1887

Chapter 1 : Historical Perspective

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Historical Perspective, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818319/9781555810894_Chap01-1.gif /docserver/preview/fulltext/10.1128/9781555818319/9781555810894_Chap01-2.gif

Abstract:

Mutations in either or of resulted in the same phenotype: the inability to grow on many carbon compounds other than glucose. The contributions of the products of the two genes could be distinguished by the observation that the growth defect of the mutants but not that of the mutants could be corrected by the addition of cyclic AMP (cAMP) to the growth medium, indicating that these mutants lack the enzyme necessary for the synthesis of cAMP. The inducible phenotype of the wild-type strain depends on the normal function of two genes, , the structural gene for the repressor, and , the structural gene for urocanase, the enzyme responsible for the degradation of urocanate, the product of histidase. The important characteristic of two-component systems is therefore the covalent modification of the effector by the modulator. Apparently, the domains of the proteins evolved independently and were then combined. It is likely that effectors dependent on phosphorylation by phosphodonors of low molecular weight existed before the evolution of specific modulators.

Citation: Magasanik B. 1995. Historical Perspective, p 1-5. In Hoch J, Silhavy T (ed), Two-Component Signal Transduction. ASM Press, Washington, DC. doi: 10.1128/9781555818319.ch1

Key Concept Ranking

Gene Expression and Regulation
0.82628226
0.82628226
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

