1887

Chapter 14 : Herpes Simplex Virus DNA Replication and Genome Maturation

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Herpes Simplex Virus DNA Replication and Genome Maturation, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818302/9781555810986_Chap14-1.gif /docserver/preview/fulltext/10.1128/9781555818302/9781555810986_Chap14-2.gif

Abstract:

This chapter gives an overview on the replication and maturation of the herpes simplex virus type 1 (HSV-1) genome, drawing parallels with phage systems. It provides an overview of what is known about HSV DNA replication and recombination under the sections Formation of circular DNA Intermediates, Formation of greater-than-unit-length replication intermediates, Resolution of branched recombination intermediates, and Cleavage of concatemers into unit-length virion DNA and packaging of unit-length virion DNA into capsids. The chapter concentrates on the helicase-primase (UL5, UL8, and UL52) and the origin-binding protein (UL9). The study of transdominant mutations has proven to be a powerful tool for characterizing specific regions of multifunctional proteins. Several lines of evidence indicate that overexpression of the wild-type UL9 protein can be inhibitory to viral replication. First, in trans-dominance assays, plasmids that express wild-type UL9 are somewhat inhibitory to plaque formation by wild-type virus. Second, complementing cell lines that contain high copy numbers of a UL9 expression plasmid do not efficiently support wild-type HSV-1 infection are reported. The third line of evidence comes from experiments in which the HSV replication proteins are expressed in insect cells from recombinant baculoviruses. Several lines of evidence suggest that viral genome maturation involves site-specific cleavage of viral DNA concatemers. Genetic analysis has provided important insights not only into the identification of viral proteins required in DNA replication and genome maturation but also into their roles in these complex processes.

Citation: Weller S. 1995. Herpes Simplex Virus DNA Replication and Genome Maturation, p 189-213. In Cooper G, Temin R, Sugden B (ed), The DNA Provirus. ASM Press, Washington, DC. doi: 10.1128/9781555818302.ch14

Key Concept Ranking

Gene Expression and Regulation
0.576261
DNA Synthesis
0.46418443
Herpes simplex virus 1
0.42303926
0.576261
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Model of T4 DNA replication and recombination. Recombination-dependent late DNA replication of T4 is depicted here. The topmost sketch represents a linear molecule that has replicated at an origin of replication. At the end of the molecule, a free 3' end that cannot be replicated is generated. (A) The 3' end of the parental DNA strand invades a homologous segment of another molecule. (B) Leading-strand synthesis can be primed from the 3' end of the invading DNA strand. Lagging-strand synthesis would require the activity of primase. (C) This process can be repeated with a new 3' end invading another molecule. Heavy solid lines represent parental DNA molecules. Thin solid lines represent DNA synthesized following initiation at an origin of replication. Thin dashed lines represent DNA synthesized following recombination events. This figure was based on the model of T4 DNA replication described by Mosig ( ).

Citation: Weller S. 1995. Herpes Simplex Virus DNA Replication and Genome Maturation, p 189-213. In Cooper G, Temin R, Sugden B (ed), The DNA Provirus. ASM Press, Washington, DC. doi: 10.1128/9781555818302.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Locations of HSV origins and genes encoding DNA synthetic functions. The sequence arrangement of the HSV-1 genome is shown on the top line. Locations of the origins of DNA replication are depicted on the second line. On the third line are map locations of genes that encode functions involved in DNA synthesis. Genes and origins are not drawn to scale.

Citation: Weller S. 1995. Herpes Simplex Virus DNA Replication and Genome Maturation, p 189-213. In Cooper G, Temin R, Sugden B (ed), The DNA Provirus. ASM Press, Washington, DC. doi: 10.1128/9781555818302.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Conserved helicase motifs and motif mutations in The gene is shown with six black boxes depicting each of the motifs shared within a superfamily of helicases. Below are shown the mutations introduced into conserved residues within each motif ( ). aas, amino acids.

Citation: Weller S. 1995. Herpes Simplex Virus DNA Replication and Genome Maturation, p 189-213. In Cooper G, Temin R, Sugden B (ed), The DNA Provirus. ASM Press, Washington, DC. doi: 10.1128/9781555818302.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Conserved helicase motifs and motif mutations in The gene is shown with six black boxes depicting each of the motifs shared within a superfamily of helicases. The putative leucine zipper within the N-terminal portion of is represented by a hatched box overlapping motif II. The DNA-binding C-terminal domain is depicted by a stippled box. Below are shown the mutations introduced into conserved residues within each motif ( ). aas, amino acids.

Citation: Weller S. 1995. Herpes Simplex Virus DNA Replication and Genome Maturation, p 189-213. In Cooper G, Temin R, Sugden B (ed), The DNA Provirus. ASM Press, Washington, DC. doi: 10.1128/9781555818302.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818302.chap14
1. Addison, C.,, F. J. Rixon,, and V. G. Preston. 1990. Herpes simplex virus type 1 UL28 gene product is important for the formation of mature capsids. J. Gen. Virol. 71: 2377 2384.
2. Al-Kobaisi, M. F.,, F. J. Rixon,, I. McDougall,, and V. G. Preston. 1991. The herpes simplex virus UL33 gene product is required for the assembly of full capsids. Virology 180: 380 388.
