1887

Chapter 25 : Genetics and Regulation of Base Modification in the tRNA and rRNA of Prokaryotes and Eukaryotes

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Genetics and Regulation of Base Modification in the tRNA and rRNA of Prokaryotes and Eukaryotes, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818296/9781555811334_Chap25-1.gif /docserver/preview/fulltext/10.1128/9781555818296/9781555811334_Chap25-2.gif

Abstract:

This chapter describes some of the better-understood systems, primarily in bacteria and yeast, that exhibit regulation of modification enzyme activity or gene expression. It attempts to bring out the common themes about regulation that are emerging from ongoing studies of the modification process. The efficiency of nonsense codon suppression has been exploited to analyze the effects of tRNA modification on decoding and codon context in bacteria and eukaryotes. New genetic approaches combined with high-pressure liquid chromatography (HPLC) screening and reverse genetics will likely lead to the identification of the remaining tRNA and rRNA modification genes in bacteria and yeast. A recent determination by quantitative Western immunoblotting showed that the MiaA (iA37) prenyltransferase is also a moderately abundant enzyme at about 650 monomers per cell (≈ 1 μM) in bacteria growing exponentially in enriched minimal-glucose medium. MiaA may need to be present in comparatively high cellular amounts, because its activity is strongly competitively inhibited for its prenyl substrate, dimethylallyl diphosphate (alternatively called Δ-isopentenyl pyrophosphate), by nucleotide di- and triphosphates. The genes whose expression is affected by these undermodifications need to be identified by two-dimensional gel analyses or genetic methods using random fusions. After these targets are identified, it will be possible to access whether the magnitude of the effects of undermodification on gene expression is sufficiently large to readily indicate physiological significance.

Citation: Winkler M. 1998. Genetics and Regulation of Base Modification in the tRNA and rRNA of Prokaryotes and Eukaryotes, p 441-469. In Grosjean H, Benne R (ed), Modification and Editing of RNA. ASM Press, Washington, DC. doi: 10.1128/9781555818296.ch25

Key Concept Ranking

Outer Membrane Proteins
0.4566654
Ribosome Binding Site
0.42966643
0.4566654
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Structures of the modified bases in tRNA and rRNA discussed in this chapter. Abbreviations for the modified bases and the enzymes that catalyze the modifications, which are enclosed in dotted lines, are indicated. Structures were redrawn or modified from . Positions refer to eubacterial or eukaryotic tRNA unless rRNA is indicated. (A) iA37, -Isopentenyladenosine; (B) msiA37, 2-methylthio- -isopentenyladenosine; (C) Ψ (various positions), pseudouridine; (D)m A2058 (in 23S rRNA) or 1518 and 1519 in 16S rRNA, , -dimethyladenosine; (E) sU8, 4-thiouridine; (F) mcmsU34, 5-methoxycarbonylmethyl-2-thiouridine; (G) m G26 , , -dimethylguanosine; (H) msU54, ribosylthymine; (I) msioA37, 2-methylthio- -(-hydroxyisopentenyl)adenosine; ( J) mtA37, -methyl- -threonylcarbamoyladenosine; (K) mA37, 2-methyladenosine; (L) sC32, 2-thiocytidine; (M) mG37, 1-methylguanosine; (N) D, 5,6-dihydrouridine (various positions); (O) mG46, 7-methylguanosine; (P) Q34, queuosine; (Q) preQ,34, 7-aminomethyl-7-deazaguanosine; (R) tA37, -threonylcarbamoyladenosine; (S) Ar(p)64, 2′--ribosyladenosine (phosphate); (T) mC34, 48, 49, 5-methylcytidine; (U) mА14, 58, 1-methyladenosine; (V) mnmsU34, 5-methylaminomethyl-2-thiouridine.

Citation: Winkler M. 1998. Genetics and Regulation of Base Modification in the tRNA and rRNA of Prokaryotes and Eukaryotes, p 441-469. In Grosjean H, Benne R (ed), Modification and Editing of RNA. ASM Press, Washington, DC. doi: 10.1128/9781555818296.ch25
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Structure of the monocistronic operon (mU54 methyltransferase; Fig. 1H ) in (89.65 min) and . The locations of the FIS protein binding site and stringent discriminator in the P promoter and the bifunctional transcription terminator structure at the ends of and ( ) are indicated. The divergently transcribed gene encodes an outer membrane protein involved in vitamin B uptake. See text for additional details. Adapted from .

Citation: Winkler M. 1998. Genetics and Regulation of Base Modification in the tRNA and rRNA of Prokaryotes and Eukaryotes, p 441-469. In Grosjean H, Benne R (ed), Modification and Editing of RNA. ASM Press, Washington, DC. doi: 10.1128/9781555818296.ch25
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Structure of the (9.17 min) and locus, which catalyzes Q34 biosynthesis ( Fig. IP ). encodes the preQ,34 transglycosylase that inserts preQ, into tRNA ( Fig. 1Q ), and encodes epoxy-queuosine synthase, which catalyzes a step in the conversion of the inserted preQ,34 to Q34 (see ). The locations of promoters and terminators are indicated along with transcripts detected on Northern blots ( ). The relationship between the and the downstream , and genes is discussed in the text. Adapted from , based on data from Poghano and Beckwith (1994)V and .

Citation: Winkler M. 1998. Genetics and Regulation of Base Modification in the tRNA and rRNA of Prokaryotes and Eukaryotes, p 441-469. In Grosjean H, Benne R (ed), Modification and Editing of RNA. ASM Press, Washington, DC. doi: 10.1128/9781555818296.ch25
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Structure of the multifunctional operon (mG37 methyltransferase; Fig. 1M ) of (59.10 min) and . The four genes of the operon (ribosomal protein S16), (function unknown), , and (ribosomal protein L19) are transcribed into the single long mRNA indicated. The locations of the promoter (P), Rho-factor independent attenuator before the first () gene, and terminator (T) at the end of the operon are indicated along with folded secondary structures in the mRNA that are thought to inhibit translation of the 21K and TrmD proteins. Control of the adjacent (protein component of signal recognition protein) and () (nonessential protein) genes is separate from that of the operon. See text for additional details. Adapted from .