References

/content/book/10.1128/9781555818319.chap1
1. Adler, S. R.,, D. Purich,, and E. R. Stadtman. 1975. Cascade control of Escherichia coli glutamine synthetase. Properties of the PII regulatory protein and the uridylyltransferase-uridylyl removing enzyme.J. Biol. Chem. 250:62646272.
2. Albright, L. M.,, E. Huala, and E M. Ausubel. 1989. Prokaryotic signal transduction mediated by sensor and regulator protein pairs. Annu. Rev. Genet. 23:311336.
3. Bueno, R.,, G. Pahel,, and B. Magasanik. 1985. Role ofglnB and glnD gene products in regulation of the glnALG operon of Escherichia coli. J. Bacteriol. 164: 816822.
4. Chang, C.,, S. E. Krook,, A. B. Bleecker,, and E. M. Meyerowitz. 1993. Arabidopsis ethylene response gene ETR11: Similarity of product to two-component regulators. Science 262:539544.
5. Feng, J.,, M. R. Atkinson,, W. McCleary,, J. B. Stock,, B. L. Wanner,, and A. J. Ninfa. 1992. Role of phosphorylated metabolic intermediates in the regulation of glutamine synthetase synthesis in Escherichia coli. J. Bacteriol. 174:60616070.
6. Hagen, D. C.,, and B. Magasanik. 1973. Isolation of the self-regulated repressor protein of the hut operons of Salmonella typhimurium. Proc. Natl. Acad. Sci. USA 70:808812.
7. Hirschman, J.,, P.-K. Wong,, K. Sei,, J. Keener,, and S. Kustu. 1985. Products of nitrogen regulatory genes ntrA and ntrC of enteric bacteria activate glnA transcription in vitro: evidence that the ntrA product is a sigma factor. Proc. Natl. Acad. Sci. USA 82:75257529.
8. Hunt, T. P.,, and B. Magasanik. 1985. Transcription of glnA by purified Escherichia coli components: core RNA polymerase and the products of glnF glnG and glnL. Proc. Natl. Acad. Sci. USA 82:84538457.
9. Lee, H.-S.,, E. Naberhaus,, and S. Kustu. 1993. In vitro activity of NifL, a signal transduction protein for biological nitrogen fixation. J. Bacteriol. 175: 76837688.
10. Lukat, G. S.,, W. R. McCleary,, A. M. Stock,, and J. B. Stock. 1992. Phosphorylation of bacterial response regulator proteins by low molecular weight phosphodonors. Proc. Natl. Acad. Sci. USA 89:718722.
11. Ninfa, A. J.,, and B. Magasanik. 1986. Covalent modification of the glnG product, NRi, by the glnL product, NRn, regulates the transcription of the glnALG operon in Escherichia coli. Proc. Natl. Acad. Sci. USA 83:59095913.
12. Ninfa, A. J.,, E. B. Ninfa,, A. N. Lupas,, A. Stock,, B. Magasanik,, and J. Stock. 1988. Crosstalk between bacterial chemotaxis signal transduction proteins and regulations of transcription of the Ntr regulon: evidence that nitrogen assimilation and chemotaxis are controlled by a common phosphotransferase mechanism. Proc. Natl. Acad. Sci. USA 85:54925496.
13. Nixon, B. C.,, C. W. Ronson,, and E. M. Ausubel. 1986. Two-component regulatory systems responsive to environmental stimuli share strongly conserved domains with the nitrogen assimilation regulatory genes ntrB and ntrC. Proc. Natl. Acad. Sci. USA 83:78507854.
14. Ota, I. M.,, and A. Varshavsky. 1993. A yeast protein similar to two-component regulators. Science 262:566569.
15. Pardee, A. B.,, E. Jacob,, and J. Monod. 1959. The genetic control and cytoplasmic expression of "inducibility" in the synthesis of β-galactosidase by E. coli. J. Mol. Biol. 1:165178.
16. Parkinson, J. S.,, and E. C. Kofoid. 1992. Communication modules in bacterial signaling proteins. Annu. Rev. Genet. 26:71112.
17. Perlman, R. L.,, and I. Pastan. 1969. Pleiotropic deficiency of carbohydrate utilization in an adenylylcyclase deficient mutant of Escherichia coli. Biochem. Biophys. Res. Commun. 37:151157.
18. Porter, S. C.,, A. K. North,, A. B. Wedel,, and S. Kustu. 1993. Oligomerization of NTRC at the glnA enhancer is required for transcriptional activation. Genes Dev. 7:22582273.
19. Reitzer, L. J.,, and B. Magasanik. 1985. Expression of glnA in Escherichia coli is regulated at tandem promoters. Proc. Natl. Acad. Sci. USA 82:19791983.
20. Schlesinger, S.,, P. Scotto,, and B. Magasanik. 1965. Exogenous and endogenous induction of the histidine-degrading enzymes in Aerobacter aerogenes. J. Biol. Chem. 240:43314337.
21. Stadtman, E. R.,, E. Mura,, P. B. Chock,, and S. G. Rhee,. 1980. The interconvertible enzyme cascade that regulates glutamine synthetase activity, p. 4159. In J. Mora, and R. Palacios (ed.), Glutamine: metabolism, enzymology and regulation. Academic Press, Inc., New York.
22. Stock, J. B.,, A.J. Ninfa,, and A. M. Stock. 1989. Protein phosphorylation and regulation of adaptive responses in bacteria. Microbiol. Rev. 53:450490.
23. Umbarger, H. E. 1956. Evidence for a negative feedback mechanism in the biosynthesis of isoleucine. Science 123:848.
24. Wanner, B. L.,, and M. R. Riesenberg. 1992. Involvement of phosphotransacetylase, acetate kinase and acetylphosphate synthesis in control of the phosphate regulon in Escherichia coli. J. Bacteriol. 174:21242130.
25. Weiss, V.,, E. Claverie-Martin,, and B. Magasanik. 1992. Phosphorylation of nitrogen regulator I (NRi) of Escherichia coli induces strong cooperative binding to DNA essential for the activation of transcription. Proc. Natl. Acad. Sci. USA 89:50885092.
26. Weiss, V.,, and B. Magasanik. 1988. Phosphorylation of nitrogen regulator I (NRi) of Escherichia coli. Proc. Natl. Acad. Sci. USA 85:89198923.
27. Zubay, G.,, D. Schwartz,, and J. Beckwith. 1970. Mechanism of activation of catabolite-sensitive genes: a positive control system. Proc. Natl. Acad. Sci. USA 66:104110.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error