1887

Chapter 14 : Herpes Simplex Virus DNA Replication and Genome Maturation

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Herpes Simplex Virus DNA Replication and Genome Maturation, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818302/9781555810986_Chap14-1.gif /docserver/preview/fulltext/10.1128/9781555818302/9781555810986_Chap14-2.gif

Abstract:

This chapter gives an overview on the replication and maturation of the herpes simplex virus type 1 (HSV-1) genome, drawing parallels with phage systems. It provides an overview of what is known about HSV DNA replication and recombination under the sections Formation of circular DNA Intermediates, Formation of greater-than-unit-length replication intermediates, Resolution of branched recombination intermediates, and Cleavage of concatemers into unit-length virion DNA and packaging of unit-length virion DNA into capsids. The chapter concentrates on the helicase-primase (UL5, UL8, and UL52) and the origin-binding protein (UL9). The study of transdominant mutations has proven to be a powerful tool for characterizing specific regions of multifunctional proteins. Several lines of evidence indicate that overexpression of the wild-type UL9 protein can be inhibitory to viral replication. First, in trans-dominance assays, plasmids that express wild-type UL9 are somewhat inhibitory to plaque formation by wild-type virus. Second, complementing cell lines that contain high copy numbers of a UL9 expression plasmid do not efficiently support wild-type HSV-1 infection are reported. The third line of evidence comes from experiments in which the HSV replication proteins are expressed in insect cells from recombinant baculoviruses. Several lines of evidence suggest that viral genome maturation involves site-specific cleavage of viral DNA concatemers. Genetic analysis has provided important insights not only into the identification of viral proteins required in DNA replication and genome maturation but also into their roles in these complex processes.

Citation: Weller S. 1995. Herpes Simplex Virus DNA Replication and Genome Maturation, p 189-213. In Cooper G, Temin R, Sugden B (ed), The DNA Provirus. ASM Press, Washington, DC. doi: 10.1128/9781555818302.ch14

Key Concept Ranking

Gene Expression and Regulation
0.576261
DNA Synthesis
0.46418443
Herpes simplex virus 1
0.42303926
0.576261
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Model of T4 DNA replication and recombination. Recombination-dependent late DNA replication of T4 is depicted here. The topmost sketch represents a linear molecule that has replicated at an origin of replication. At the end of the molecule, a free 3' end that cannot be replicated is generated. (A) The 3' end of the parental DNA strand invades a homologous segment of another molecule. (B) Leading-strand synthesis can be primed from the 3' end of the invading DNA strand. Lagging-strand synthesis would require the activity of primase. (C) This process can be repeated with a new 3' end invading another molecule. Heavy solid lines represent parental DNA molecules. Thin solid lines represent DNA synthesized following initiation at an origin of replication. Thin dashed lines represent DNA synthesized following recombination events. This figure was based on the model of T4 DNA replication described by Mosig ( ).

Citation: Weller S. 1995. Herpes Simplex Virus DNA Replication and Genome Maturation, p 189-213. In Cooper G, Temin R, Sugden B (ed), The DNA Provirus. ASM Press, Washington, DC. doi: 10.1128/9781555818302.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Locations of HSV origins and genes encoding DNA synthetic functions. The sequence arrangement of the HSV-1 genome is shown on the top line. Locations of the origins of DNA replication are depicted on the second line. On the third line are map locations of genes that encode functions involved in DNA synthesis. Genes and origins are not drawn to scale.

Citation: Weller S. 1995. Herpes Simplex Virus DNA Replication and Genome Maturation, p 189-213. In Cooper G, Temin R, Sugden B (ed), The DNA Provirus. ASM Press, Washington, DC. doi: 10.1128/9781555818302.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Conserved helicase motifs and motif mutations in The gene is shown with six black boxes depicting each of the motifs shared within a superfamily of helicases. Below are shown the mutations introduced into conserved residues within each motif ( ). aas, amino acids.

Citation: Weller S. 1995. Herpes Simplex Virus DNA Replication and Genome Maturation, p 189-213. In Cooper G, Temin R, Sugden B (ed), The DNA Provirus. ASM Press, Washington, DC. doi: 10.1128/9781555818302.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Conserved helicase motifs and motif mutations in The gene is shown with six black boxes depicting each of the motifs shared within a superfamily of helicases. The putative leucine zipper within the N-terminal portion of is represented by a hatched box overlapping motif II. The DNA-binding C-terminal domain is depicted by a stippled box. Below are shown the mutations introduced into conserved residues within each motif ( ). aas, amino acids.

Citation: Weller S. 1995. Herpes Simplex Virus DNA Replication and Genome Maturation, p 189-213. In Cooper G, Temin R, Sugden B (ed), The DNA Provirus. ASM Press, Washington, DC. doi: 10.1128/9781555818302.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818302.chap14
1. Addison, C.,, F. J. Rixon,, and V. G. Preston. 1990. Herpes simplex virus type 1 UL28 gene product is important for the formation of mature capsids. J. Gen. Virol. 71:23772384.