3. Amundsen, S. K.,, and D. S. Parris. 1984. Detection of herpes simplex virus intertypic recombinant genomes in infected cell DNA. J. Virol. Methods 8: 19 25.
4. Arbuckle, M. I.,, and N. D. Stow. 1993. A mutational analysis of the DNA-binding domain of the herpes simplex virus type 1 UL9 protein. J. Gen. Virol. 74: 1349 1355.
5. Baines, J. D.,, A. P. W. Poon,, and B. Roizman. 1994. The herpes simplex virus 1 UL 15 gene encodes two proteins and is required for cleavage of genomic viral DNA. J. Virol. 68: 8118 8124.
6. Banks, L.,, D. J. Purifoy,, P. F. Hurst,, R. A. Killington,, and K. L. Powell. 1983. Herpes simplex virus non-structural proteins. IV. Purification of the virus-induced deoxyribonuclease and characterization of the enzyme using monoclonal antibodies. J. Gen. Virol. 64: 2249 2260.
7. Banks, L. M.,, I. W. Halliburton,, D. J. M. Purifoy,, R. A. Killington,, and K. L. Powell. 1985. Studies on the herpes simplex virus alkaline nuclease: detection of type-common and type-specific epitopes on the enzyme. J. Gen. Virol. 66: 1 14.
8. Bataille, D.,, and A. Epstein. 1994. Herpes simplex virus replicative concatemers contain L components in inverted orientation. Virology 203: 384 388.
9. Bates, P.,, J. A. Young,, and H. E. Varmus. 1993. A receptor for subgroup A Rous sarcoma virus is related to the low density lipoprotein receptor. Cell 74: 1043 1051.
10. Bayliss, G. J.,, H. S. Marsden,, and J. Hay. 1975. Herpes simplex virus proteins: DNA-binding proteins in infected cells and the virus structure. Virology 68: 124 134.
11. Bazinet, C.,, and J. King. 1985. The DNA translocating vertex of DSDNA bacteriophage. Annu. Rev. Microbiol. 39: 109 129.
12. Ben-Porat, T.,, and F. J. Rixon. 1979. Replication of herpesvirus DNA. IV. Analysis of concatemers. Virology 94: 61 70.
13. Ben-Porat, T.,, F. J. Rixon,, and M. L. Blankenship. 1979. Analysis of the structure of the genome of pseudorabies virus. Virology 95: 285 294.
14. Ben-Porat, T.,, and S. A. Tokazewski. 1977. Replication of herpesvirus DNA. II. Sedimentation characteristics of newly synthesized DNA. Virology 79: 292 301.
15. Black, L. 1989. DNA packaging in ds DNA bacteriophages. Annu. Rev. Microbiol. 43: 267 292.
16. Black, L. W.,, M. K. Showe,, and A. C. Steven,. 1995. Morphogenesis of the T4 head, p. 219 245. In C. K. Mathews,, E. M. Kutter,, G. Mosig,, and P. B. Berget (ed.), Bacteriophage T4. American Society for Microbiology, Washington, D.C.
17. Boehmer, P. E.,, M. C. Craigie,, N. D. Stow,, and I. R. Lehman. 1994. Association of origin binding protein and single strand DNA-binding protein, ICP8, during herpes simplex virus type 1 DNA replication in vivo. J. Biol. Chem. 269: 29329 29334.
18. Boehmer, P. E.,, M. S. Dodson,, and I. R. Lehman. 1993. The herpes simplex virus type-1 origin binding protein. DNA helicase activity. J. Biol. Chem. 268: 1220 1225.
19. Boehmer, P. E.,, and I. R. Lehman. 1993. Herpes simplex virus type 1 1CP8: helix-destabilizing properties. J. Virol. 67: 711 715.
20. Boehmer, P. E.,, and I. R. Lehman. 1993. Physical interaction between the herpes simplex virus 1 origin-binding protein and single-stranded DNA-binding protein 1CP8. Proc. Natl. Acad. Sci. USA 90: 8444 8448.
21. Bortner, C.,, T. R. Hernandez,, I. R. Lehman,, and J. Griffith. 1993. Herpes simplex virus 1 single-strand DNA-binding protein (ICP8) will promote homologous pairing and strand transfer. J. Mol. Biol. 231: 241 250.
22. Bruckner, R. C.,, J. J. Crute,, M. S. Dodson,, and I. R. Lehman. 1991. The herpes simplex virus 1 origin binding protein: a DNA helicase. J. Biol. Chem. 266: 2669 2674.
23. Bush, M.,, D. R. Yager,, M. Gao,, K. Weisshart,, A. I. Marcy,, D. M. Coen,, and D. M. Knipe. 1991. Correct intranuclear localization of herpes simplex virus DNA polymerase requires the viral ICP8 DNA-binding protein. J. Virol. 65: 1082 1089.
24. Cairns, J. 1963. The chromosome of Escherichia coli. Cold Spring Harbor Symp. Quant. Biol. 28: 43 46.
25. Calder, J. M.,, E. C. Stow,, and N. D. Stow. 1992. On the cellular localization of the components of the herpes simplex virus type 1 helicase-primase complex and the viral origin-binding protein. J. Gen. Virol. 73: 531 538.
