1887

Chapter 20 : Regulation of Salmonella Virulence by Two-Component Regulatory Systems

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Regulation of Salmonella Virulence by Two-Component Regulatory Systems, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818319/9781555810894_Chap20-1.gif /docserver/preview/fulltext/10.1128/9781555818319/9781555810894_Chap20-2.gif

Abstract:

Microorganisms exhibit a wide variety of adaptive responses to changes in environmental conditions. The recent use of classical bacterial genetics for the analysis of microbial pathogenesis has allowed the identification of loci previously not recognized as virulence determinants. This approach compares the behavior of isogenic wild-type and mutant strains for their pathogenic properties in defined animal or tissue culture model systems, and it has allowed the identification of transcription regulatory factors and of products required for the export and assembly of crucial virulence factors. Most infections result from oral ingestion of contaminated water or foodstuff, passage through the stomach, and engulfment by epithelial or M cells in the small intestine. strains defective in the EnvZ/OmpR system are attenuated for mouse virulence. This two-component system controls the expression of several products, including the outer membrane porins OmpC and OmpF, in response to changes in osmolarity. The response of to environments encountered during the course of infection is partially under the transcriptional regulation of the PhoP/PhoQ two-component system. Several virulence defects have been described for strains harboring mutations in or . Several environmental cues control expression of different PhoP-regulated genes. The study of bacterial pathogenesis has as one of its goals the identification of all determinants that can be targeted for the prevention or treatment of disease.

Citation: Groisman E, Heffron F. 1995. Regulation of Salmonella Virulence by Two-Component Regulatory Systems, p 319-332. In Hoch J, Silhavy T (ed), Two-Component Signal Transduction. ASM Press, Washington, DC. doi: 10.1128/9781555818319.ch20

Key Concept Ranking

Bacterial Pathogenesis
0.487088
Outer Membrane Proteins
0.47131065
Bacterial Genetics
0.43325558
0.487088
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Alignment of the deduced amino acid sequences of PhoP from different gram-negative bacteria. Sty, ; Ec, ; Shf, ; Ye, ; Yp, .

Citation: Groisman E, Heffron F. 1995. Regulation of Salmonella Virulence by Two-Component Regulatory Systems, p 319-332. In Hoch J, Silhavy T (ed), Two-Component Signal Transduction. ASM Press, Washington, DC. doi: 10.1128/9781555818319.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Model for transcriptional regulation of PhoP/PhoQ regulon. On sensing particular signals from the environment, PhoQ is predicted to autophosphorylate at a histidine residue and then transfer that phosphoryl group to an aspartic acid in PhoP. The phosphorylated form of PhoP is predicted to activate and repress some 40 loci. PhoP-activated genes are designated as , , and and PhoP-repressed genes as and . encodes an outer membrane protein required for intramacrophage survival. encodes periplasmic nonspecific acid phosphatase with no apparent role in virulence.