2. Al-Kobaisi, M. F.,, F. J. Rixon,, I. McDougall,, and V. G. Preston. 1991. The herpes simplex virus UL33 gene product is required for the assembly of full capsids. Virology 180:380388.
3. Amundsen, S. K.,, and D. S. Parris. 1984. Detection of herpes simplex virus intertypic recombinant genomes in infected cell DNA. J. Virol. Methods 8:1925.
4. Arbuckle, M. I.,, and N. D. Stow. 1993. A mutational analysis of the DNA-binding domain of the herpes simplex virus type 1 UL9 protein. J. Gen. Virol. 74:13491355.
5. Baines, J. D.,, A. P. W. Poon,, and B. Roizman. 1994. The herpes simplex virus 1 UL 15 gene encodes two proteins and is required for cleavage of genomic viral DNA. J. Virol. 68:81188124.
6. Banks, L.,, D. J. Purifoy,, P. F. Hurst,, R. A. Killington,, and K. L. Powell. 1983. Herpes simplex virus non-structural proteins. IV. Purification of the virus-induced deoxyribonuclease and characterization of the enzyme using monoclonal antibodies. J. Gen. Virol. 64:22492260.
7. Banks, L. M.,, I. W. Halliburton,, D. J. M. Purifoy,, R. A. Killington,, and K. L. Powell. 1985. Studies on the herpes simplex virus alkaline nuclease: detection of type-common and type-specific epitopes on the enzyme. J. Gen. Virol. 66:114.
8. Bataille, D.,, and A. Epstein. 1994. Herpes simplex virus replicative concatemers contain L components in inverted orientation. Virology 203:384388.
9. Bates, P.,, J. A. Young,, and H. E. Varmus. 1993. A receptor for subgroup A Rous sarcoma virus is related to the low density lipoprotein receptor. Cell 74:10431051.
10. Bayliss, G. J.,, H. S. Marsden,, and J. Hay. 1975. Herpes simplex virus proteins: DNA-binding proteins in infected cells and the virus structure. Virology 68:124134.
11. Bazinet, C.,, and J. King. 1985. The DNA translocating vertex of DSDNA bacteriophage. Annu. Rev. Microbiol. 39:109129.
12. Ben-Porat, T.,, and F. J. Rixon. 1979. Replication of herpesvirus DNA. IV. Analysis of concatemers. Virology 94:6170.
13. Ben-Porat, T.,, F. J. Rixon,, and M. L. Blankenship. 1979. Analysis of the structure of the genome of pseudorabies virus. Virology 95:285294.
14. Ben-Porat, T.,, and S. A. Tokazewski. 1977. Replication of herpesvirus DNA. II. Sedimentation characteristics of newly synthesized DNA. Virology 79:292301.
15. Black, L. 1989. DNA packaging in ds DNA bacteriophages. Annu. Rev. Microbiol. 43:267292.
16. Black, L. W.,, M. K. Showe,, and A. C. Steven,. 1995. Morphogenesis of the T4 head, p. 219245. In C. K. Mathews,, E. M. Kutter,, G. Mosig,, and P. B. Berget (ed.), Bacteriophage T4. American Society for Microbiology, Washington, D.C.
17. Boehmer, P. E.,, M. C. Craigie,, N. D. Stow,, and I. R. Lehman. 1994. Association of origin binding protein and single strand DNA-binding protein, ICP8, during herpes simplex virus type 1 DNA replication in vivo. J. Biol. Chem. 269:2932929334.
18. Boehmer, P. E.,, M. S. Dodson,, and I. R. Lehman. 1993. The herpes simplex virus type-1 origin binding protein. DNA helicase activity. J. Biol. Chem. 268:12201225.
19. Boehmer, P. E.,, and I. R. Lehman. 1993. Herpes simplex virus type 1 1CP8: helix-destabilizing properties. J. Virol. 67:711715.
20. Boehmer, P. E.,, and I. R. Lehman. 1993. Physical interaction between the herpes simplex virus 1 origin-binding protein and single-stranded DNA-binding protein 1CP8. Proc. Natl. Acad. Sci. USA 90:84448448.
21. Bortner, C.,, T. R. Hernandez,, I. R. Lehman,, and J. Griffith. 1993. Herpes simplex virus 1 single-strand DNA-binding protein (ICP8) will promote homologous pairing and strand transfer. J. Mol. Biol. 231:241250.
22. Bruckner, R. C.,, J. J. Crute,, M. S. Dodson,, and I. R. Lehman. 1991. The herpes simplex virus 1 origin binding protein: a DNA helicase. J. Biol. Chem. 266:26692674.
23. Bush, M.,, D. R. Yager,, M. Gao,, K. Weisshart,, A. I. Marcy,, D. M. Coen,, and D. M. Knipe. 1991. Correct intranuclear localization of herpes simplex virus DNA polymerase requires the viral ICP8 DNA-binding protein. J. Virol. 65:10821089.
24. Cairns, J. 1963. The chromosome of Escherichia coli. Cold Spring Harbor Symp. Quant. Biol. 28:4346.
25. Calder, J. M.,, E. C. Stow,, and N. D. Stow. 1992. On the cellular localization of the components of the herpes simplex virus type 1 helicase-primase complex and the viral origin-binding protein. J. Gen. Virol. 73:531538.
