1887

Chapter 20 : Regulation of Salmonella Virulence by Two-Component Regulatory Systems

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Regulation of Salmonella Virulence by Two-Component Regulatory Systems, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818319/9781555810894_Chap20-1.gif /docserver/preview/fulltext/10.1128/9781555818319/9781555810894_Chap20-2.gif

Abstract:

Microorganisms exhibit a wide variety of adaptive responses to changes in environmental conditions. The recent use of classical bacterial genetics for the analysis of microbial pathogenesis has allowed the identification of loci previously not recognized as virulence determinants. This approach compares the behavior of isogenic wild-type and mutant strains for their pathogenic properties in defined animal or tissue culture model systems, and it has allowed the identification of transcription regulatory factors and of products required for the export and assembly of crucial virulence factors. Most infections result from oral ingestion of contaminated water or foodstuff, passage through the stomach, and engulfment by epithelial or M cells in the small intestine. strains defective in the EnvZ/OmpR system are attenuated for mouse virulence. This two-component system controls the expression of several products, including the outer membrane porins OmpC and OmpF, in response to changes in osmolarity. The response of to environments encountered during the course of infection is partially under the transcriptional regulation of the PhoP/PhoQ two-component system. Several virulence defects have been described for strains harboring mutations in or . Several environmental cues control expression of different PhoP-regulated genes. The study of bacterial pathogenesis has as one of its goals the identification of all determinants that can be targeted for the prevention or treatment of disease.

Citation: Groisman E, Heffron F. 1995. Regulation of Salmonella Virulence by Two-Component Regulatory Systems, p 319-332. In Hoch J, Silhavy T (ed), Two-Component Signal Transduction. ASM Press, Washington, DC. doi: 10.1128/9781555818319.ch20

Key Concept Ranking

Bacterial Pathogenesis
0.487088
Outer Membrane Proteins
0.47131065
Bacterial Genetics
0.43325558
0.487088
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Alignment of the deduced amino acid sequences of PhoP from different gram-negative bacteria. Sty, ; Ec, ; Shf, ; Ye, ; Yp, .

Citation: Groisman E, Heffron F. 1995. Regulation of Salmonella Virulence by Two-Component Regulatory Systems, p 319-332. In Hoch J, Silhavy T (ed), Two-Component Signal Transduction. ASM Press, Washington, DC. doi: 10.1128/9781555818319.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Model for transcriptional regulation of PhoP/PhoQ regulon. On sensing particular signals from the environment, PhoQ is predicted to autophosphorylate at a histidine residue and then transfer that phosphoryl group to an aspartic acid in PhoP. The phosphorylated form of PhoP is predicted to activate and repress some 40 loci. PhoP-activated genes are designated as , , and and PhoP-repressed genes as and . encodes an outer membrane protein required for intramacrophage survival. encodes periplasmic nonspecific acid phosphatase with no apparent role in virulence.