Citation: Groisman E, Heffron F. 1995. Regulation of Salmonella Virulence by Two-Component Regulatory Systems, p 319-332. In Hoch J, Silhavy T (ed), Two-Component Signal Transduction. ASM Press, Washington, DC. doi: 10.1128/9781555818319.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818319.chap20
1. Abshire, K. Z.,, and F. C. Neidhardt. 1993a. Analysis of proteins synthesized by Salmonella typhimurium during growth within a host macrophage. J. Bacteriol. 175:37343743.
2. Abshire, K. Z.,, and F. C. Neidhardt. 1993b. Growth rate paradox of Salmonella typhimurium within host macrophages J. Bacteriol. 175:37443748.
3. Alpuche-Aranda, C. M.,, E. L. Racoosin,, J. A. Swanson,, and S. I. Miller. 1994. Salmonella stimulates macrophage macropinocytosis and persists within spacious phagosomes. J Exp. Med. 179:601608.
4. Alpuche-Aranda, C. M.,, J. A. Swanson,, W. P. Loomis,, and S. I. Miller. 1992. Salmonella typhimurium activates virulence gene transcription within acidified macrophage phagosomes. Proc. Natl. Acad. Sci. USA 89:1007910083.
5. Bäumler, A. J.,, J. G. Kusters,, I. Stojiljkovic,, and F. Heffron. 1994. Salmonella typhimurium loci involved in survival within macrophages. Infect. Immun. 62:16231630.
6. Behlau, I.,, and S. I. Miller. 1993. A PhoP-repressed gene promotes Salmonella typhimurium invasion of epithelial cells J. Bacteriol. 175:44754484.
7. Brenner, D. J., 1992. Introduction to the family Enterobacteriaceae, p. 26732696. In H. Balows,, H. G. Trüper,, M. Dworkin,, W. Harder,, and K.-H. Schliefer (ed.), The Prokaryotes, 2nd ed., vol. III. Springer-Verlag, New York.
8. Buchmeier, N. A.,, and F. Heffron. 1990. Induction of Salmonella stress proteins upon infection of macrophages. Science 248:730732.
9. Chang, C.,, and Meyerowitz, E. M. 1994. Eukaryotes have "two-component" signal transducers. Res. Microbiol. 145:481486.
10. Chatfield, S. N.,, C. J. Dorman,, C. Hayward,, and G. Dougan. 1991. Role of ompR-dependent genes in Salmonella typhimurium virulence: mutants defective in both OmpC and OmpF are attenuated in vivo. Infect. Immun. 59:449452.
11. DiRita, V. J.,, and J. J. Mekalanos. 1989. Genetic regulation of bacterial virulence. Annu. Rev. Genet. 232:455482.
12. Dorman, C. J.,, S. Chatfield,, C. F. Higgins,, C. Hayward,, and G. Dougan. 1989. Characterization of porin and ompR mutants of a virulent strain of Salmonella typhimurium: ompR mutants are attenuated in vivo. Infect. Immun. 57:21362140.
13. Fields, P. I.,, E. A. Groisman,, and F. Heffron. 1989. A Salmonella locus that controls resistance to microbicidal proteins from phagocytic cells. Science 243:10591062.
14. Fields, P. I.,, R. V. Swanson,, C. G. Haidaris,, and F. Heffron. 1986. Mutants of Salmonella typhimurium that cannot survive within the macrophage are avirulent. Proc. Natl. Acad. Sci. USA 83:51895193.
15. Finlay, B. B.,, and S. Falkow. 1989. Salmonella as an intracellular parasite. Mol. Microbiol. 3:18331841.
16. Foster, J. W.,, and H. K. Hall. 1990. Adaptive acidification tolerance response of Salmonella typhimurium. J. Bacteriol. 172:771778.
17. Foster, J. W.,, and M. P. Spector. 1986. Phosphate starvation regulon of Salmonella typhimurium. J. Bacteriol. 166:666669.
18. Galán, J.,, C. Ginocchio,, and P. Costeas. 1992. Molecular and functional characterization of the Salmonella invasion gene invA: homology of invA to members of a new protein family. J Bacteriol. 174:43384349.
19. Galan, J. E.,, and R. Curtiss III. 1989. Virulence and vaccine potential of phoP mutants of Salmonella typhimurium. Microb. Pathog. 6:433443.
20. Garcia-Véscovi, E.,, F. Soncini,, and E. A. Groisman. 1994. The role of the PhoP/PhoQ regulon in Salmonella virulence. Res. Microbiol. 145:473480.
21. Groisman, E. A. 1994. How bacteria resist killing by host-defense peptides. Trends Microbiol. 2:444449.
22. Groisman, E. A. Unpublished data.