26. Calder, J. M.,, and N. D. Stow. 1990. Herpes simplex virus helicase-primase: the UL8 protein is not required for DNA-dependent ATPase and DNA helicase activities. Nucleic Acids Res. 18: 35733578.
27. Carmichael, E. P.,, M. J. Kosovsky,, and S. K. Weller. 1988. Isolation and characterization of herpes simplex virus type 1 host range mutants defective in viral DNA synthesis. J. Virol. 62: 9199.
28. Carmichael, E. P.,, and S. K. Weller. 1989. Herpes simplex virus type 1 DNA synthesis requires the product of the UL8 gene: isolation and characterization of an ICP6:: lacZ insertion mutation. J. Virol. 63:591599.
29. Coen, D. M. 1992. Molecular aspects of anti-herpesvirus drugs. Semin. Virol. 3:312.
30. Conley, A. J.,, D. M. Knipe,, P. C. Jones,, and B. Roizman. 1981. Molecular genetics of herpes simplex virus. VII. Characterization of a temperature-sensitive mutant produced by in vitro mutagenesis and defective in DNA synthesis and accumulation of κ polypeptides. J. Virol. 37: 191206.
31. Crute, J. J.,, and I. R. Lehman. 1989. Herpes simplex-1 DNA polymerase: identification of an intrinsic 5'-3' exonuclease with ribonuclease H activity. J. Biol. Chem. 264:1926619270.
32. Crute, J. J.,, T. Tsurumi,, L. Zhu,, S. K. Weller,, P. D. Olivo,, M. D. Challberg,, E. S. Mocarski,, and I. R. Lehman. 1989. Herpes simplex virus 1 helicase-primase: a complex of three herpes-encoded gene products. Proc. Natl. Acad. Sci. USA 86:21862189.
33. Davison, A. J. 1992. Channel catfish virus: a new type of herpesvirus. Virology 186:914.
34. Davison, A. J.,, and N. M. Wilkie. 1981. Nucleotide sequences of the joint between the L and S segments of herpes simplex virus types 1 and 2. J. Gen. Virol. 55:315331.
35. Dean, F. B.,, P. Bullock,, Y. Murakami,, C. R. Wobbe,, L. Weissbach,, and J. Hurwitz. 1987. Simian virus 40 (SV40) DNA replication: SV40 large T antigen unwinds DNA containing the SV40 origin of replication. Proc. Natl. Acad. Sci. USA 84:1620.
36. Dean, F. B.,, M. Dodson,, H. Echols,, and J. Hurwitz. 1987. ATP-dependent formation of a specialized nucleoprotein structure by simian virus 40 (SV40) large tumor antigen at the SV40 replication origin. Proc. Natl. Acad. Sci. USA 84:89818985.
37. Deb, S.,, and S. P. Deb. 1991. A 269-amino-acid segment with a pseudo-leucine zipper and a helix-turn-helix motif codes for the sequence-specific DNA-binding domain of herpes simplex virus type 1 origin-binding protein. J. Virol. 65:28292838.
38., de Bruyn Kops, A.,, and D. M. Knipe. 1988. Formation of DNA replication structures in herpes virus-infected cells requires a viral DNA binding protein. Cell 55:857868.
39. Deiss, L. P.,, J. Chou,, and N. Frenkel. 1986. Functional domains within the a sequence involved in the cleavage-packaging of herpes simplex virus DNA. J. Virol. 59:605618.
40. Dodson, M.,, F. B. Dean,, P. Bullock,, H. Echols,, and J. Hurwitz. 1987. Unwinding of duplex DNA from the SV40 origin of replication by T antigen. Science 238:964967.
41. Dodson, M. S.,, J. J. Crute,, R. C. Bruckner,, and I. R. Lehman. 1989. Overexpression and assembly of the herpes simplex virus type 1 helicase-primase in insect cells. J. Biol. Chem. 264:2083520838.
42. Elias, P.,, C. M. Gustafsson,, O. Hammarsten,, and N. D. Stow. 1992. Structural elements required for the cooperative binding of the herpes simplex virus origin binding protein to oriS reside in the N-terminal part of the protein. J. Biol. Chem. 267:1742417429.
43. Fauci, A. S. 1988. The human immunodeficiency virus: infectivity and mechanisms of pathogenesis. Science 239:617622.
44. Fierer, D. S.,, and M. D. Challberg. 1992. Purification and characterization of UL9, the herpes simplex virus type 1 origin-binding protein. J. Virol. 66:39863995.
45. Friedmann, A.,, J. E. Coward,, H. S. Rosenkranz,, and C. Morgan. 1975. Electron microscopic studies on assembly of herpes simplex virus upon removal of hydroxyurea block. J. Gen. Virol. 26:171181.
46. Gao, M.,, and D. M. Knipe. 1991. Potential role for herpes simplex virus ICP8 DNA replication protein in stimulation of late gene expression. J. Virol. 65:26662675.