26. Calder, J. M.,, and N. D. Stow. 1990. Herpes simplex virus helicase-primase: the UL8 protein is not required for DNA-dependent ATPase and DNA helicase activities. Nucleic Acids Res. 18: 3573 3578.
27. Carmichael, E. P.,, M. J. Kosovsky,, and S. K. Weller. 1988. Isolation and characterization of herpes simplex virus type 1 host range mutants defective in viral DNA synthesis. J. Virol. 62: 91 99.
28. Carmichael, E. P.,, and S. K. Weller. 1989. Herpes simplex virus type 1 DNA synthesis requires the product of the UL8 gene: isolation and characterization of an ICP6:: lacZ insertion mutation. J. Virol. 63: 591 599.
29. Coen, D. M. 1992. Molecular aspects of anti-herpesvirus drugs. Semin. Virol. 3: 3 12.
30. Conley, A. J.,, D. M. Knipe,, P. C. Jones,, and B. Roizman. 1981. Molecular genetics of herpes simplex virus. VII. Characterization of a temperature-sensitive mutant produced by in vitro mutagenesis and defective in DNA synthesis and accumulation of κ polypeptides. J. Virol. 37: 191 206.
31. Crute, J. J.,, and I. R. Lehman. 1989. Herpes simplex-1 DNA polymerase: identification of an intrinsic 5'-3' exonuclease with ribonuclease H activity. J. Biol. Chem. 264: 19266 19270.
32. Crute, J. J.,, T. Tsurumi,, L. Zhu,, S. K. Weller,, P. D. Olivo,, M. D. Challberg,, E. S. Mocarski,, and I. R. Lehman. 1989. Herpes simplex virus 1 helicase-primase: a complex of three herpes-encoded gene products. Proc. Natl. Acad. Sci. USA 86: 2186 2189.
33. Davison, A. J. 1992. Channel catfish virus: a new type of herpesvirus. Virology 186: 9 14.
34. Davison, A. J.,, and N. M. Wilkie. 1981. Nucleotide sequences of the joint between the L and S segments of herpes simplex virus types 1 and 2. J. Gen. Virol. 55: 315 331.
35. Dean, F. B.,, P. Bullock,, Y. Murakami,, C. R. Wobbe,, L. Weissbach,, and J. Hurwitz. 1987. Simian virus 40 (SV40) DNA replication: SV40 large T antigen unwinds DNA containing the SV40 origin of replication. Proc. Natl. Acad. Sci. USA 84: 16 20.
36. Dean, F. B.,, M. Dodson,, H. Echols,, and J. Hurwitz. 1987. ATP-dependent formation of a specialized nucleoprotein structure by simian virus 40 (SV40) large tumor antigen at the SV40 replication origin. Proc. Natl. Acad. Sci. USA 84: 8981 8985.
37. Deb, S.,, and S. P. Deb. 1991. A 269-amino-acid segment with a pseudo-leucine zipper and a helix-turn-helix motif codes for the sequence-specific DNA-binding domain of herpes simplex virus type 1 origin-binding protein. J. Virol. 65: 2829 2838.
38., de Bruyn Kops, A.,, and D. M. Knipe. 1988. Formation of DNA replication structures in herpes virus-infected cells requires a viral DNA binding protein. Cell 55: 857 868.
39. Deiss, L. P.,, J. Chou,, and N. Frenkel. 1986. Functional domains within the a sequence involved in the cleavage-packaging of herpes simplex virus DNA. J. Virol. 59: 605 618.
40. Dodson, M.,, F. B. Dean,, P. Bullock,, H. Echols,, and J. Hurwitz. 1987. Unwinding of duplex DNA from the SV40 origin of replication by T antigen. Science 238: 964 967.
41. Dodson, M. S.,, J. J. Crute,, R. C. Bruckner,, and I. R. Lehman. 1989. Overexpression and assembly of the herpes simplex virus type 1 helicase-primase in insect cells. J. Biol. Chem. 264: 20835 20838.
42. Elias, P.,, C. M. Gustafsson,, O. Hammarsten,, and N. D. Stow. 1992. Structural elements required for the cooperative binding of the herpes simplex virus origin binding protein to oriS reside in the N-terminal part of the protein. J. Biol. Chem. 267: 17424 17429.
43. Fauci, A. S. 1988. The human immunodeficiency virus: infectivity and mechanisms of pathogenesis. Science 239: 617 622.
44. Fierer, D. S.,, and M. D. Challberg. 1992. Purification and characterization of UL9, the herpes simplex virus type 1 origin-binding protein. J. Virol. 66: 3986 3995.
45. Friedmann, A.,, J. E. Coward,, H. S. Rosenkranz,, and C. Morgan. 1975. Electron microscopic studies on assembly of herpes simplex virus upon removal of hydroxyurea block. J. Gen. Virol. 26: 171 181.
46. Gao, M.,, and D. M. Knipe. 1991. Potential role for herpes simplex virus ICP8 DNA replication protein in stimulation of late gene expression. J. Virol. 65: 2666 2675.