23. Groisman, E. A.,, E. Chiao,, C. J. Lipps,, and F. Heffron. 1989. Salmonella typhimurium phoP virulence gene is a transcriptional regulator. Proc. Natl. Acad. Sci. USA 86:70777081.
24. Groisman, E. A.,, P. I. Fields,, and F. Heffron,. 1990. Molecular biology of Salmonella pathogenesis, p. 251272. In B. H. Iglewski, and V. L. Clark (ed.), Molecular Basis of Bacterial Pathogenesis .Academic Press, San Diego, Calif..
25. Groisman, E. A.,, and F. Heffron. Unpublished data.
26. Groisman, E. A.,, F. Heffron,, and F. Solomon. 1992a. Molecular genetic analysis of the Escherichia coli phoP locus. J. Bacteriol. 174:486491.
27. Groisman, E. A.,, and H. Ochman. 1993. Cognate gene clusters govern invasion of host epithelial cells by Salmonella typhimurium and Shigella flexneri. EMBO J. 12:37793787.
28. Groisman, E. A.,, and H. Ochman. 1994. How to become a pathogen. Trends Microbiol. 2:289294.
Groisman, E. A.,, C. A. Parra,, M. Salcedo,, C. J. Lipps,, and F. Heffron. 1992b.. Resistance to host antimicrobial peptides is necessary for Salmonella virulence. Proc. Natl. Acad. Sci. USA 89:1193911943.
30. Groisman, E. A.,, and M. H. Saier, Jr. 1990. Salmonella virulence: new clues to intramacrophage survival. Trends Biochem. Sci. 15:3033.
31. Groisman, E. A.,, M. H. Saier, Jr.,, and H. Ochman. 1992c. Horizontal transfer of a phosphatase gene as evidence for mosaic structure of the Salmonella genome. EMBO J. 11:13091316.
32. Halingeserth, S. Personal communication.
33. Helander, I. M.,, I. Kilpelainen,, and M. Vaara. 1994. Increased substitution of phosphate groups in lipopolysaccharides and lipid A of the polymyxinresistant pmrA mutants of Salmonella typhimurium: a 31P-NMR study. Mol. Microbiol. 11:481487.
34. Joiner, K. A.,, T. Ganz,, J. Albert,, and D. Rotrosen. 1989. The opsonizing ligand on Salmonella typhimurium influences incorporation of specific, but not azurophil, granule constituent into neutrophil phagosomes. J. Cell. Biol. 109:27712782.
35. Jones, B. D.,, and S. Falkow. 1994. Identification and characterization of a Salmonella typhimurium oxygen-regulated gene required for bacterial internalization. Infect. Immun. 62:37453752.
36. Kasahara, M.,, A. Nakata,, and H. Shinagawa. 1991. Molecular analysis of the Salmonella typhimurium phoN gene, which encodes nonspecific acid phosphatase. J. Bacteriol. 173:67606765.
37. Kasahara, M.,, A. Nakata,, and H. Shinagawa. 1992. Molecular analysis of the Escherichia coli phoP-phoQ operon J. Bacteriol. 174:492498.
38. Kier, L. D.,, R. Weppelman,, and B. N. Ames. 1977. Regulation of two phosphatases and a cyclic phosphodiesterase of Salmonella typhimurium. J. Bacteriol. 130:420428.
39. Kier, L. D.,, R. M. Weppelman,, and B. N. Ames. 1979. Regulation of nonspecific acid phosphatase in Salmonella: phoN and phoP genes. J. Bacteriol. 138:155161.
40. Lee, C.,, and S. Falkow. 1990. The ability of Salmonella to enter mammalian cells is affected by bacterial growth state. Proc. Natl. Acad. Sci. USA 87: 43044308.
41. Lee, C. A.,, B. D. Jones,, and S. Falkow. 1992. Identification of a Salmonella typhimurium invasion locus by selection for hyperinvasive mutants. Proc. Natl. Acad. Sci. USA 89:18471851.
42. Lehrer, R. I.,, A. K. Lichtenstein,, and T. Ganz. 1993. Defensins: antimicrobial and cytotoxic peptides of mammalian cells. Annu. Rev. Immunol. 11:105128.
43. Mekalanos, J. J. 1992. Environmental signals controlling expression of virulence determinants in bacteria J. Bacteriol. 174:17.
44. Miller, S. I.,, A. M. Kukral,, and J. J. Mekalanos. 1989. A two-component regulatory system (phoP phoQ) controls Salmonella typhimurium virulence. Proc. Natl. Acad. Sci. USA 86:50545058.
45. Miller, S. I.,, W. P. Loomis,, C. Alpuche-Aranda,, I. Behlau,, and E. Hohmann. 1993. The PhoP virulence regulon and live oral Salmonella vaccines. Vaccine 11:122125.