47. Garber, D. A.,, S. M. Beverley,, and D. M. Coen. 1993. Demonstration of circularization of herpes simplex virus DNA following infection using pulsed field gel electrophoresis. Virology 197: 459462.
48. Gauss, P.,, K. Park,, T. E. Spencer,, and K. J. Hacker. 1994. DNA helicase requirements for DNA replication during bacteriophage T4 infection. J. Bacteriol. 176:16671672.
49. Gibbs, J. S.,, H. C. Chiou,, J. D. Hall,, D. W. Mount,, M. J. Retondo,, S. K. Weller,, and D. M. Coen. 1985. Sequence and mapping analyses of the herpes simplex virus DNA polymerase gene predict a C-terminal substrate binding domain. Proc. Natl. Acad. Sci. USA 82:79697973.
50. Gilbert, J. M.,, P. Bates,, H. E. Varmus,, and J. M. White. 1994. The receptor for the subgroup A avian leukosis-sarcoma viruses binds to subgroup A but not to subgroup C envelope glycoprotein. J. Virol. 68:56235628.
51. Gilbert, W.,, and D. Dressier. 1968. DNA replication: the rolling circle model. Cold Spring Harbor Symp. Quant. Biol. 33:473484.
52. Godowski, P. J.,, and D. M. Knipe. 1985. Identification of a herpes simplex virus function that represses late gene expression from parental viral genomes. J. Virol. 55:357365.
53. Godowski, P. J.,, and D. M. Knipe. 1986. Transcriptional control of herpesvirus gene expression: gene functions required for positive and negative regulation. Proc. Natl. Acad. Sci. USA 83: 256260.
54. Goodrich, L. D.,, P. A. Schaffer,, D. I. Dorsky,, C. S. Crumpacker,, and D. S. Parris. 1990. Localization of the herpes simplex virus type 1 65-kilodalton DNA-binding protein and DNA polymerase in the presence and absence of viral DNA synthesis. J. Virol. 64:57385749.
55. Gorbalenya, A. E.,, E. V. Koonin,, A. P. Donchenko,, and V. M. Blinov. 1988. A conserved NTP-motif in putative helicases. Nature (London) 333:2223.
56. Gorbalenya, A. E.,, E. V. Koonin,, A. P. Donchenko,, and V. M. Blinov. 1988. A novel superfamily of nucleoside triphosphate-binding motif containing proteins which are probably involved in duplex unwinding in DNA and RNA replication and recombination. FEBS Lett. 235:1624.
57. Gorbalenya, A. E.,, E. V. Koonin,, A. P. Donchenko,, and V. M. Blinov. 1989. Two related superfamilies of putative helicases involved in replication, recombination, repair and expression of DNA and RNA genomes. Nucleic Acids Res. 17:47134730.
58. Gottlieb, J.,, and M. D. Challberg. 1994. Interaction of herpes simplex virus type 1 DNA polymerase and the UL42 accessory protein with a model primer template. J. Virol. 68:49374945.
59. Gottlieb, J.,, A. I. Marcy,, D. M. Coen,, and M. D. Challberg. 1990. The herpes simplex virus type 1 UL42 gene product: a subunit of DNA polymerase that functions to increase processivity. J. Virol. 64:59765987.
59a.. Graves, K. L.,, and S. K. Weller. Unpublished data.
60. Hayward, G. S.,, R. J. Jacob,, S. C. Wadsworth,, and B. Roizman. 1975. Anatomy of herpes simplex virus DNA: evidence for four populations of molecules that differ in the relative orientations of their long and short components. Proc. Natl. Acad. Sci. USA 72:42434247.
61. Hernandez, T. R.,, and I. R. Lehman. 1990. Functional interaction between the herpes simplex-1 DNA polymerase and UL42 protein. J. Biol. Chem. 265:1122711232.
62. Herskowitz, I. 1987. Functional inactivation of genes by dominant negative mutations. Nature (London) 329:219222.
63. Hirsch, I.,, G. Cabral,, M. Patterson,, and N. Biswal. 1977. Studies on intracellular replicating DNA of herpes simplex virus type 1. Virology 81:4861.
64. Hodgman, T. C. 1988. A new superfamily of replicative proteins. Nature (London) 333:2223.
65. Hoffmann, P. J.,, and Y.-C. Cheng. 1978. The deoxyribonuclease induced after infection of KB cells by herpes simplex virus type 1 or type 2.1. Purification and characterization of the enzyme. J. Biol. Chem. 253:35573562.
66. Igarashi, K.,, R. Fawl,, R. J. Roller,, and B. Roizman. 1993. Construction and properties of a recombinant herpes simplex virus 1 lacking both S-component origins of DNA synthesis. J. Virol. 67:21232132.
67. Jacob, R. J.,, L. S. Morse,, and B. Roizman. 1979. Anatomy of herpes simplex virus DNA. XII. Accumulation of head to tail concatemers in the nuclei of infected cells and their role in the generation of four isomeric arrangements of viral DNA. J. Virol. 29:448457.