47. Garber, D. A.,, S. M. Beverley,, and D. M. Coen. 1993. Demonstration of circularization of herpes simplex virus DNA following infection using pulsed field gel electrophoresis. Virology 197: 459 462.
48. Gauss, P.,, K. Park,, T. E. Spencer,, and K. J. Hacker. 1994. DNA helicase requirements for DNA replication during bacteriophage T4 infection. J. Bacteriol. 176: 1667 1672.
49. Gibbs, J. S.,, H. C. Chiou,, J. D. Hall,, D. W. Mount,, M. J. Retondo,, S. K. Weller,, and D. M. Coen. 1985. Sequence and mapping analyses of the herpes simplex virus DNA polymerase gene predict a C-terminal substrate binding domain. Proc. Natl. Acad. Sci. USA 82: 7969 7973.
50. Gilbert, J. M.,, P. Bates,, H. E. Varmus,, and J. M. White. 1994. The receptor for the subgroup A avian leukosis-sarcoma viruses binds to subgroup A but not to subgroup C envelope glycoprotein. J. Virol. 68: 5623 5628.
51. Gilbert, W.,, and D. Dressier. 1968. DNA replication: the rolling circle model. Cold Spring Harbor Symp. Quant. Biol. 33: 473 484.
52. Godowski, P. J.,, and D. M. Knipe. 1985. Identification of a herpes simplex virus function that represses late gene expression from parental viral genomes. J. Virol. 55: 357 365.
53. Godowski, P. J.,, and D. M. Knipe. 1986. Transcriptional control of herpesvirus gene expression: gene functions required for positive and negative regulation. Proc. Natl. Acad. Sci. USA 83: 256 260.
54. Goodrich, L. D.,, P. A. Schaffer,, D. I. Dorsky,, C. S. Crumpacker,, and D. S. Parris. 1990. Localization of the herpes simplex virus type 1 65-kilodalton DNA-binding protein and DNA polymerase in the presence and absence of viral DNA synthesis. J. Virol. 64: 5738 5749.
55. Gorbalenya, A. E.,, E. V. Koonin,, A. P. Donchenko,, and V. M. Blinov. 1988. A conserved NTP-motif in putative helicases. Nature (London) 333: 22 23.
56. Gorbalenya, A. E.,, E. V. Koonin,, A. P. Donchenko,, and V. M. Blinov. 1988. A novel superfamily of nucleoside triphosphate-binding motif containing proteins which are probably involved in duplex unwinding in DNA and RNA replication and recombination. FEBS Lett. 235: 16 24.
57. Gorbalenya, A. E.,, E. V. Koonin,, A. P. Donchenko,, and V. M. Blinov. 1989. Two related superfamilies of putative helicases involved in replication, recombination, repair and expression of DNA and RNA genomes. Nucleic Acids Res. 17: 4713 4730.
58. Gottlieb, J.,, and M. D. Challberg. 1994. Interaction of herpes simplex virus type 1 DNA polymerase and the UL42 accessory protein with a model primer template. J. Virol. 68: 4937 4945.
59. Gottlieb, J.,, A. I. Marcy,, D. M. Coen,, and M. D. Challberg. 1990. The herpes simplex virus type 1 UL42 gene product: a subunit of DNA polymerase that functions to increase processivity. J. Virol. 64: 5976 5987.
59a.. Graves, K. L.,, and S. K. Weller. Unpublished data.
60. Hayward, G. S.,, R. J. Jacob,, S. C. Wadsworth,, and B. Roizman. 1975. Anatomy of herpes simplex virus DNA: evidence for four populations of molecules that differ in the relative orientations of their long and short components. Proc. Natl. Acad. Sci. USA 72: 4243 4247.
61. Hernandez, T. R.,, and I. R. Lehman. 1990. Functional interaction between the herpes simplex-1 DNA polymerase and UL42 protein. J. Biol. Chem. 265: 11227 11232.
62. Herskowitz, I. 1987. Functional inactivation of genes by dominant negative mutations. Nature (London) 329: 219 222.
63. Hirsch, I.,, G. Cabral,, M. Patterson,, and N. Biswal. 1977. Studies on intracellular replicating DNA of herpes simplex virus type 1. Virology 81: 48 61.
64. Hodgman, T. C. 1988. A new superfamily of replicative proteins. Nature (London) 333: 22 23.
65. Hoffmann, P. J.,, and Y.-C. Cheng. 1978. The deoxyribonuclease induced after infection of KB cells by herpes simplex virus type 1 or type 2.1. Purification and characterization of the enzyme. J. Biol. Chem. 253: 3557 3562.
66. Igarashi, K.,, R. Fawl,, R. J. Roller,, and B. Roizman. 1993. Construction and properties of a recombinant herpes simplex virus 1 lacking both S-component origins of DNA synthesis. J. Virol. 67: 2123 2132.
67. Jacob, R. J.,, L. S. Morse,, and B. Roizman. 1979. Anatomy of herpes simplex virus DNA. XII. Accumulation of head to tail concatemers in the nuclei of infected cells and their role in the generation of four isomeric arrangements of viral DNA. J. Virol. 29: 448 457.