Citation: Winkler M. 1998. Genetics and Regulation of Base Modification in the tRNA and rRNA of Prokaryotes and Eukaryotes, p 441-469. In Grosjean H, Benne R (ed), Modification and Editing of RNA. ASM Press, Washington, DC. doi: 10.1128/9781555818296.ch25
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

Structure of the multifunctional operon (iA37 prenyltransferase; Fig. 1A ) in K-12 (94.75 min). The figure is drawn to scale. Besides , the multifunctional operon, which has no intercistronic spaces between , and , includes (cell wall amidase), (DNA mismatch repair), (RNA chaperon global regulator), and the region (protease). The locations of multiple standard Eσ-specific promoters (P), heat shock Eσ-specific promoters (P-HS), transcript processing sites (PT), transcriptional attenuators (Atn), and the transcription terminator at the end of the operon (TERM) are indicated. The Hfq chaperone is thought to act as a negative regulator of MiaA expression by destabilizing the transcript. See text for additional details. Adapted from .

Citation: Winkler M. 1998. Genetics and Regulation of Base Modification in the tRNA and rRNA of Prokaryotes and Eukaryotes, p 441-469. In Grosjean H, Benne R (ed), Modification and Editing of RNA. ASM Press, Washington, DC. doi: 10.1128/9781555818296.ch25
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6
Figure 6

Structure of the multifunctional operon (m A1518 and 1519 dimethyltransferase; Fig. ID ) of (1.11 min). Besides , the operon consists of (peptidyl-prolyl isomerase), (pyridoxine 5′-phosphate ring closure), (unknown function), and (diadenosine [AppppA] tetraphosphatase). The positions of the mapped P and P promoters are indicated. The locations of the P and P promoters are approximate. About 50% of transcription originates from promoters upstream from Р. See text for other details. Adapted from , based on and .

Citation: Winkler M. 1998. Genetics and Regulation of Base Modification in the tRNA and rRNA of Prokaryotes and Eukaryotes, p 441-469. In Grosjean H, Benne R (ed), Modification and Editing of RNA. ASM Press, Washington, DC. doi: 10.1128/9781555818296.ch25
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 7
Figure 7

Structure and transcriptional control of the rRNA operon of (89.74 min). The upper figure shows the structure of the entire operon, which extends from the PI and P2 promoters to the T1 and T2 transcription terminators and includes genes for 16S rRNA, tRNA , 23S rRNA, and 5S rRNA. The lower figure shows the FIS binding sites and Up elements that contribute to expression from the P1 and P2 promoters and the box A element that functions in transcription antitermination of the nontranslated operon. See text and for additional details. Adapted from .

Citation: Winkler M. 1998. Genetics and Regulation of Base Modification in the tRNA and rRNA of Prokaryotes and Eukaryotes, p 441-469. In Grosjean H, Benne R (ed), Modification and Editing of RNA. ASM Press, Washington, DC. doi: 10.1128/9781555818296.ch25
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 8
Figure 8

Antiattenuation model for induction of operon (m62A2058 dimethyltransferase; Fig. 1D ) expression by the antibiotic erythromycin in and other gram-positive bacteria. The top two alternative mRNA secondary structures, which sequester the ribosome binding site (RBS), form when the leader transcript is translated in the absence of erythromycin. The bottom structure, which allows translation, forms when ribosomes stall during translation of the leader peptide in the presence of erythromycin. See text for additional details. Adapted from . Start leader, translation start codon of leader peptide; stop leader, translation stop codon of leader peptide; SD, Shine-Dalgarno sequence preceding start, translation start codon.

Citation: Winkler M. 1998. Genetics and Regulation of Base Modification in the tRNA and rRNA of Prokaryotes and Eukaryotes, p 441-469. In Grosjean H, Benne R (ed), Modification and Editing of RNA. ASM Press, Washington, DC. doi: 10.1128/9781555818296.ch25
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 9
Figure 9

Model for regulation of Tgt (Q34) transglycosylase activity by phosphorylation by protein kinase С (PKC) in mammalian cells. The unphosphorylated form of the Tgt enzyme (top) exists as a heterodimer containing a catalytic and a regulatory subunit. Phosphorylation of the regulatory subunit by PKC (bottom) causes the subunits to dissociate releasing the active catalytic subunit. Based on .

Citation: Winkler M. 1998. Genetics and Regulation of Base Modification in the tRNA and rRNA of Prokaryotes and Eukaryotes, p 441-469. In Grosjean H, Benne R (ed), Modification and Editing of RNA. ASM Press, Washington, DC. doi: 10.1128/9781555818296.ch25
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 10
Figure 10

Differential expression of yeast (m G26 dimethyltransferase; Fig. 1G ) and (iA37 prenyltransferase; Fig. 1A ) that leads to isozyme sorting in yeast. (A) Transcription and translation start points in and . is transcribed from two different promoters. The larger isozyme (Trm1p-I) is translated from ATG1 in the longer transcript, and the smaller isozyme (Trm1p-II) is translated from ATG17, which is the first start codon in the shorter transcript. is also transcribed from two promoters, but both transcripts contain the ATG1 and ATG12 translation start codons. The larger (Mod5p-I) and smaller (Mod5p-II) isozymes are translated from ATG1 and ATG12, respectively, in the larger bifunc-tional transcript. See text and for additional details. (B) Signals for targeting and isozyme distribution of the and gene products in yeast. The amino acid sequences of the isozymes are indicated by the lines. Open boxes, regions sufficient for efficient targeting to mitochondria; shaped box in Trm1p-I, region that improves import into mitochondria; hatched boxes, nuclear targeting or localization signals. + and –, present and absent, respectively, in the indicated subcellular compartments. See text and for additional details. Adapted from .