68. Jacob, R. J.,, and B. Roizman. 1977. Anatomy of herpes simplex virus DNA. VIII. Properties of the replicating DNA. J. Virol. 23:394411.
69. Jongeneel, C. V.,, and S. L. Bachenheimer. 1981. Structure of replicating herpes simplex virus DNA. J. Virol. 39:656660.
70. Keir, H. M.,, and E. Gold. 1963. Deoxyribonucleic acid nucleotidyltransferase and deoxyribonuclease from cultured cells infected with herpes simplex virus. Biochim. Biophys. Acta 72:263276.
71. Kemper, B.,, and D. T. Brown. 1976. Function of gene 49 of bacteriophage T4. II. Analysis of intracellular development and the structure of very fast-sedimenting DNA. J. Virol. 18: 10001015.
72. Kemper, B.,, M. Garabett,, and U. Courage. 1981. Studies on the function of gene 49 controlled endonuclease of phage T4 (endonuclease VII). Prog. Clin. Biol. Res. 64:151166.
73. King, G. J.,, and W. M. Huang. 1982. Identification of the origins of T4 DNA replication. Proc. Natl. Acad. Sci. USA 79:72487252.
74. Klinedinst, D. K.,, and M. D. Challberg. 1994. Helicase-primase complex of herpes simplex virus type 1: a mutation in the UL52 subunit abolishes primase activity. J. Virol. 68:36933701.
75. Knipe, D. M. 1989. The role of viral and cellular nuclear proteins in herpes simplex virus replication. Adv. Virus Res. 37:85123.
76. Knopf, K. W. 1979. Properties of herpes simplex virus DNA polymerase and characterization of its associated exonuclease activity. Eur. J. Biochem. 98:231244.
77. Ladin, B. F.,, M. L. Blankenship,, and T. Ben-Porat. 1980. Replication of herpesvirus DNA. V. Maturation of concatemeric DNA of pseudorabies virus to genome length is related to capsid formation. J. Virol. 33:11511164.
78. Ladin, B. F.,, S. Ihara,, H. Hampl,, and T. Ben-Porat. 1982. Pathway of assembly of herpesvirus capsids: an analysis using DNA + temperature-sensitive mutants of pseudorabies virus. Virology 116:544561.
78a.. Lamberti, C.,, and S. K. Weller. Unpublished data.
79. Luder, A.,, and G. Mosig. 1982. Two alternative mechanisms for initiation of DNA replication forks in bacteriophage T4: priming by RNA polymerase and by recombination. Proc. Natl. Acad. Sci. USA 79:11011105.
79a.. Lukonis, C. J.,, A. K. Malik,, and S. K. Weller. Unpublished data.>
79b.. Lukonis, C. J.,, and S. K. Weller. Unpublished data.
80. Malik, A. K.,, R. Martinez,, L. Muncy,, E. P. Carmichael,, and S. K. Weller. 1992. Genetic analysis of mutations in the HSV-1 UL9 origin specific DNA binding protein: isolation of an ICP6: :lacZ insertion mutant. Virology 190:702715.
80a.. Malik, A. K.,, and S. K. Weller. Unpublished data.
81. Manaker, R. A.,, and V. Groupe. 1956. Discrete foci of altered chicken embryo cell associated with Rous sarcoma virus in tissue culture. Virology 2:838840.
82. Marcy, A. I.,, P. D. Olivo,, M. D. Challberg,, and D. M. Coen. 1990. Enzymatic activities of overexpressed herpes simplex virus DNA polymerase purified from recombinant baculovirus-infected insect cells. Nucleic Acids Res. 18:12071215.
83. Martin, D. W.,, R. M. Munoz,, D. Oliver,, M. A. Subler,, and S. Deb. 1994. Analysis of the DNA-binding domain of the HSV-1 origin-binding protein. Virology 198:7180.
84. Martinez, R.,, L. Shao,, and S. K. Weller. 1992. The conserved helicase motifs of the herpes simplex virus type 1 origin-binding protein UL9 are important for function. J. Virol. 66:67356746.
84a.. Martinez, R.,, and S. K. Weller. Unpublished data.
85. Matthews, J. T.,, B. J. Terry,, and A. K. Field. 1993. The structure and function of the HSV DNA replication proteins: defining novel antiviral targets. Antiviral Res. 20:89114.
86. Matz, B.,, S. J. H. Subak,, and V. G. Preston. 1983. Physical mapping of temperature-sensitive mutations of herpes simplex virus type I using cloned restriction endonuclease fragments. J. Gen. Virol. 64:22612270.
87. McGeoch, D. J.,, M. A. Dalrymple,, A. J. Davison,, A. Dolan,, M. C. Frame,, D. McNab,, L. J. Perry,, J. E. Scott,, and P. Taylor. 1988. The complete DNA sequence of the long unique region in the genome of herpes simplex virus type 1. J. Gen. Virol. 69:15311574.
88. McLean, G. W.,, A. P. Abbotts,, M. E. Parry,, H. S. Marsden,, and N. D. Stow. 1994. The herpes simplex virus type 1 origin-binding protein interacts specifically with the viral UL8 protein. J. Gen. Virol. 75:26992706.