68. Jacob, R. J.,, and B. Roizman. 1977. Anatomy of herpes simplex virus DNA. VIII. Properties of the replicating DNA. J. Virol. 23: 394 411.
69. Jongeneel, C. V.,, and S. L. Bachenheimer. 1981. Structure of replicating herpes simplex virus DNA. J. Virol. 39: 656 660.
70. Keir, H. M.,, and E. Gold. 1963. Deoxyribonucleic acid nucleotidyltransferase and deoxyribonuclease from cultured cells infected with herpes simplex virus. Biochim. Biophys. Acta 72: 263 276.
71. Kemper, B.,, and D. T. Brown. 1976. Function of gene 49 of bacteriophage T4. II. Analysis of intracellular development and the structure of very fast-sedimenting DNA. J. Virol. 18: 1000 1015.
72. Kemper, B.,, M. Garabett,, and U. Courage. 1981. Studies on the function of gene 49 controlled endonuclease of phage T4 (endonuclease VII). Prog. Clin. Biol. Res. 64: 151 166.
73. King, G. J.,, and W. M. Huang. 1982. Identification of the origins of T4 DNA replication. Proc. Natl. Acad. Sci. USA 79: 7248 7252.
74. Klinedinst, D. K.,, and M. D. Challberg. 1994. Helicase-primase complex of herpes simplex virus type 1: a mutation in the UL52 subunit abolishes primase activity. J. Virol. 68: 3693 3701.
75. Knipe, D. M. 1989. The role of viral and cellular nuclear proteins in herpes simplex virus replication. Adv. Virus Res. 37: 85 123.
76. Knopf, K. W. 1979. Properties of herpes simplex virus DNA polymerase and characterization of its associated exonuclease activity. Eur. J. Biochem. 98: 231 244.
77. Ladin, B. F.,, M. L. Blankenship,, and T. Ben-Porat. 1980. Replication of herpesvirus DNA. V. Maturation of concatemeric DNA of pseudorabies virus to genome length is related to capsid formation. J. Virol. 33: 1151 1164.
78. Ladin, B. F.,, S. Ihara,, H. Hampl,, and T. Ben-Porat. 1982. Pathway of assembly of herpesvirus capsids: an analysis using DNA + temperature-sensitive mutants of pseudorabies virus. Virology 116: 544 561.
78a.. Lamberti, C.,, and S. K. Weller. Unpublished data.
79. Luder, A.,, and G. Mosig. 1982. Two alternative mechanisms for initiation of DNA replication forks in bacteriophage T4: priming by RNA polymerase and by recombination. Proc. Natl. Acad. Sci. USA 79: 1101 1105.
79a.. Lukonis, C. J.,, A. K. Malik,, and S. K. Weller. Unpublished data.>
79b.. Lukonis, C. J.,, and S. K. Weller. Unpublished data.
80. Malik, A. K.,, R. Martinez,, L. Muncy,, E. P. Carmichael,, and S. K. Weller. 1992. Genetic analysis of mutations in the HSV-1 UL9 origin specific DNA binding protein: isolation of an ICP6: :lacZ insertion mutant. Virology 190: 702 715.
80a.. Malik, A. K.,, and S. K. Weller. Unpublished data.
81. Manaker, R. A.,, and V. Groupe. 1956. Discrete foci of altered chicken embryo cell associated with Rous sarcoma virus in tissue culture. Virology 2: 838 840.
82. Marcy, A. I.,, P. D. Olivo,, M. D. Challberg,, and D. M. Coen. 1990. Enzymatic activities of overexpressed herpes simplex virus DNA polymerase purified from recombinant baculovirus-infected insect cells. Nucleic Acids Res. 18: 1207 1215.
83. Martin, D. W.,, R. M. Munoz,, D. Oliver,, M. A. Subler,, and S. Deb. 1994. Analysis of the DNA-binding domain of the HSV-1 origin-binding protein. Virology 198: 71 80.
84. Martinez, R.,, L. Shao,, and S. K. Weller. 1992. The conserved helicase motifs of the herpes simplex virus type 1 origin-binding protein UL9 are important for function. J. Virol. 66: 6735 6746.
84a.. Martinez, R.,, and S. K. Weller. Unpublished data.
85. Matthews, J. T.,, B. J. Terry,, and A. K. Field. 1993. The structure and function of the HSV DNA replication proteins: defining novel antiviral targets. Antiviral Res. 20: 89 114.
86. Matz, B.,, S. J. H. Subak,, and V. G. Preston. 1983. Physical mapping of temperature-sensitive mutations of herpes simplex virus type I using cloned restriction endonuclease fragments. J. Gen. Virol. 64: 2261 2270.
87. McGeoch, D. J.,, M. A. Dalrymple,, A. J. Davison,, A. Dolan,, M. C. Frame,, D. McNab,, L. J. Perry,, J. E. Scott,, and P. Taylor. 1988. The complete DNA sequence of the long unique region in the genome of herpes simplex virus type 1. J. Gen. Virol. 69: 1531 1574.
88. McLean, G. W.,, A. P. Abbotts,, M. E. Parry,, H. S. Marsden,, and N. D. Stow. 1994. The herpes simplex virus type 1 origin-binding protein interacts specifically with the viral UL8 protein. J. Gen. Virol. 75: 2699 2706.