Citation: Winkler M. 1998. Genetics and Regulation of Base Modification in the tRNA and rRNA of Prokaryotes and Eukaryotes, p 441-469. In Grosjean H, Benne R (ed), Modification and Editing of RNA. ASM Press, Washington, DC. doi: 10.1128/9781555818296.ch25
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818296.chap25
1. Agris, P. F. 1996. The importance of being modified: roles of modified nucleosides and Mg 2+ in RNA structure and function. Prog. Nucleic Acid Res. Mol. Biol. 53: 79 129.
2. Arps, P. J.,, C. C. Marvel,, B. C. Rubin,, D. A. Tolan,, E. E. Penhoet,, and M. E. Winkler. 1985. Structural features of the hisT operon of Escherichia coli K-12. Nucleic Acids Res. 13: 5297 5315.
3. Aström, A. U.,, and A. S. Byström. 1994. Ritl, a tRNA backbone-modifying enzyme that mediates initiator and elongator discrimination. Cell 79: 535 546.
4. Aström, S. U.,, U. Pawel-Rammingen,, and A. S. Byström. 1993. The yeast initiator tRNA Met can act as an elongator tRNA Met in vivo. J. Mol. Biol. 233: 43 58.
5. Bauer, B. F.,, R. M. Elford,, and W. M. Holmes. 1993. Mutagenesis and functional analysis of the Escherichia coli tRNA Leu promoter. Mol. Microbiol. 7: 265 273.
6. Bechhofer, D. H. 1990. Triple post-transcriptional control. Mol. Microbiol. 4: 1419 1423.
7. Björk, G. R.,, and L. A. Isaksson. 1970. Isolation of mutants of Escherichia coli lacking 5-methyluracil in transfer ribonucleic acid or 1-methylguanine in ribosomal RNA. J. Mol. Biol. 51: 83 100.
8. Björk, G. R., and K. Kjellin-Straby. 1978. General screening procedure for RNA modificationless mutants: isolation of Escherichia coli strains with specific defects in RNA methylation. J. Bacteriol. 133: 499 507.
9. Björk, G. R., 1995a. Biosynthesis and function of modified nucleosides, p. 165 205. In D. Soil, and U. RajBhandary (ed.), tRNA: Structure, Biosynthesis, and Function. ASM Press, Washington, D.C.
10. Björk, G. R. 1995b. Genetic dissection of synthesis and function of modified nucleosides in bacterial transfer RNA. Prog. Nucleic Acid Res. Mol. Biol. 50: 263 338.
11. Björk, G. R., 1996. Stable RNA modification, p. 861 886. In F. C. Neidhardt,, R. Curtiss III,, J. L. Ingraham,, E. C. C. Lin,, K. B. Low,, B. Magasanik,, W. S. Reznikoff,, M. Riley,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd ed. ASM Press, Washington, D.C..
12. Blanchin-Roland, S.,, S. Blanquet,, J.-M. Scbmitter,, and G. Fayat. 1986. The gene for Escherichia coli diadenosine tetraphospha-tase is located immediately clockwise to folA and forms an operon with ksgA. Mol. Gen. Genet. 205: 515 522.
13. Breidt, F.,, and D. Dubnau. 1990. Identification of cis-acting sequences required for translational autoregulation of the ermC methylase. J. Bacteriol. 172: 3661 3668.
14. Bremer, H.,, and P. P. Dennis,. 1996. Modulation of chemical composition and other parameters of the cell by growth rate, p. 1553 1570. In F. C. Neidhardt,, R. Curtiss III,, J. L. Ingraham,, E. C. C. Lin,, K. B. Low,, B. Magasanik,, W. S. Reznikoff,, M. Riley,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd ed. ASM Press, Washington, D.C..
15. Buck, M.,, and B. N. Ames. 1984. A modified nucleotide in tRNA as a possible regulator of aerobiosis: synthesis of cis-2-methyl-thioribosylzeatin in tRNA of Salmonella. Cell 36: 523 531.
16. Buck, M.,, M. Connick,, and B. N. Ames. 1983. Complete analysis of tRNA-modified nucleosides by high-performance liquid chromatography: the 29 modified nucleosides of Salmonella typhimurium and Escherichia coli tRNA. Anal. Biochem. 129: 1 13.
17. Buck, M.,, and E. Griffiths. 1982. Iron mediated methylthiolation of tRNA as a regulator of operon expression in Escherichia coli. Nucleic Acids Res. 10: 2609 2624.
18. Byström, A. S.,, and G. R. Björk. 1982. The structural gene (trmD) for the tRNA (m 1G) methyltransferase is part of a four polypeptide operon in Escherichia coli K-12. Mol. Gen. Genet. 188: 447 454.
19. Byström, A. S.,, K. J. Hjalmarsson,, P. M. Wikström,, and G. R. Björk. 1983. The nucleotide sequence of an Escherichia coli operon containing genes for the tRNA(m 1G)methyltransferase, the ribosomal proteins S16 and L19 and a 21-K polypeptide. EMBO J. 2: 899 905.
20. Byström, A. S.,, A. von Gabain,, and G. R. Björk. 1989. Differentially expressed trmD ribosomal protein operon of Escherichia coli is transcribed as a single polycistronic mRNA species. J. Mol. Biol. 208: 575 586.
21. Cashel, M.,, D. R. Gentry,, V. J. Hernandez,, and D. Vinella,. 1996. The stringent response, p. 1458 1496. In F. C. Neidhardt,, R. Curtiss III,, J. L. Ingraham,, E. C. C. Lin,, K. B. Low,, B. Magasanik,, W. S. Reznikoff,, M. Riley,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd ed. ASM Press, Washington, D.C..
22. Chase, R.,, G. M. Tener,, and I. C. Gillam. 1974. Changes in levels of amino acid acceptors in tRNA from Escherichia coli grown under various conditions. Arch. Biochem. Biophys. 163: 306 317.