89. Mizuuchi, K.,, B. Kemper,, H. Hays,, and R. A. Wiesberg. 1988. T4 endonuclease VII cleaves Holliday structures. Cell 29:357365.
90. Mocarski, E. S.,, and B. Roizman. 1982. Herpesvirus-dependent amplification and inversion of cell-associated viral thymidine kinase gene flanked by viral a sequences and linked to an origin of viral DNA replication. Proc. Natl. Acad. Sci. USA 79:56265630.
91. Mocarski, E. S.,, and B. Roizman. 1982. Structure and role of the herpes simplex virus DNA termini in inversion, circularization and generation of virion DNA. Cell 31:8997.
92. Morgan, A. R.,, and A. Severini. 1990. Interconversion of replication and recombination structures: implications for terminal repeats and concatemers. J. Theor. Biol. 144:195202.
93. Mosig, G.,, 1983. Relationship of T4 DNA replication and recombination, p. 120130. In C. K. Mathews,, E. M. Kutter,, G. Mosig,, and P. B. Berget (ed.), Bacteriophage T4. American Society for Microbiology, Washington, D.C.
94. Mosig, G. 1987. The essential role of recombination in phage T4 growth. Annu. Rev. Genet. 21: 347371.
95. Nasseri, M.,, and E. S. Mocarski. 1988. The cleavage recognition signal is contained within sequences surrounding an a-a junction in herpes simplex virus DNA. Virology 167:2530.
96. Nossal, N. G. 1992. Protein-protein interactions at a DNA replication fork: bacteriophage T4 as a model. FASEB J. 6:871878.
97. O'Callaghan, D. J.,, M. C. Kemp,, and C. C. Randall. 1977. Properties of nucleocapsid species isolated from an in vivo herpesvirus infection. J. Gen. Virol. 37:585594.
98. O'Donnell, M. E.,, P. Elias,, and I. R. Lehman. 1987. Processive replication of single-stranded DNA templates by the herpes simplex virus-induced DNA polymerase. J. Biol. Chem. 262: 42524259.
99. Olivo, P. D.,, and M. D. Challberg,, 1990. Functional analysis of the herpes simplex virus gene products involved in DNA replication, p. 137150. In E. Wagner (ed.), Herpesvirus Transcription and Its Regulation. CRC Press, Inc., Boca Raton, Fla.
100. Olivo, P. D.,, N. J. Nelson,, and M. D. Challberg. 1989. Herpes simplex virus type 1 gene products required for DNA replication: identification and overexpression. J. Virol. 63:196204.
101. Pauza, C. D.,, J. E. Galindo,, and D. D. Richman. 1990. Reinfection results in accumulation of unintegrated viral DNA in cytopathic and persistent human immunodeficiency virus type 1 infection of CEM cells. J. Exp. Med. 172:10351042.
102. Perry, H. C.,, D. J. Hazuda,, and W. L. McClements. 1993. The DNA binding domain of herpes simplex virus type 1 origin binding protein is a transdominant inhibitor of virus replication. Virology 193:7379.
103. Poffenberger, K. L.,, and B. Roizman. 1985. A noninverting genome of a viable herpes simplex virus 1: presence of head-to-tail linkages in packaged genomes and requirements for circularization after infection. J. Virol. 53:587595.
104. Polvino, B. M.,, P. K. Orberg,, and P. A. Schaffer. 1987. Herpes simplex virus type 1 oriL is not required for virus replication or for the establishment and reactivation of latent infection in mice. J. Virol. 61:35283535.
105. Poon, A. P.,, and B. Roizman. 1993. Characterization of a temperature-sensitive mutant of the UL15 open reading frame of herpes simplex virus 1. J. Virol. 67:44974503.
106. Powell, D.,, J. Franklin,, F. Arisaka,, and G. Mosig. 1990. Bacteriophage T4 DNA packaging genes 16 and 17. Nucleic Acids Res. 18:4005.
107. Powell, K.,, and D. J. M. Purifoy. 1976. DNA-binding proteins of cells infected by herpes simplex virus type 1 and 2. Intervirology 7:225239.
108. Powell, K. L.,, E. Littler,, and D. J. Purifoy. 1981. Nonstructural proteins of herpes simplex virus. II. Major virus-specific DNA-binding protein. J. Virol. 39:894902.
109. Preston, V. G.,, J. A. Coates,, and F. J. Rixon. 1983. Identification and characterization of a herpes simplex virus gene product required for encapsidation of virus DNA. J. Virol. 45:10561064.
110. Quinlan, M. P.,, L. B. Chen,, and D. M. Knipe. 1984. The intranuclear location of a herpes simplex virus DNA-binding protein is determined by the status of viral DNA replication. Cell 36:857868.
111. Quinn, J. P.,, and D. J. McGeoch. 1985. DNA sequence of the region in the genome of herpes simplex virus type 1 containing the genes for DNA polymerase and the major DNA binding protein. Nucleic Acids Res. 13:81438163.