Citation: Groisman E, Heffron F. 1995. Regulation of Salmonella Virulence by Two-Component Regulatory Systems, p 319-332. In Hoch J, Silhavy T (ed), Two-Component Signal Transduction. ASM Press, Washington, DC. doi: 10.1128/9781555818319.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818319.chap20
1. Abshire, K. Z.,, and F. C. Neidhardt. 1993a. Analysis of proteins synthesized by Salmonella typhimurium during growth within a host macrophage. J. Bacteriol. 175: 3734 3743.
2. Abshire, K. Z.,, and F. C. Neidhardt. 1993b. Growth rate paradox of Salmonella typhimurium within host macrophages J. Bacteriol. 175: 3744 3748.
3. Alpuche-Aranda, C. M.,, E. L. Racoosin,, J. A. Swanson,, and S. I. Miller. 1994. Salmonella stimulates macrophage macropinocytosis and persists within spacious phagosomes. J Exp. Med. 179: 601 608.
4. Alpuche-Aranda, C. M.,, J. A. Swanson,, W. P. Loomis,, and S. I. Miller. 1992. Salmonella typhimurium activates virulence gene transcription within acidified macrophage phagosomes. Proc. Natl. Acad. Sci. USA 89: 10079 10083.
5. Bäumler, A. J.,, J. G. Kusters,, I. Stojiljkovic,, and F. Heffron. 1994. Salmonella typhimurium loci involved in survival within macrophages. Infect. Immun. 62: 1623 1630.
6. Behlau, I.,, and S. I. Miller. 1993. A PhoP-repressed gene promotes Salmonella typhimurium invasion of epithelial cells J. Bacteriol. 175: 4475 4484.
7. Brenner, D. J., 1992. Introduction to the family Enterobacteriaceae, p. 2673 2696. In H. Balows,, H. G. Trüper,, M. Dworkin,, W. Harder,, and K.-H. Schliefer (ed.), The Prokaryotes, 2nd ed., vol. III. Springer-Verlag, New York.
8. Buchmeier, N. A.,, and F. Heffron. 1990. Induction of Salmonella stress proteins upon infection of macrophages. Science 248: 730 732.
9. Chang, C.,, and Meyerowitz, E. M. 1994. Eukaryotes have "two-component" signal transducers. Res. Microbiol. 145: 481 486.
10. Chatfield, S. N.,, C. J. Dorman,, C. Hayward,, and G. Dougan. 1991. Role of ompR-dependent genes in Salmonella typhimurium virulence: mutants defective in both OmpC and OmpF are attenuated in vivo. Infect. Immun. 59: 449 452.
11. DiRita, V. J.,, and J. J. Mekalanos. 1989. Genetic regulation of bacterial virulence. Annu. Rev. Genet. 232: 455 482.
12. Dorman, C. J.,, S. Chatfield,, C. F. Higgins,, C. Hayward,, and G. Dougan. 1989. Characterization of porin and ompR mutants of a virulent strain of Salmonella typhimurium: ompR mutants are attenuated in vivo. Infect. Immun. 57: 2136 2140.
13. Fields, P. I.,, E. A. Groisman,, and F. Heffron. 1989. A Salmonella locus that controls resistance to microbicidal proteins from phagocytic cells. Science 243: 1059 1062.
14. Fields, P. I.,, R. V. Swanson,, C. G. Haidaris,, and F. Heffron. 1986. Mutants of Salmonella typhimurium that cannot survive within the macrophage are avirulent. Proc. Natl. Acad. Sci. USA 83: 5189 5193.
15. Finlay, B. B.,, and S. Falkow. 1989. Salmonella as an intracellular parasite. Mol. Microbiol. 3: 1833 1841.
16. Foster, J. W.,, and H. K. Hall. 1990. Adaptive acidification tolerance response of Salmonella typhimurium. J. Bacteriol. 172: 771 778.
17. Foster, J. W.,, and M. P. Spector. 1986. Phosphate starvation regulon of Salmonella typhimurium. J. Bacteriol. 166: 666 669.
18. Galán, J.,, C. Ginocchio,, and P. Costeas. 1992. Molecular and functional characterization of the Salmonella invasion gene invA: homology of invA to members of a new protein family. J Bacteriol. 174: 4338 4349.
19. Galan, J. E.,, and R. Curtiss III. 1989. Virulence and vaccine potential of phoP mutants of Salmonella typhimurium. Microb. Pathog. 6: 433 443.
20. Garcia-Véscovi, E.,, F. Soncini,, and E. A. Groisman. 1994. The role of the PhoP/PhoQ regulon in Salmonella virulence. Res. Microbiol. 145: 473 480.
21. Groisman, E. A. 1994. How bacteria resist killing by host-defense peptides. Trends Microbiol. 2: 444 449.
22. Groisman, E. A. Unpublished data.