23. Chong, S.,, A. W. Curnow,, T. J. Huston,, and G. A. Garcia. 1995. tRNA-guanine transglycosylase from Escherichia coli is a zinc metalloprotein. Site-directed mutagenesis studies to identify the zinc ligands. Biochemistry 34: 3697 3701.
24. Connolly, D. M.,, and M. E. Winkler. 1989. Genetic and physiological relationships among the miaA gene, 2-methylthio-N 6-(A 2-isopentenyl)-adenosine tRNA modification, and spontaneous mutagenesis in Escherichia coli K-12. J. Bacteriol. 171: 3233 3246.
25. Connolly, D. M.,, and M. E. Winkler. 1991. Structure of Escherichia coli K-12 miaA and characterization of the mutator phe-notype caused by miaA insertion mutations. J. Bacteriol. 173: 1711 1721.
26. Córtese, R.,, H. O. Kammen,, S. J. Spengler,, and B. N. Ames. 1974. Biosynthesis of pseudouridine in transfer ribonucleic acid. J. Biol. Chem. 249: 1103 1108.
27. Curnow, A. W.,, and G. A. Garcia. 1995. tRNA-guanine transglycosylase from Escherichia coli. Minimal tRNA structure and sequence requirements for recognition, J. Biol. Chem. 270: 17264 17267.
28. Curnow, A. W.,, F. Kung,, K. A. Koch,, and G. A. Garcia. 1993. tRNA-guanine transglycosylase from Escherichia coli: gross tRNA structural requirements for recognition. Biochemistry 32: 5239 5346.
29. de Araujo, A. C.,, and A. Favre. 1986. Near ultraviolet damage induces the SOS responses in Escherichia coli. EMBO J. 5: 175 179.
30. de Smit, M. H.,, and J. van Duin. 1990. Control of procaryotic translational initiation by mRNA secondary structure. Prog. Nucleic Acid Res. Mol. Biol. 38: 1 35.
31. Dihanich, M. E.,, D. Najarian,, R. Clark,, E. C. Gillman,, N. C. Martin,, and A. K. Hopper. 1987. Isolation and characterization of MODS, a gene required for isopentenylation of cytoplasmic and mitochondrial tRNAs of Saccharomyces cerevisiae. Mol. Cell. Biol. 7: 177 184.
32. Dirheimer, G.,, W. Baranowski,, and G. Keith. 1995. Variations of tRNA modifications, particularly of their queuine content in higher eukaryotes. Its relation to malignancy grading. Biochimie 77: 99 103.
33. Dong, H. J.,, L. Nilsson,, and C. G. Kurland. 1996. Co-variation of tRNA abundance and codon usage in Escherichia coli at different growth rates. J. Mol. Biol. 260: 649 663.
34. Eichler, D. C.,, and N. Craig. 1994. Processing of eukaryotic ribosomal RNA. Prog. Nucleic Acid Res. Mol. Biol. 49: 197 239.
35. Emilsson, V.,, and L. Nilsson. 1995. Factor for inversion stimulation-growth rate regulation of serine and threonine tRNA species. J. Biol. Chem. 270: 16610 16614.
36. Ericson, J. U.,, and G. R. Björk. 1986. Pleiotropic effects induced by modification deficiency next to the anticodon of tRNA from Salmonella typhimurium LT2. J. Bacteriol. 166: 1013 1021.
37. Esberg, B.,, and G. R. Björk. 1995. The methylthio group (ms 2) of N 6-(4-hydroxyisopentenyl)-2-methylthioadenosine (ms 2io 6A) present next to the anticodon contributes to the decoding efficiency of the tRNA. J. Bacteriol. 177: 1967 1975.
38. Favre, A.,, V. Chams,, and A. C. de Araujo. 1986. Photosensitized UVA light induction of the SOS response in Escherichia coli. Biochimie 68: 857 864.
39. Finkei, S. E.,, and R. C. Johnson. 1992. The Fis protein: it's not just for DNA inversion anymore. Mol. Microbiol. 6: 3257 3265.
40. Fleischmann, R. D.,, M. D. Adams,, O. White,, R. A. Clayton,, E. F. Kirkness,, A. R. Kerlavage,, C. J. Bult,, J. F. Tomb,, B. A. Dougherty,, J. M. Merrick, et al. 1995. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269: 496 512.
41. Gehrke, C. W.,, K. C. Kuo,, R. A. McCune,, and K. O. Gerhardt. 1982. Quantitative enzymatic hydrolysis of tRNAs. Reversed-phase high-performance chromatography of tRNA nucleosides. J. Chromatogr. 230: 297 308.
42. Gillman, E. C.,, L. B. Slusher,, N. C. Martin,, and A. K. Hopper. 1991. MODS translation initiation sites determine N 6-isopentenyladenosine modification of mitochondrial and cytoplasmic tRNA. Mol. Cell. Biol. 11: 2382 2390.
43. Gourse, R. L.,, T. Gall,, M. X. Bartlett,, J. A. Appleman,, and W. Ross. 1996. rRNA transcription and growth rate-dependent regulation of ribosome synthesis in Escherichia coli. Annu. Rev. Microbiol. 50: 645 677.
44. Green, C. J.,, and B. S. Void,. 1993. tRNA, tRNA processing, and aminoacyl-tRNA synthetases, p. 683 698. In A. L. Sonenshein,, J. A. Hoch,, and R. Losick (ed.), Bacillus subtilis and Other Gram-Positive Bacteria: Biochemistry, Physiology, and Molecular Genetics. ASM Press, Washington, D.C.
45. Grosjean, H.,, J. Edqvist,, K. B. Straby,, and R. Giegé. 1996. Enzymatic formation of modified nucleosides in tRNA: dependence on tRNA architecture. J. Mol. Biol. 255: 67 85.
46. Grosjean, H.,, Z. Szweykowska-Kulinska,, Y. Motorin,, F. Fasiolo,, and G. Simos. 1997. Intron-dependent enzymatic formation of modified nucleosides in eukaryotic tRNAs: a review. Biochimie 79: 293 302.
47. Gryczan, T. J.,, G. Grandi,, J. Hahn,, R. Grandi,, and D. Dubnau. 1980. Conformational alteration of mRNA structure and the posttranscriptional regulation of erythromycin-induced drug resistance. Nucleic Acids Res. 8: 6081 6097.