46. Miller, S. I.,, and J. J. Mekalanos. 1990. Constitutive expression of the phoP regulon attenuates Salmonella virulence and survival within macrophages. J. Bacteriol. 172:24852490.
47. Miller, S. I.,, W. S. Pulkkinen,, M. E. Selsted,, and J. J. Mekalanos. 1990. Characterization of defensin resistance phenotypes associated with mutations in the phoP virulence regulon of Salmonella typhimurium. Infect. Immun. 58:37063710.
48. Miller, V. L.,, K. B. Beer,, W. P. Loomis,, J. A. Olson,, and S. I. Miller. 1992. An unusual pagC::TnphoA mutation leads to an invasion- and virulence-defective phenotype in Salmonellae. Infect. Immun. 60:37633770.
49. Puente, J. L.,, A. Verdugo-Rodriguez,, and E. Calva. 1991. Expression of Salmonella typhi and Escherichia coli OmpC is influenced differently by medium osmolarity; dependence on Escherichia coli OmpR. Mol. Microbiol. 5:12051210.
50. Pulkkinen, W. S.,, and S. I. Miller. 1991. A Salmonella typhimurium virulence protein is similar to a Yersinia enterocolitica invasion protein and a bacteriophage lambda outer membrane protein. J. Bacteriol. 173: 8693.
51. Roland, K. L.,, L. E. Martin,, C. R. Esther,, and J. K. Spitznagel. 1993. Spontaneous pmrA mutants of Salmonella typhimurium LT2 define a new two-component regulatory system with a possible role in virulence. J. Bacteriol. 175:41544164.
52. Soncini, E.,, and E. A. Groisman. Unpublished data.
53. Soncini, F. C.,, E. Garcia-Véscovi,, and E. A. Groisman. Transcriptional autoregulation of the Salmonella typhimurium phoPQ operon. J. Bacteriol., in press.
54. Sperber, S. J.,, and C. J. Scheulpner. 1987. Salmonellosis during infection with human immunodeficiency virus. Rev. Infect. Dis. 9:925934.
55. Stinavage, P.,, L. E. Martin,, and J. K. Spitznagel. 1989. O-antigen and lipid A phosphoryl groups in resistance of Salmonella typhimurium LT-2 to nonoxidative killing in human polymorphonuclear cells. Infect. Immun. 57:38943900.
56. Stone, B. J.,, C. M. Garcia,, J. L. Badger,, T. Hassett,, R. I. E Smith,, and V. L. Miller. 1992. Identification of novel loci affecting entry of Salmonella enteritidis into eukaryotic cells. J. Bacteriol. 174:39453952.
57. Todd, E. C. D. 1989. Prehminary estimates of costs of foodborne disease in the United States. J. Food Prot. 52:595601.
58. Tsolis, R.,, J. Lipps,, E. A. Groisman,, and E. Heffron. Unpublished data.
59. Vaara, M. 1981. Increased outer membrane resistance to ethylenediaminetetraacetate and cations in novel lipid A mutants. J. Bacteriol. 148:426434.
60. Volz, K. 1993. Structural conservation in the CheY superfamily. Biophys.J. 32:1174111753.
61. Wick, M. J.,, C. V. Harding,, N. J. Twesten,, S. J. Normark,, and J. D. Pfeifer. The phoP locus influences processing and presentation of S. typhimurium antigens by activated macrophages. Mol. Microbiol., in press

Tables

Generic image for table
TABLE 1

Virulence phenotypes associated with null and constitutive mutants

Citation: Groisman E, Heffron F. 1995. Regulation of Salmonella Virulence by Two-Component Regulatory Systems, p 319-332. In Hoch J, Silhavy T (ed), Two-Component Signal Transduction. ASM Press, Washington, DC. doi: 10.1128/9781555818319.ch20
Generic image for table
TABLE 2

PhoP/PhoQ-modulated genes

Citation: Groisman E, Heffron F. 1995. Regulation of Salmonella Virulence by Two-Component Regulatory Systems, p 319-332. In Hoch J, Silhavy T (ed), Two-Component Signal Transduction. ASM Press, Washington, DC. doi: 10.1128/9781555818319.ch20
Generic image for table
TABLE 3

Signals known to modulate expression of PhoP/PhoQ-modulated genes

Citation: Groisman E, Heffron F. 1995. Regulation of Salmonella Virulence by Two-Component Regulatory Systems, p 319-332. In Hoch J, Silhavy T (ed), Two-Component Signal Transduction. ASM Press, Washington, DC. doi: 10.1128/9781555818319.ch20

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error