23. Groisman, E. A.,, E. Chiao,, C. J. Lipps,, and F. Heffron. 1989. Salmonella typhimurium phoP virulence gene is a transcriptional regulator. Proc. Natl. Acad. Sci. USA 86: 7077 7081.
24. Groisman, E. A.,, P. I. Fields,, and F. Heffron,. 1990. Molecular biology of Salmonella pathogenesis, p. 251 272. In B. H. Iglewski, and V. L. Clark (ed.), Molecular Basis of Bacterial Pathogenesis . Academic Press, San Diego, Calif..
25. Groisman, E. A.,, and F. Heffron. Unpublished data.
26. Groisman, E. A.,, F. Heffron,, and F. Solomon. 1992a. Molecular genetic analysis of the Escherichia coli phoP locus. J. Bacteriol. 174: 486 491.
27. Groisman, E. A.,, and H. Ochman. 1993. Cognate gene clusters govern invasion of host epithelial cells by Salmonella typhimurium and Shigella flexneri. EMBO J. 12: 3779 3787.
28. Groisman, E. A.,, and H. Ochman. 1994. How to become a pathogen. Trends Microbiol. 2: 289 294.
Groisman, E. A.,, C. A. Parra,, M. Salcedo,, C. J. Lipps,, and F. Heffron. 1992b.. Resistance to host antimicrobial peptides is necessary for Salmonella virulence. Proc. Natl. Acad. Sci. USA 89: 11939 11943.
30. Groisman, E. A.,, and M. H. Saier, Jr. 1990. Salmonella virulence: new clues to intramacrophage survival. Trends Biochem. Sci. 15: 30 33.
31. Groisman, E. A.,, M. H. Saier, Jr.,, and H. Ochman. 1992c. Horizontal transfer of a phosphatase gene as evidence for mosaic structure of the Salmonella genome. EMBO J. 11: 1309 1316.
32. Halingeserth, S. Personal communication.
33. Helander, I. M.,, I. Kilpelainen,, and M. Vaara. 1994. Increased substitution of phosphate groups in lipopolysaccharides and lipid A of the polymyxinresistant pmrA mutants of Salmonella typhimurium: a 31P-NMR study. Mol. Microbiol. 11: 481 487.
34. Joiner, K. A.,, T. Ganz,, J. Albert,, and D. Rotrosen. 1989. The opsonizing ligand on Salmonella typhimurium influences incorporation of specific, but not azurophil, granule constituent into neutrophil phagosomes. J. Cell. Biol. 109: 2771 2782.
35. Jones, B. D.,, and S. Falkow. 1994. Identification and characterization of a Salmonella typhimurium oxygen-regulated gene required for bacterial internalization. Infect. Immun. 62: 3745 3752.
36. Kasahara, M.,, A. Nakata,, and H. Shinagawa. 1991. Molecular analysis of the Salmonella typhimurium phoN gene, which encodes nonspecific acid phosphatase. J. Bacteriol. 173: 6760 6765.
37. Kasahara, M.,, A. Nakata,, and H. Shinagawa. 1992. Molecular analysis of the Escherichia coli phoP-phoQ operon J. Bacteriol. 174: 492 498.
38. Kier, L. D.,, R. Weppelman,, and B. N. Ames. 1977. Regulation of two phosphatases and a cyclic phosphodiesterase of Salmonella typhimurium. J. Bacteriol. 130: 420 428.
39. Kier, L. D.,, R. M. Weppelman,, and B. N. Ames. 1979. Regulation of nonspecific acid phosphatase in Salmonella: phoN and phoP genes. J. Bacteriol. 138: 155 161.
40. Lee, C.,, and S. Falkow. 1990. The ability of Salmonella to enter mammalian cells is affected by bacterial growth state. Proc. Natl. Acad. Sci. USA 87: 4304 4308.
41. Lee, C. A.,, B. D. Jones,, and S. Falkow. 1992. Identification of a Salmonella typhimurium invasion locus by selection for hyperinvasive mutants. Proc. Natl. Acad. Sci. USA 89: 1847 1851.
42. Lehrer, R. I.,, A. K. Lichtenstein,, and T. Ganz. 1993. Defensins: antimicrobial and cytotoxic peptides of mammalian cells. Annu. Rev. Immunol. 11: 105 128.
43. Mekalanos, J. J. 1992. Environmental signals controlling expression of virulence determinants in bacteria J. Bacteriol. 174: 1 7.
44. Miller, S. I.,, A. M. Kukral,, and J. J. Mekalanos. 1989. A two-component regulatory system ( phoP phoQ) controls Salmonella typhimurium virulence. Proc. Natl. Acad. Sci. USA 86: 5054 5058.
45. Miller, S. I.,, W. P. Loomis,, C. Alpuche-Aranda,, I. Behlau,, and E. Hohmann. 1993. The PhoP virulence regulon and live oral Salmonella vaccines. Vaccine 11: 122 125.