89. Mizuuchi, K.,, B. Kemper,, H. Hays,, and R. A. Wiesberg. 1988. T4 endonuclease VII cleaves Holliday structures. Cell 29: 357 365.
90. Mocarski, E. S.,, and B. Roizman. 1982. Herpesvirus-dependent amplification and inversion of cell-associated viral thymidine kinase gene flanked by viral a sequences and linked to an origin of viral DNA replication. Proc. Natl. Acad. Sci. USA 79: 5626 5630.
91. Mocarski, E. S.,, and B. Roizman. 1982. Structure and role of the herpes simplex virus DNA termini in inversion, circularization and generation of virion DNA. Cell 31: 89 97.
92. Morgan, A. R.,, and A. Severini. 1990. Interconversion of replication and recombination structures: implications for terminal repeats and concatemers. J. Theor. Biol. 144: 195 202.
93. Mosig, G.,, 1983. Relationship of T4 DNA replication and recombination, p. 120 130. In C. K. Mathews,, E. M. Kutter,, G. Mosig,, and P. B. Berget (ed.), Bacteriophage T4. American Society for Microbiology, Washington, D.C.
94. Mosig, G. 1987. The essential role of recombination in phage T4 growth. Annu. Rev. Genet. 21: 347 371.
95. Nasseri, M.,, and E. S. Mocarski. 1988. The cleavage recognition signal is contained within sequences surrounding an a-a junction in herpes simplex virus DNA. Virology 167: 25 30.
96. Nossal, N. G. 1992. Protein-protein interactions at a DNA replication fork: bacteriophage T4 as a model. FASEB J. 6: 871 878.
97. O'Callaghan, D. J.,, M. C. Kemp,, and C. C. Randall. 1977. Properties of nucleocapsid species isolated from an in vivo herpesvirus infection. J. Gen. Virol. 37: 585 594.
98. O'Donnell, M. E.,, P. Elias,, and I. R. Lehman. 1987. Processive replication of single-stranded DNA templates by the herpes simplex virus-induced DNA polymerase. J. Biol. Chem. 262: 4252 4259.
99. Olivo, P. D.,, and M. D. Challberg,, 1990. Functional analysis of the herpes simplex virus gene products involved in DNA replication, p. 137 150. In E. Wagner (ed.), Herpesvirus Transcription and Its Regulation. CRC Press, Inc., Boca Raton, Fla.
100. Olivo, P. D.,, N. J. Nelson,, and M. D. Challberg. 1989. Herpes simplex virus type 1 gene products required for DNA replication: identification and overexpression. J. Virol. 63: 196 204.
101. Pauza, C. D.,, J. E. Galindo,, and D. D. Richman. 1990. Reinfection results in accumulation of unintegrated viral DNA in cytopathic and persistent human immunodeficiency virus type 1 infection of CEM cells. J. Exp. Med. 172: 1035 1042.
102. Perry, H. C.,, D. J. Hazuda,, and W. L. McClements. 1993. The DNA binding domain of herpes simplex virus type 1 origin binding protein is a transdominant inhibitor of virus replication. Virology 193: 73 79.
103. Poffenberger, K. L.,, and B. Roizman. 1985. A noninverting genome of a viable herpes simplex virus 1: presence of head-to-tail linkages in packaged genomes and requirements for circularization after infection. J. Virol. 53: 587 595.
104. Polvino, B. M.,, P. K. Orberg,, and P. A. Schaffer. 1987. Herpes simplex virus type 1 oriL is not required for virus replication or for the establishment and reactivation of latent infection in mice. J. Virol. 61: 3528 3535.
105. Poon, A. P.,, and B. Roizman. 1993. Characterization of a temperature-sensitive mutant of the UL15 open reading frame of herpes simplex virus 1. J. Virol. 67: 4497 4503.
106. Powell, D.,, J. Franklin,, F. Arisaka,, and G. Mosig. 1990. Bacteriophage T4 DNA packaging genes 16 and 17. Nucleic Acids Res. 18: 4005.
107. Powell, K.,, and D. J. M. Purifoy. 1976. DNA-binding proteins of cells infected by herpes simplex virus type 1 and 2. Intervirology 7: 225 239.
108. Powell, K. L.,, E. Littler,, and D. J. Purifoy. 1981. Nonstructural proteins of herpes simplex virus. II. Major virus-specific DNA-binding protein. J. Virol. 39: 894 902.
109. Preston, V. G.,, J. A. Coates,, and F. J. Rixon. 1983. Identification and characterization of a herpes simplex virus gene product required for encapsidation of virus DNA. J. Virol. 45: 1056 1064.
110. Quinlan, M. P.,, L. B. Chen,, and D. M. Knipe. 1984. The intranuclear location of a herpes simplex virus DNA-binding protein is determined by the status of viral DNA replication. Cell 36: 857 868.
111. Quinn, J. P.,, and D. J. McGeoch. 1985. DNA sequence of the region in the genome of herpes simplex virus type 1 containing the genes for DNA polymerase and the major DNA binding protein. Nucleic Acids Res. 13: 8143 8163.