48. Gu, D.,, K. M. Ivanetich,, and D. V. Santi. 1996. Recognition of the T-arm of tRNA by tRNA (m 5U54)-methyltransferase is not sequence specific. Biochemistry 35: 11652 11659.
49. Gu, X.,, and D. V. Santi. 1991. The T-arm of tRNA is a substrate for tRNA (m 5U54)-methyltransferase. Biochemistry 30: 2999 3002.
50. Gustafsson, C.,, P. H. R. Lindström,, T. G. Hagervall,, K. B. Esberg,, and G. R. Björk. 1991. The trmA promoter has regulatory features and sequence elements in common with the rRNA P1 promoter family of Escherichia coli. J. Bacteriol. 173: 1757 1764.
51. Hagervall, T. G.,, J. U. Ericson,, K. B. Esberg,, J. Li,, and G. R. Björk. 1990. Role of tRNA modification in translational fidelity. Biochim. Biophys. Acta 1050: 263 266.
52. Holmes, W. M.,, C. Andraos-Selim,, and M. Redlak. 1995. tRNA-m lG methyltransferase interactions: touching bases with structure. Biochimie 77: 62 65.
53. Holmes, W. M.,, C. Andraos-Selim,, I. Roberts,, and S. Z. Wahab. 1992. Structure requirements for tRNA methylation. Action of Escherichia coli tRNA(guanosine-l)methyltransferase on tRNA 1 Leu structural variants. J. Biol. Chem. 267: 13440 13445.
54. Hopper, A. K. 1990. Genetic methods for study of trans-acting genes involved in processing of precursors of yeast cytoplasmic transfer RNAs. Meth. Enzymol. 181: 400 421.
55. Hopper, A. K.,, and N. C. Martin,. 1992. Processing of yeast cytoplasmic and mitochondrial precursor tRNAs, p. 99 142. In E. W. Jones,, J. R. Pringle,, and J. R. Broach (ed.), The Molecular and Cellular Biology of the Yeast Saccharomyces. Cold Spring Harbor Press, Plainview, N.Y..
56. Horinouchi, S.,, and B. Weisblum. 1980. Posttranscriptional modification of mRNA conformation: mechanism that regulates erythromycin-induced resistance. Proc. Natl. Acad. Sci. USA 77: 7079 7083.
57. Huisman, G. W.,, D. A. Siegle,, M. M. Zambrano,, and R. Kolter,. 1996. Morphological and physiological changes during stationary phase, p. 1672 1682. In F. C. Neidhardt,, R. Curtiss III,, J. L. Ingraham,, E. C. C. Lin,, K. B. Low,, B. Magasanik,, W. S. Reznikoff,, M. Riley,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd ed. ASM Press, Washington, D.C..
58. Inokuchi, H.,, and F. Yamao,. 1995 . Structure and expression of prokaryotic tRNA genes, p. 17 30. In D. Soil, and U. L. RajBhandary (ed.), tRNA: Structure, Biosynthesis, and Function. ASM Press, Washington, D.C..
59. Kammen, H. O.,, C. C. Marvel,, L. Hardy,, and E. E. Penhoet. 1988. Purification, structure, and properties of Escherichia coli tRNA pseudouridine synthase I. J. Biol. Chem. 263: 2255 2263.
60. Kealey, J. T.,, and D. V. Santi. 1995. Stereochemistry of tRNA(m 5U54)-methyltransferase catalysis: 19F NMR spectroscopy of an enzyme-FUraRNA covalent complex. Biochemistry 34: 2441 2446.
61. Keener, J.,, and M. Nomura,. 1996. Regulation of ribosome synthesis, p. 1417 1431. In F. C. Neidhardt,, R. Curtiss III,, J. L. Ingraham,, E. C. C. Lin,, K. B. Low,, B. Magasanik,, W. S. Reznikoff,, M. Riley,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd ed. ASM Press, Washington, D.C..
62. Kitchingman, G. R.,, and M. J. Fournier. 1977. Modification-deficient transfer ribonucleic acids from relaxed control Escherichia coli: structures of the major undermodified phenylalanine and leucine transfer tRNAs produced during leucine starvation. Biochemistry 16: 2213 2220.
63. Lafontaine, D.,, J. Delcour,, A.-L. Glasser,, J. Desgres,, and J. Vandenhaute. 1994. The DIM1 gene responsible for the conserved m 6 2Am 6 2A dimethylation in the 3'-terminal loop of 18S rRNA is essential in yeast. J. Mol. Biol. 241: 492 497.
64. Landick, R.,, C. L. Turnbough,, and C. Yanofsky,. 1996. Transcription attenuation, p. 1263 1286. In F. C. Neidhardt,, R. Curtiss III,, E. C. C. Lin,, K. B. Low,, B. Magasanik,, J. L. Ingraham,, W. S. Reznikoff,, M. Riley,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd ed. ASM Press, Washington, D.C..
65. Langgut, W.,, and T. Reisser. 1995. Involvement of protein kinase C in the control of tRNA modification with queuine in HeLa cells. Nucleic Acids Res. 23: 2488 2491.
66. Leung, H. C.,, Y. Chen,, and M. E. Winkler. 1997. Regulation of substrate recognition by the MiaA tRNA prenyltransferase modification enzyme of Escherichia coli K-12. J. Biol. Chem. 272: 13073 13083.
67. Leung, H.-C. E.,, and M. E. Winkler. 1997. Unpublished observation.
68. Leveque, F.,, S. Blanchin-Roland,, G. Fayat,, P. Plateau,, and S. Blanquet. 1990. Design and characterization of Escherichia coli mutants devoid of Ap 4N-hydrolase activity. J. Mol. Biol. 212: 319 329.
69. Limbach, P. A.,, P. F. Crain,, S. C. Pomerantz,, and J. A. McCloskey,. 1995. Appendix 1: structures of modified nucleosides, p. 551 555. In D. Soil, and U. L. RajBhandary (ed.), tRNA: Structure, Biosynthesis, and Function. ASM Press, Washington, D.C..
