA methylating activity of yeast mitochondria. Nucleic Acids Res. 1:707718.
103. Sogin, M. L.,, J. D. Silberman,, G. Hinkle,, and H. G. Morrison,. 1996. Problems with molecular diversity in the eukarya, p. 167184. In D. M. Roberts,, P. Sharp,, G. Anderson,, and M. A. Collins (ed.), Evolution of Microbial Life. Cambridge University Press, Cambridge, England.
104. Steinberg, S.,, A. Misch,, and M. Sprinzl. 1993. Compilation of tRNA sequences and sequences of tRNA genes. Nucleic Acids Res. 21:30113015.
105. Strobel, M. C.,, and J. Abelson. 1986. Effect of intron mutations on processing and function of Saccharomyces cerevisiae SUPS3 tRNA in vitro and in vivo Mol. Cell. Biol. 6:26632673.
106. Szweykowska-Kulinska, Z.,, B. Senger,, G. Keith,, F. Fasiolo,, and H. Grosjean. 1994. Intron-dependent formation of pseudouri-dines in the anticodon of Saccharomyces cerevisiae minor tRNAIle. EMBO J. 13:46364644.
107. Tarassov, I. A.,, and R. P. Martin. 1996. Mechanisms of tRNA import into yeast mitochondria: an overview. Biochimie 78: 502510.
108. Thomas, G.,, J. Gordon,, and H. Rogg. 1978. N4-acetylcytidine, a previously unidentified labile component of the small subunit of eukaryotic ribosomes. J. Biol. Chem. 253:11011105.
109. Tollervey, D.,, H. Lehtonen,, R. Jansen,, H. Kern,, and E. C. Hurt. 1993. Temperature-sensitive mutations demonstrate roles for yeast fibrillarin in pre-rRNA processing, pre-rRNA methylation, and ribosome assembly. Cell 72:443457.
110. Van Knippenberg, P. H., 1986. Structural and functional aspects of the N6,N6dimethyladenosines in 16S ribosomal RNA, p. 412424. In B. Hardesty, and G. Kramer (ed.), Structure, Function and Genetics of Ribosomes. Springer-Verlag, New York, N.Y..
111. Van Tol, H.,, and H. Beier. 1988. All human tRNATyr genes contain introns as a prerequisite for pseudouridine biosynthesis in the anticodon. Nucleic Acids Res. 16:19511966.
112. Woese, C. R. 1987. Bacterial evolution. Microbiol. Rev. 51: 221271.
113. Woese, C. R.,, O. Kandler,, and M. L. Wheelis. 1990. Towards a natural system of organisms: proposals for the domains Archaea, Bacteria, and Eucarya. Proc. Natl. Acad. Sci. USA 87: 45764579.
114. Zerby, D. B.,, and J. R. Patton. 1996. Metabolism of pre-messenger RNA splicing co-factors: modification of U6 RNA is dependent on its interaction with U4 RNA. Nucleic Acids Res. 24: 35833589.
115. Zerby, D. B.,, and J. R. Patton. 1997. Modification of human U4 RNA requires U6 RNA and multiple pseudouridine synthases. Nucleic Acids Res. 25:48084815.
116. Zimmerman, E. F. 1968. Secondary methylation of ribosomal ribonucleic acid in HeLa cells. Biochemistry 7:31563164.
117. Zoladek, T.,, G. Vaduva,, L. A. Hunter,, M. Boguta,, B. D. Go,, N. C. Martin,, and A. K. Hopper. 1997. Mutations altering the mitochondrial-cytoplasmic distribution of Mod5p implicate the actin cytoskeleton and mRNA 3' ends and/or protein synthesis in mitochondrial delivery. Mol. Cell. Biol. 15:68846894.

Tables

Generic image for table
Table 1

Frequently modified sites in tRNA

Citation: Maden B. 1998. Intracellular Locations of RNA-Modifying Enzymes, p 421-440. In Grosjean H, Benne R (ed), Modification and Editing of RNA. ASM Press, Washington, DC. doi: 10.1128/9781555818296.ch24
Generic image for table
Table 2

Positive or negative intron dependence and intron insensitivity to modified nucleoside formation in eukaryotic tRNAs

Citation: Maden B. 1998. Intracellular Locations of RNA-Modifying Enzymes, p 421-440. In Grosjean H, Benne R (ed), Modification and Editing of RNA. ASM Press, Washington, DC. doi: 10.1128/9781555818296.ch24
Generic image for table
Table 3

Known tRNA-modifying enzymes with dual specificities for cytoplasmic and mitochondrial tRNAs

Citation: Maden B. 1998. Intracellular Locations of RNA-Modifying Enzymes, p 421-440. In Grosjean H, Benne R (ed), Modification and Editing of RNA. ASM Press, Washington, DC. doi: 10.1128/9781555818296.ch24
Generic image for table
Table 4

Numbers of modified nucleosides in representative rRNAs

Citation: Maden B. 1998. Intracellular Locations of RNA-Modifying Enzymes, p 421-440. In Grosjean H, Benne R (ed), Modification and Editing of RNA. ASM Press, Washington, DC. doi: 10.1128/9781555818296.ch24
Generic image for table
Table 5

Base-modified nucleosides in eukaryotic rRNA

Citation: Maden B. 1998. Intracellular Locations of RNA-Modifying Enzymes, p 421-440. In Grosjean H, Benne R (ed), Modification and Editing of RNA. ASM Press, Washington, DC. doi: 10.1128/9781555818296.ch24

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error