112. Rixon, F. J.,, A. M. Cross,, C. Addison,, and V. G. Preston. 1988. The products of herpes simplex virus type 1 gene UL26 which are involved in DNA packaging are strongly associated with empty but not with full capsids. J. Gen. Virol. 69: 2879 2891.
113. Ruyechan, W. T. 1983. The major herpes simplex virus DNA-binding protein holds single-stranded DNA in an extended configuration. J. Virol. 46: 661 666.
114. Ruyechan, W. T.,, and A. C. Weir. 1984. Interaction with nucleic acids and stimulation of the viral DNA polymerase by the herpes simplex virus type 1 major DNA-binding protein. J. Virol. 52: 727 733.
115. Sarisky, R. T.,, and P. C. Weber. 1994. Requirement for double-strand breaks but not for specific DNA sequences in herpes simplex virus type 1 genome isomerization events. J. Virol. 68: 34 47.
116. Schimmel, P. 1990. Hazards and their exploitation in the applications of molecular biology of structure-function relationships. Biochemistry 29: 9495 9502.
117. Severini, A.,, A. R. Morgan,, D. R. Tovell,, and L. J. Tyrrel. 1994. Study of the structure of replicative intermediates of HSV-1 DNA by pulsed-field gel electrophoresis. Virology 200: 428 435.
117a.. Shao, L.,, L. M. Rapp,, and S. K. Weller. 1993. Herpes simplex virus 1 alkaline nuclease is required for efficient egress of capsids from the nucleus. Virology 196: 146 162.
118. Sheldrick, P.,, and N. Berthelot. 1975. Inverted repetitions in the chromosome of herpes simplex virus. Cold Spring Harbor Symp. Quant. Biol. 2: 667 678.
119. Sherman, G.,, and S. Bachenheimer. 1987. DNA processing in temperature-sensitive morphogenic mutants of HSV-1. Virology 158: 427 430.
120. Sherman, G.,, and S. L. Bachenheimer. 1988. Characterization of intranuclear capsids made by ts morphogenic mutants of HSV-1. Virology 163: 471 480.
121. Sherman, G.,, J. Gottlieb,, and M. D. Challberg. 1992. The UL8 subunit of the herpes simplex virus helicase-primase complex is required for efficient primer utilization. J. Virol. 66: 4884 4892.
122. Skaliter, R.,, and I. R. Lehman. 1994. Rolling circle DNA replication in vitro by a complex of herpes simplex virus type 1-encoded enzymes. Proc. Natl. Acad. Sci. USA 91: 10665 10669.
123. Smiley, J. R.,, J. Duncan,, and M. Howes. 1990. Sequence requirements for DNA rearrangements induced by the terminal repeat of herpes simplex virus type 1 KOS DNA. J. Virol. 64: 5036 5050.
124. Spacciapoli, P.,, and N. G. Nossal. 1994. Interaction of DNA polymerase and DNA helicase within the bacteriophage T4 DNA replication complex. Leading strand synthesis by the T4 DNA polymerase mutant A737V (tsL141) requires the T4 gene 59 helicase assembly protein. J. Biol. Chem. 269: 447 455.
125. Spaete, R. R.,, and N. Frenkel. 1982. The herpes simplex virus amplicon: a new eucaryotic defective-virus cloning-amplifying vector. Cell 30: 295 304.
126. Spaete, R. R.,, and N. Frenkel. 1985. The herpes simplex virus amplicon: analyses of cis-acting replication functions. Proc. Natl. Acad. Sci. USA 82: 694 698.
127. Spaete, R. R.,, and E. S. Mocarski. 1985. The a sequence of the cytomegalovirus genome functions as a cleavage/packaging signal for herpes simplex virus defective genomes. J. Virol. 54: 817 824.
128. Stabell, E. C.,, and P. D. Olivo. 1993. A truncated herpes simplex virus origin binding protein which contains the carboxyl terminal origin binding domain binds to the origin of replication but does not alter its conformation. Nucleic Acids Res. 21: 5203 5211.
129. Stahl, H.,, P. Droege,, and R. Knippers. 1986. DNA helicase activity of SV40 large tumor antigen. EMBO J. 5: 1939 1944.
130. Stow, N. D. 1982. Localization of an origin of DNA replication within the TRS/IRS repeated region of the herpes simplex virus type 1 genome. EMBO J. 1: 863 867.
131. Stow, N. D.,, O. Hammarsten,, M. I. Arbuckle,, and P. Elias. 1993. Inhibition of herpes simplex virus type 1 DNA replication by mutant forms of the origin-binding protein. Virology 196: 413 418.
132. Stow, N. D.,, and E. C. McMonagle. 1983. Characterization of the TRS/IRS origin of DNA replication of herpes simplex virus type 1. Virology 130: 427 438.
133. Stow, N. D.,, E. C. McMonagle,, and A. J. Davison. 1983. Fragments from both termini of the herpes simplex virus type 1 genome contain signals required for the encapsidation of viral DNA. Nucleic Acids Res. 11: 8205 8220.
134. Szostak, J. W.,, T. L. Orr-Weaver,, and R. J. Rothstein. 1983. The double-strand-break repair model for recombination. Cell 33: 25 35.