70. Lindström, P. H. R.,, D. Stiiber,, and G. R. Björk. 1985. Genetic organization and transcription from the gene (trmA) responsible for the synthesis of tRNA (uracil-5)-methyltransferase by Escherichia coli. J. Bacterial. 164: 1117 1123.
71. Marinus, M. G.,, N. R. Morris,, D. Soil, and T. C. Kwong. 1975. Isolation and partial characterization of three Escherichia coli mutants with altered transfer ribonucleic acid methylases. J. Bacteriol. 122: 257 265.
72. Martin, F.,, G. Eriani,, S. Eiler,, D. Moras,, G. Dirheimer,, and J. Gangloff. 1993. Overproduction and purification of native and queuine-lacking Escherichia coli tRNA Asp. J. Mol. Biol. 234: 965 974.
73. Martin, N. C, and A. K. Hopper. 1994. How single genes provide tRNA processing enzymes to mitochondria, nuclei and the cytosol. Biochimie 76: 1161 1167.
74. Marvel, C. C.,, P. J. Arps,, B. C. Rubin,, H. O. Kammen,, E. E. Penhoet,, and M. O. Winkler. 1985. hisT is part of a multigene operon in Escherichia coli K-12. J. Bacteriol. 161: 60 71.
75. McLennan, B. D. 1975. Enzymatic demodification of transfer RNA species containing N 6(delta 2-isopentenyl)adenosine. Biochem. Biophys. Res. Commun. 65: 345 351.
76. Moore, J. A.,, and C. D. Poulter. 1997. Escherichia coli dimethylallyl diphosphate:tRNA dimethylallyltransferase: a binding mechanism for recombinant enzyme. Biochemistry 36: 604 614.
77. Morgan, C. J.,, F. L. Merrill,, and R. W. Trewyn. 1996. Defective transfer RNA-queuine modification in C3H10T1/2 murine fibroblasts transfected with oncogenic ras. Cancer Res. 56: 594 598.
78. Morris, R. C.,, B. J. Brooks,, P. Eriotou,, D. F. Kelly,, S. Sagar,, K. L. Hart,, and M. S. Elliott. 1995. Activation of transfer RNA-guanine ribosyltransferase by protein kinase C. Nucleic Acids Res. 23: 2492 2498.
79. Morse, D. E.,, and C. Yanofsky. 1969. Amber mutants of the trpR regulatory gene. J. Mol. Biol. 44: 185 193.
80. Morse, D. E.,, and C. Yanofsky. 1968. The internal low-efficiency promoter of the tryptophan operon of Escherichia coli. J. Mol. Biol. 38: 447 451.
81. Muffler, A.,, D. Fischer,, and R. Hengge-Aronis. 1996. The RNA-binding protein HF-I, known as a host factor for phage RNA replication, is essential for RpoS translation in Escherichia coli. Genes Dev. 10: 1143 1151.
82. Muffler, A.,, D. D. Traulsen,, D. Fischer,, R. Lange,, and R. Hennge-Aronis. 1997. The RNA-binding protein HF-I plays a global regulatory role which is largely, but not exclusively due to its role in expression of the sigma S subunit of RNA polymerase in Escherichia coli. J. Bacteriol. 179: 297 300.
83. Narayanan, C. S.,, and D. Dubnau. 1987. An in vitro study of the translational attenuation model of ermC regulation. J. Biol. Chem. 262: 1756 1765.
84. Nilsson, L.,, and V. Emilsson. 1994. Factor for inversion stimulation-dependent growth rate regulation of individual tRNA species in Escherichia coli. J. Biol. Chem. 269: 9460 9465.
85. Nilsson, L.,, H. Verbeek,, E. Vijgenboom,, C. van Druen,, A. Vanet,, and L. Bosch. 1992. FIS-dependent trans activation of stable RNA operons of Escherichia coli under various growth conditions. J. Bacteriol. 174: 921 929.
86. Nishikura, K.,, and E. M. De Robertis. 1981. RNA processing in raicroinjected Xenopus oocytes. Sequential addition of base modifications in the spliced transfer RNA. J. Mol. Biol. 145: 405 420.
87. Nóguchi, S.,, T. Nishimura,, Y. Hirota,, and S. Nishimura. 1982. Isolation and characterization of an Escherichia coli mutant lacking tRNA-guanine transglycosylase. Function and biosynthesis of queuosine in tRNA. J. Biol. Chem. 257: 6544 6550.
88. Nurse, K.,, J. Wrzesinski,, A. Bakin,, B. G. Lane,, and J. Ofengand. 1995. Purification, cloning, and properties of the tRNA pseudouridine 55 synthase from Escherichia coli. RNA 1: 102 112.
89. Ny, T.,, and G. R. Björk. 1980. Growth rate-dependent regulation of transfer ribonucleic acid(5-methyluridine) methyltransferase in Escherichia coli B/r. J. Bacteriol. 141: 67 73.
90. Ny, T.,, and G. R. Björk. 1977. Stringent regulation of the synthesis of a transfer ribonucleic acid biosynthetic enzyme: transfer ribonucleic acid (m 5U) methyltransferase from Escherichia coli. J. Bacteriol. 130: 635 641.
91. Ny, T.,, P. H. R. Lindström,, T. G. Hagervall,, and G. R. Björk. 1988. Purification of transfer RNA (m sU54)-methyltransferase from Escherichia coli. Association with RNA. Eur. J. Biochem. 177: 467 475.
92. Ofengand, J.,, A. Bakin,, J. Wrzesinski,, K. Nurse,, and B. G. Lane. 1995. The pseudouridine residues of ribosomal RNA. Biochem. Cell. Biol. 73: 915 924.
93. Okada, N.,, and S. Nishimura. 1979. Isolation and characterization of a guanine insertion enzyme, a specific tRNA transglycosylase from Escherichia coli. J. Biol. Chem. 254: 3061 3066.
94. Okada, N.,, S. Noguchi,, S. Nishimura,, T. Ohgi,, T. Goto,, P. F. Crain,, and J. A. McCloskey. 1978. Structure determination of a nucleoside Q precursor isolated from E. coli: 7-(aminomethyl)-7-deazaguanosine. Nucleic Acids Res. 5: 2289 2296.