112. Rixon, F. J.,, A. M. Cross,, C. Addison,, and V. G. Preston. 1988. The products of herpes simplex virus type 1 gene UL26 which are involved in DNA packaging are strongly associated with empty but not with full capsids. J. Gen. Virol. 69:28792891.
113. Ruyechan, W. T. 1983. The major herpes simplex virus DNA-binding protein holds single-stranded DNA in an extended configuration. J. Virol. 46:661666.
114. Ruyechan, W. T.,, and A. C. Weir. 1984. Interaction with nucleic acids and stimulation of the viral DNA polymerase by the herpes simplex virus type 1 major DNA-binding protein. J. Virol. 52:727733.
115. Sarisky, R. T.,, and P. C. Weber. 1994. Requirement for double-strand breaks but not for specific DNA sequences in herpes simplex virus type 1 genome isomerization events. J. Virol. 68:3447.
116. Schimmel, P. 1990. Hazards and their exploitation in the applications of molecular biology of structure-function relationships. Biochemistry 29:94959502.
117. Severini, A.,, A. R. Morgan,, D. R. Tovell,, and L. J. Tyrrel. 1994. Study of the structure of replicative intermediates of HSV-1 DNA by pulsed-field gel electrophoresis. Virology 200: 428435.
117a.. Shao, L.,, L. M. Rapp,, and S. K. Weller. 1993. Herpes simplex virus 1 alkaline nuclease is required for efficient egress of capsids from the nucleus. Virology 196:146162.
118. Sheldrick, P.,, and N. Berthelot. 1975. Inverted repetitions in the chromosome of herpes simplex virus. Cold Spring Harbor Symp. Quant. Biol. 2:667678.
119. Sherman, G.,, and S. Bachenheimer. 1987. DNA processing in temperature-sensitive morphogenic mutants of HSV-1. Virology 158:427430.
120. Sherman, G.,, and S. L. Bachenheimer. 1988. Characterization of intranuclear capsids made by ts morphogenic mutants of HSV-1. Virology 163:471480.
121. Sherman, G.,, J. Gottlieb,, and M. D. Challberg. 1992. The UL8 subunit of the herpes simplex virus helicase-primase complex is required for efficient primer utilization. J. Virol. 66:48844892.
122. Skaliter, R.,, and I. R. Lehman. 1994. Rolling circle DNA replication in vitro by a complex of herpes simplex virus type 1-encoded enzymes. Proc. Natl. Acad. Sci. USA 91:1066510669.
123. Smiley, J. R.,, J. Duncan,, and M. Howes. 1990. Sequence requirements for DNA rearrangements induced by the terminal repeat of herpes simplex virus type 1 KOS DNA. J. Virol. 64:50365050.
124. Spacciapoli, P.,, and N. G. Nossal. 1994. Interaction of DNA polymerase and DNA helicase within the bacteriophage T4 DNA replication complex. Leading strand synthesis by the T4 DNA polymerase mutant A737V (tsL141) requires the T4 gene 59 helicase assembly protein. J. Biol. Chem. 269:447455.
125. Spaete, R. R.,, and N. Frenkel. 1982. The herpes simplex virus amplicon: a new eucaryotic defective-virus cloning-amplifying vector. Cell 30:295304.
126. Spaete, R. R.,, and N. Frenkel. 1985. The herpes simplex virus amplicon: analyses of cis-acting replication functions. Proc. Natl. Acad. Sci. USA 82:694698.
127. Spaete, R. R.,, and E. S. Mocarski. 1985. The a sequence of the cytomegalovirus genome functions as a cleavage/packaging signal for herpes simplex virus defective genomes. J. Virol. 54:817824.
128. Stabell, E. C.,, and P. D. Olivo. 1993. A truncated herpes simplex virus origin binding protein which contains the carboxyl terminal origin binding domain binds to the origin of replication but does not alter its conformation. Nucleic Acids Res. 21:52035211.
129. Stahl, H.,, P. Droege,, and R. Knippers. 1986. DNA helicase activity of SV40 large tumor antigen. EMBO J. 5:19391944.
130. Stow, N. D. 1982. Localization of an origin of DNA replication within the TRS/IRS repeated region of the herpes simplex virus type 1 genome. EMBO J. 1:863867.
131. Stow, N. D.,, O. Hammarsten,, M. I. Arbuckle,, and P. Elias. 1993. Inhibition of herpes simplex virus type 1 DNA replication by mutant forms of the origin-binding protein. Virology 196:413418.
132. Stow, N. D.,, and E. C. McMonagle. 1983. Characterization of the TRS/IRS origin of DNA replication of herpes simplex virus type 1. Virology 130:427438.
133. Stow, N. D.,, E. C. McMonagle,, and A. J. Davison. 1983. Fragments from both termini of the herpes simplex virus type 1 genome contain signals required for the encapsidation of viral DNA. Nucleic Acids Res. 11:82058220.
134. Szostak, J. W.,, T. L. Orr-Weaver,, and R. J. Rothstein. 1983. The double-strand-break repair model for recombination. Cell 33:2535.