46. Miller, S. I.,, and J. J. Mekalanos. 1990. Constitutive expression of the phoP regulon attenuates Salmonella virulence and survival within macrophages. J. Bacteriol. 172: 2485 2490.
47. Miller, S. I.,, W. S. Pulkkinen,, M. E. Selsted,, and J. J. Mekalanos. 1990. Characterization of defensin resistance phenotypes associated with mutations in the phoP virulence regulon of Salmonella typhimurium. Infect. Immun. 58: 3706 3710.
48. Miller, V. L.,, K. B. Beer,, W. P. Loomis,, J. A. Olson,, and S. I. Miller. 1992. An unusual pagC::Tn phoA mutation leads to an invasion- and virulence-defective phenotype in Salmonellae. Infect. Immun. 60: 3763 3770.
49. Puente, J. L.,, A. Verdugo-Rodriguez,, and E. Calva. 1991. Expression of Salmonella typhi and Escherichia coli OmpC is influenced differently by medium osmolarity; dependence on Escherichia coli OmpR. Mol. Microbiol. 5: 1205 1210.
50. Pulkkinen, W. S.,, and S. I. Miller. 1991. A Salmonella typhimurium virulence protein is similar to a Yersinia enterocolitica invasion protein and a bacteriophage lambda outer membrane protein. J. Bacteriol. 173: 86 93.
51. Roland, K. L.,, L. E. Martin,, C. R. Esther,, and J. K. Spitznagel. 1993. Spontaneous pmrA mutants of Salmonella typhimurium LT2 define a new two-component regulatory system with a possible role in virulence. J. Bacteriol. 175: 4154 4164.
52. Soncini, E.,, and E. A. Groisman. Unpublished data.
53. Soncini, F. C.,, E. Garcia-Véscovi,, and E. A. Groisman. Transcriptional autoregulation of the Salmonella typhimurium phoPQ operon. J. Bacteriol., in press.
54. Sperber, S. J.,, and C. J. Scheulpner. 1987. Salmonellosis during infection with human immunodeficiency virus. Rev. Infect. Dis. 9: 925 934.
55. Stinavage, P.,, L. E. Martin,, and J. K. Spitznagel. 1989. O-antigen and lipid A phosphoryl groups in resistance of Salmonella typhimurium LT-2 to nonoxidative killing in human polymorphonuclear cells. Infect. Immun. 57: 3894 3900.
56. Stone, B. J.,, C. M. Garcia,, J. L. Badger,, T. Hassett,, R. I. E Smith,, and V. L. Miller. 1992. Identification of novel loci affecting entry of Salmonella enteritidis into eukaryotic cells. J. Bacteriol. 174: 3945 3952.
57. Todd, E. C. D. 1989. Prehminary estimates of costs of foodborne disease in the United States. J. Food Prot. 52: 595 601.
58. Tsolis, R.,, J. Lipps,, E. A. Groisman,, and E. Heffron. Unpublished data.
59. Vaara, M. 1981. Increased outer membrane resistance to ethylenediaminetetraacetate and cations in novel lipid A mutants. J. Bacteriol. 148: 426 434.
60. Volz, K. 1993. Structural conservation in the CheY superfamily. Biophys.J. 32: 11741 11753.
61. Wick, M. J.,, C. V. Harding,, N. J. Twesten,, S. J. Normark,, and J. D. Pfeifer. The phoP locus influences processing and presentation of S. typhimurium antigens by activated macrophages. Mol. Microbiol., in press

Tables

Generic image for table
TABLE 1

Virulence phenotypes associated with null and constitutive mutants

Citation: Groisman E, Heffron F. 1995. Regulation of Salmonella Virulence by Two-Component Regulatory Systems, p 319-332. In Hoch J, Silhavy T (ed), Two-Component Signal Transduction. ASM Press, Washington, DC. doi: 10.1128/9781555818319.ch20
Generic image for table
TABLE 2

PhoP/PhoQ-modulated genes

Citation: Groisman E, Heffron F. 1995. Regulation of Salmonella Virulence by Two-Component Regulatory Systems, p 319-332. In Hoch J, Silhavy T (ed), Two-Component Signal Transduction. ASM Press, Washington, DC. doi: 10.1128/9781555818319.ch20
Generic image for table
TABLE 3

Signals known to modulate expression of PhoP/PhoQ-modulated genes

Citation: Groisman E, Heffron F. 1995. Regulation of Salmonella Virulence by Two-Component Regulatory Systems, p 319-332. In Hoch J, Silhavy T (ed), Two-Component Signal Transduction. ASM Press, Washington, DC. doi: 10.1128/9781555818319.ch20

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error