95. Pease, A. J.,, B. R. Roa,, K. A. Betchel,, and M. E. Winkler. Growth rate-dependent regulation of the Escherichia coli pdxA and pdxB genes, encoding proteins essential for pyridoxal phosphate coenzyme biosynthesis. Submitted for publication.
96. Persson, B. C. 1993. Modification of tRNA as a regulatory device. Mol. Microbiol. 8: 1011 1016.
97. Persson, B. C.,, and G. R. Björk. 1993. Isolation of the gene (miaE) encoding the hydroxylase involved in the synthesis of 2-methylthio- cis-ribozeatin in tRNA of Salmonella typhimurium and characterization of mutants. J. Bacteriol. 175: 7776 7785.
98. Persson, B. C.,, G. O. Bylund,, D. E. Berg,, and P. M. Wikström. 1995. Functional analysis of the ffh-trmD region of the Escherichia coli chromosome by using reverse genetics. J. Bacteriol. 177: 5554 5560.
99. Persson, B. C.,, C. Gustafsson,, D. E. Berg,, and G. R. Björk. 1992. The gene for a tRNA modifying enzyme, m 5U54-methyl-transferase, is essential for viability in Escherichia coli. Broc. Natl. Acad. Sci. USA 89: 3995 3998.
100. Petrullo, L. A.,, P. J. Gallagher,, and D. Elseviers. 1983. The role of 2-methylthio-N 6-isopentenyladenosine in readthrough and suppression of nonsense codons in Escherichia coli. Mol. Gen. Genet. 190: 289 294.
101. Pogliano, K. J.,, and J. Beckwith. 1994. Genetic and molecular characterization of the Escherichia coli secD operon and its products. J. Bacteriol. 176: 804 814.
102. Redlak, M.,, C. Andraosselim,, R. Giegé,, C. Florentz,, and W. M. Holmes. 1997. Interaction of tRNA with tRNA (guanosine-1) methyltransferase-binding specificity determinants involves the dinucleotide G(36)PG(37) and tertiary structure. Biochemistry 36: 8699 9709.
103. Reuter, K.,, and R. Ficner. 1995. Sequence analysis and overexpression of the Zymomonas mobilis tgt gene encoding tRNAguanine transglycosylase: purification and biochemical characterization of the enzyme. J. Bacteriol. 177: 5284 5288.
104. Reuter, K.,, R. Slany,, F. Ullrich,, and H. Kersten. 1991. Structure and organization of Escherichia coli genes involved in biosynthesis of the deazaguanine derivative queuine, a nutrient factor for eukaryotes. J. Bacteriol. 173: 2256 2264.
105. Roa, B. B.,, D. M. Connolly,, and M. E. Winkler. 1989. Overlap between pdxA and ksgA in the complex pdxA-ksgA-apaG-apaH operon of Escherichia coli K-12. J. Bacteriol. 171: 4767 4777.
106. Romier, C.,, K. Reuter,, D. Suck,, and R. Ficner. 1996. Crystal structure of tRNA-guanine transglycosylase: RNA modification by base exchange. EMBO J. 15: 2850 2857.
107. Rose, A. M.,, H. G. Belford,, W. C. Shen,, C. L. Greer,, A. K. Hopper,, and N. C. Martin. 1995. Location of N 2,N 2-dimethyl-guanosine-specific tRNA methyltransferase. Biochimie 77: 45 53.
108. Rouviere, P. E.,, and C. A. Gross. 1996. SurA, a periplasmic protein with peptidyl-prolyl isomerase activity, participates in the assembly of outer membrane porins. Genes Dev. 10: 3170 3182.
109. Sampson, J. R.,, and O. C. Uhlenbeck. 1988. Biochemical and physical characterization of an unmodified yeast phenylalanine transfer RNA transcribed in vitro. Broc. Natl. Acad. Sci. USA 85: 1033 1037.
110. Simos, G.,, H. Tekotte,, H. Grosjean,, A. Segref,, K. Sharma,, D. Tollervey,, and E. C. Hurt. 1996. Nuclear pore proteins are involved in the biogenesis of functional tRNA. EMBO J. 15: 2270 2284.
111. Slany, R. K.,, and H. Kersten. 1992. The promoter of the tgt/sec operon in Escherichia coli is preceded by an upstream activation sequence that contains a high affinity FIS binding site. Nucleic Acids Res. 16: 4193 4198.
112. Sylvers, A. A.,, K. C. Rogers,, M. Shimizu,, E. Ohtsuka,, and D. Söll. 1993. A 2-thiouridine derivative in tRNA Glu is a positive determinant for aminoacylation by Escherichia coli glutamyl-tRNA synthetase. Biochemistry 32: 3836 3841.
113. Tarassov, I. A.,, and R. P. Martin. 1996. Mechanisms of tRNA import into yeast mitochondria: an overview. Biochimie 78: 502 510.
114. Thomale, J.,, and G. Nass. 1978. Alterations of the intracellular concentration of aminoacyl-tRNA synthetases and isoaccepting tRNAs during amino-acid limited growth in Escherichia coli. Eur. J. Biochem. 85: 407 418.
115. Tormo, A.,, M. Almiron,, and R. Kolter. 1990. surA, an Escherichia coli gene essential for survival in stationary phase. J. Bacteriol. 172: 4339 4347.
116. Tsui, H. C. T.,, G. Feng,, and M. E. Winkler. 1996. Transcription of the mutL repair, miaA tRNA modification, hfq pleiotropic regulator, and hflA region protease genes of Escherichia coli K-12 from clustered E? 32-specific promoters during heat shock. J. Bacteriol. 178: 5719 5731.
117. Tsui, H. C. T.,, H. C. E. Leung,, and M. E. Winkler. 1994. Characterization of broadly pleiotropic phenotypes caused by an hfq insertion mutation in Escherichia coli K-12. Mol. Microbiol. 13: 35 49.
118. Tsui, H. C. T.,, and M. E. Winkler. 1994. Transcriptional patterns of the mutL-miaA superoperon of Escherichia coli K-12 suggest a model for posttranscriptional regulation. Biochimie 76: 1168 1177.