135. Temin, H. M.,, E. Keshet,, and S. K. Weller. 1980. Correlation of transient accumulation of linear unintegrated viral DNA and transient cell killing by avian leukosis and reticuloendotheliosis viruses. Cold Spring Harbor Symp. Quant. Biol. 2: 773 778.
136. Temin, H. M.,, and S. Mizutani. 1970. RNA-dependent DNA polymerase in virions of Rous sarcoma virus. Nature (London) 226: 1211 1213.
137. Tenney, D. J.,, W. W. Hurlburt,, P. A. Micheletti,, M. Bifano,, and R. K. Hamatake. 1994. The UL8 component of the herpes simplex virus helicase-primase complex stimulates primer synthesis by a subassembly of the UL5, and UL52 components. J. Biol. Chem. 269: 5030 5035.
138. Varmuza, S. L.,, and J. R. Smiley. 1985. Signals for site-specific cleavage of HSV DNA: maturation involves two separate cleavage events at sites distal to the recognition sequences. Cell 41: 793 802.
139. Vlazny, D. A.,, A. Kwong, andN. Frenkel. 1982. Site-specific cleavage/packaging of herpes simplex virus DNA and the selective maturation of nucleocapsids containing full-length viral DNA. Proc. Natl. Acad. Sci. USA 79: 1423 1427.
140. Wagner, M. J.,, and W. C. Summers. 1978. Structure of the joint region and the termini of the DNA of herpes simplex virus type 1. J. Virol. 27: 374 384.
141. Walker, J. E.,, M. Saraste,, M. J. Runswick,, and N. J. Gay. 1982. Distantly related sequences in the α and β -subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J. 1: 945 951.
142. Weber, P. C.,, M. D. Challberg,, N. J. Nelson,, M. Levine,, and J. C. Glorioso. 1988. Inversion events in the HSV-1 genome are directly mediated by the viral DNA replication machinery and lack sequence specificity. Cell 54: 369 381.
143. Weir, H. M.,, J. M. Calder,, and N. D. Stow. 1989. Binding of the herpes simplex virus type 1 UL9 gene product to an origin of viral DNA replication. Nucleic Acids Res. 17: 1409 1425.
144. Weller, S. K., 1990. Genetic analysis of HSV genes required for genome replication, p. 105 135. In E. Wagner (ed.), Herpesvirus Transcription and Its Regulation. CRC Press, Inc., Boca Raton, Fla.
145. Weller, S. K.,, A. E. Joy,, and H. M. Temin. 1980. Correlation between cell killing and massive second-round superinfection by members of some subgroups of avian leukosis virus. J. Virol. 33: 494 506.
146. Weller, S. K.,, K. J. Lee,, D. J. Sabourin,, and P. A. Schaffer. 1983. Genetic analysis of temperature-sensitive mutants which define the gene for the major herpes simplex virus type 1 DNA-binding protein. J. Virol. 45: 354 366.
147. Weller, S. K.,, R. M. Seghatoleslami,, L. Shao,, D. Rowse,, and E. P. Carmichael. 1990. The herpes simplex virus type 1 alkaline nuclease is not essential for viral DNA synthesis: isolation and characterization of a lacZ insertion mutant. J. Gen. Virol. 71: 2941 2952.
148. Weller, S. K.,, A. Spadaro,, J. E. Schaffer,, A. W. Murray,, A. M. Maxam,, and P. A. Schaffer. 1985. Cloning, sequencing, and functional analysis of oriL, a herpes simplex virus type 1 origin of DNA synthesis. Mol. Cell. Biol. 5: 930 942.
149. Weller, S. K.,, and H. M. Temin. 1981. Cell killing by avian leukosis viruses. J. Virol. 39: 713 721.
150. Wilcock, D.,, and L. D. P. 1991. Localization of p53, retinoblastoma and host replication proteins at sites of viral replication in herpes-infected cells. Nature (London) 349: 429 431.
151. Wong, S. W.,, and P. A. Schaffer. 1991. Elements in the transcriptional regulatory region flanking herpes simplex virus type 1 oriS stimulate origin function. J. Virol. 65: 2601 2611.
152. Wong, S. W.,, A. F. Wahl,, P. M. Yuan,, N. Arai,, B. E. Pearson,, K. Arai,, D. Korn,, M. W. Hunkap-iller,, and T. S. Wang. 1988. Human DNA polymerase alpha gene expression is cell proliferation dependent and its primary structure is similar to both prokaryotic and eukaryotic replicative DNA polymerases. EMBO J. 7: 37 47.
153. Zhang, X.,, S. Efstathiou,, and A. Simmons. 1994. Identification of novel herpes simplex virus replicative intermediates by field inversion gel electrophoresis: implications for viral DNA amplification strategies. Virology 202: 530 539.
154. Zhu, L.,, and S. K. Weller. 1992. The six conserved helicase motifs of the UL5 gene product, a component of the herpes simplex virus type 1 helicase-primase, are essential for its function. J. Virol. 66: 469 479.
155. Zhu, L.,, and S. K. Weller. 1992. The UL5 gene of the herpes simplex virus type 1: isolation of a lacZ insertion mutant and association of the UL5 gene product with other members of the helicase-primase complex. J. Virol. 66: 458 468.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error