135. Temin, H. M.,, E. Keshet,, and S. K. Weller. 1980. Correlation of transient accumulation of linear unintegrated viral DNA and transient cell killing by avian leukosis and reticuloendotheliosis viruses. Cold Spring Harbor Symp. Quant. Biol. 2:773778.
136. Temin, H. M.,, and S. Mizutani. 1970. RNA-dependent DNA polymerase in virions of Rous sarcoma virus. Nature (London) 226:12111213.
137. Tenney, D. J.,, W. W. Hurlburt,, P. A. Micheletti,, M. Bifano,, and R. K. Hamatake. 1994. The UL8 component of the herpes simplex virus helicase-primase complex stimulates primer synthesis by a subassembly of the UL5, and UL52 components. J. Biol. Chem. 269:50305035.
138. Varmuza, S. L.,, and J. R. Smiley. 1985. Signals for site-specific cleavage of HSV DNA: maturation involves two separate cleavage events at sites distal to the recognition sequences. Cell 41: 793802.
139. Vlazny, D. A.,, A. Kwong, andN. Frenkel. 1982. Site-specific cleavage/packaging of herpes simplex virus DNA and the selective maturation of nucleocapsids containing full-length viral DNA. Proc. Natl. Acad. Sci. USA 79:14231427.
140. Wagner, M. J.,, and W. C. Summers. 1978. Structure of the joint region and the termini of the DNA of herpes simplex virus type 1. J. Virol. 27:374384.
141. Walker, J. E.,, M. Saraste,, M. J. Runswick,, and N. J. Gay. 1982. Distantly related sequences in the α and β -subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J. 1:945951.
142. Weber, P. C.,, M. D. Challberg,, N. J. Nelson,, M. Levine,, and J. C. Glorioso. 1988. Inversion events in the HSV-1 genome are directly mediated by the viral DNA replication machinery and lack sequence specificity. Cell 54:369381.
143. Weir, H. M.,, J. M. Calder,, and N. D. Stow. 1989. Binding of the herpes simplex virus type 1 UL9 gene product to an origin of viral DNA replication. Nucleic Acids Res. 17:14091425.
144. Weller, S. K., 1990. Genetic analysis of HSV genes required for genome replication, p. 105135. In E. Wagner (ed.), Herpesvirus Transcription and Its Regulation. CRC Press, Inc., Boca Raton, Fla.
145. Weller, S. K.,, A. E. Joy,, and H. M. Temin. 1980. Correlation between cell killing and massive second-round superinfection by members of some subgroups of avian leukosis virus. J. Virol. 33:494506.
146. Weller, S. K.,, K. J. Lee,, D. J. Sabourin,, and P. A. Schaffer. 1983. Genetic analysis of temperature-sensitive mutants which define the gene for the major herpes simplex virus type 1 DNA-binding protein. J. Virol. 45:354366.
147. Weller, S. K.,, R. M. Seghatoleslami,, L. Shao,, D. Rowse,, and E. P. Carmichael. 1990. The herpes simplex virus type 1 alkaline nuclease is not essential for viral DNA synthesis: isolation and characterization of a lacZ insertion mutant. J. Gen. Virol. 71:29412952.
148. Weller, S. K.,, A. Spadaro,, J. E. Schaffer,, A. W. Murray,, A. M. Maxam,, and P. A. Schaffer. 1985. Cloning, sequencing, and functional analysis of oriL, a herpes simplex virus type 1 origin of DNA synthesis. Mol. Cell. Biol. 5:930942.
149. Weller, S. K.,, and H. M. Temin. 1981. Cell killing by avian leukosis viruses. J. Virol. 39:713721.
150. Wilcock, D.,, and L. D. P. 1991. Localization of p53, retinoblastoma and host replication proteins at sites of viral replication in herpes-infected cells. Nature (London) 349:429431.
151. Wong, S. W.,, and P. A. Schaffer. 1991. Elements in the transcriptional regulatory region flanking herpes simplex virus type 1 oriS stimulate origin function. J. Virol. 65:26012611.
152. Wong, S. W.,, A. F. Wahl,, P. M. Yuan,, N. Arai,, B. E. Pearson,, K. Arai,, D. Korn,, M. W. Hunkap-iller,, and T. S. Wang. 1988. Human DNA polymerase alpha gene expression is cell proliferation dependent and its primary structure is similar to both prokaryotic and eukaryotic replicative DNA polymerases. EMBO J. 7:3747.
153. Zhang, X.,, S. Efstathiou,, and A. Simmons. 1994. Identification of novel herpes simplex virus replicative intermediates by field inversion gel electrophoresis: implications for viral DNA amplification strategies. Virology 202:530539.
154. Zhu, L.,, and S. K. Weller. 1992. The six conserved helicase motifs of the UL5 gene product, a component of the herpes simplex virus type 1 helicase-primase, are essential for its function. J. Virol. 66:469479.
155. Zhu, L.,, and S. K. Weller. 1992. The UL5 gene of the herpes simplex virus type 1: isolation of a lacZ insertion mutant and association of the UL5 gene product with other members of the helicase-primase complex. J. Virol. 66:458468.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error