119. Tsui, H.-C. T.,, P. J. Arps,, D. M. Connolly,, and M. E. Winkler. 1991. Absence of fef'sT-mediated tRNA pseudouridylation results in a uracil requirement that interferes with Escherichia coli K-12 cell division. J. Bacteriol. 173: 7395 7400.
120. Tsui, H.-C. T.,, G. Feng,, and M. E. Winkler. 1997. Negative regulation of mutS and mutH repair gene expression by the Hfq and RpoS global regulators of Escherichia coli K-12. J. Bacteriol. 179: 7476 7487.
121. Tsui, H.-C. T.,, G. Zhao,, G. Feng,, H.-C. E. Leung,, and M. E. Winkler. 1994. The muth gene of Escherichia coli K-12 forms a superoperon with a gene encoding a new cell-wall amidase. Mol. Microbiol. 11: 189 202.
122. Turnbough, C. L.,, R. J. Neill,, R. Landsberg,, and B. N. Ames. 1979. Pseudouridylation of tRNAs and its role in regulation in Salmonella typhimurium. ]. Biol. Chem. 254: 5111 5119.
123. van Gemen, B.,, H. J. Koets,, C. A. M. Plooy,, J. Bodlaender,, and P. H. van Knippenberg. 1987. Characterization of the ksgA gene of Escherichia coli determining kasugamycin sensitivity. Biochimie 69: 841 848.
124. van Gemen, B.,, J. Twisk,, and P. H. van Knippenberg. 1989. Autogenous regulation of the Escherichia coli ksgA gene at the level of translation. J. Bacteriol. 171: 4002 4008.
125. Vellanoweth, R. L., 1993. Translation and its regulation, p. 699 712. In A. L. Sonenshein,, J. A. Hoch,, and R. Losick (ed.), Bacillus subtilis and Other Gram-positive Bacteria: Biochemistry, Physiology, and Molecular Genetics. ASM Press, Washington, D.C..
126. Vester, B.,, and S. Douthwaite. 1994. Domain V of 23S rRNA contains all the structural elements necessary for recognition by the ErmE methyltransferase. J. Bacteriol. 176: 6999 7004.
127. Wahab, S. Z.,, K. O. Rowley,, and W. M. Holmes. 1993. Effects of tRNA^" overproduction in Escherichia coli. Mol. Microbiol. 7: 253 263.
128. Wikström, P. M.,, and G. R. Björk. 1988. Noncoordinate translation-level regulation of ribosomal and nonribosomal protein genes in the Escherichia coli trmD operon. J. Bacteriol. 170: 3025 3031.
129. Wikström, P. M.,, and G. R. Björk. 1989. A regulatory element within a gene of a ribosomal protein operon of Escherichia coli negatively controls expression by decreasing the translational efficiency. Mol. Gen. Genet. 219: 381 389.
130. Wikström, P. M.,, L. K. Lind,, D. E. Berg,, and G. R. Björk. 1992. Importance of mRNA folding and start codon accessibility in the expression of genes in a ribosomal protein operon of Escherichia coli. J. Mol. Biol. 224: 949 966.
131. Wilson, R. K.,, and B. Roe. 1989. Presence of the hypermodified nucleotide N 6-(A 2-isopentenyl)-2-methylthioadenosine prevents codon misreading by Escherichia coli phenylalanyl-transfer RNA. Proc. Natl. Acad. Sci. USA 86: 409 413.
132. Wimmer, C.,, V. Doye,, P. Grandi,, U. Nehrbass,, and E. C. Hurt. 1992. A new subclass of nucleoporins that functionally interact with nuclear pore protein NSP1. EMBO J. 11: 5051 5061.
133. Winkler, M. E., 1996. Biosynthesis of histidine, p. 485 505. In F. C. Neidhardt,, R. Curtiss III,, E. C. C. Lin,, K. B. Low,, B. Magasanik,, J. L. Ingraham,, W. S. Reznikoff,, M. Riley,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella; Cellular and Molecular Biology, 2nd ed. ASM Press, Washington, D.C..
134. Winkler, M. E. 1997. Unpublished observation.
135. Wrzesinski, J.,, A. Bakin,, K. Nurse,, B. G. Lane,, and J. Ofengand. 1995. Purification, cloning, and properties of the 16S RNA pseudouridine 516 synthase from Escherichia coli. Biochemistry 34: 8904 8913.
136. Xue, H.,, A. L. Glasser,, J. Desgres,, and H. Grosjean. 1993. Modified nucleotides in Bacillus subtilis tRNA Trp hyperexpressed in Escherichia coli. Nucleic Acids Res. 21: 2479 2486.
137. Yanofsky, C.,, and L. Soli. 1977. Mutations affecting tRNA Trp and its charging and their effect on regulation of transcription at the attenuator of the tryptophan operon. J. Mol. Biol. 113: 663 677.
138. Zoladek, T.,, A. Tobiasz,, G. Vaduva,, M. Boguta,, N. C. Martin,, and A. K. Hopper. 1997. MDP1, a Saccharomyces cerevisiae gene involved in mitochondrial/cytoplasmic protein distribution, is identical to the ubiquitin-protein ligase gene RSP5. Genetics 145: 595 603.
139. Zoladek, T.,, G. Vaduva,, L. A. Hunter,, M. Boguta,, B. D. Go,, N. C. Martin,, and A. K. Hopper. 1995. Mutations altering the mitochondrial-cytoplasmic distribution of Mod5p implicate the actin cytoskeleton and mRNA 3' ends and/or protein synthesis in mitochondrial delivery. Mol. Cell. Biol. 15: 6884 6894.

Tables

Generic image for table
Table 1

Summary of known modes of regulation of tRNA and rRNA modification genes in prokaryotes and eukaryotes

Citation: Winkler M. 1998. Genetics and Regulation of Base Modification in the tRNA and rRNA of Prokaryotes and Eukaryotes, p 441-469. In Grosjean H, Benne R (ed), Modification and Editing of RNA. ASM Press, Washington, DC. doi: 10.1128/9781555818296.ch25

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error