1887

Chapter 21 : Bordetella pertussis BvgAS Virulence Control System

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Bordetella pertussis BvgAS Virulence Control System, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818319/9781555810894_Chap21-1.gif /docserver/preview/fulltext/10.1128/9781555818319/9781555810894_Chap21-2.gif

Abstract:

During infection of a suitable host, adheres to ciliated epithelial cells and expresses several toxins responsible for both local damage and systemic effects. In 1960, Lacey reported that altering growth conditions affected the expression of several antigens. Further analysis and extension of this work demonstrated that chlorate and sulfate anions, nicotinic acid derivatives, and low temperature can reversibly down-regulate expression of virulence factors by . In vivo signals that may promote phenotypic modulation and the mechanism through which modulators interact with BvgAS to regulate its function are not known. Autophosphorylation of the cytoplasmic portion of BvgS (‘BvgS) and phosphotransfer to BvgA have been demonstrated using an in vitro phosphorylation assay. As expected, mutation of the proposed primary site of autophosphorylation, His-729 in the transmitter, abolishes activity in vivo and autophosphorylation in vitro. Phosphotransfer to BvgA from BvgS can be uncoupled from BvgS autophosphorylation by mutations in BvgS. Identification of additional Bvg-phase genes and their functional roles in will further our understanding of virulence gene regulation as it relates to pathogenesis. Pathogenesis of begins with ; characterization of the mechanisms by which BvgAS senses and responds to changing environments is essential for understanding .

Citation: Uhl M, Miller J. 1995. Bordetella pertussis BvgAS Virulence Control System, p 333-349. In Hoch J, Silhavy T (ed), Two-Component Signal Transduction. ASM Press, Washington, DC. doi: 10.1128/9781555818319.ch21

Key Concept Ranking

Adenylate Cyclase Toxin
0.49726358
Outer Membrane Proteins
0.47909948
0.49726358
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Selected features of the BvgA and BvgS proteins ( ). Shaded boxes depict regions sharing sequence similarity to two-component systems. The consensus ATP binding motif (ATP) and amino acids conserved among two-component systems are shown for BvgS: His-729 (H729), Asp-1023 (D1023), and Lys-1080 (K1080). Selected amino acids conserved among receivers are also noted for BvgA: Asp-54 (D54) and Lys-104 (K104). Proposed hydrophobic transmembrane sequences (TM) and A/P-rich regions in BvgS and the helix-turn-helix motif in BvgA (HTH) are noted.

Citation: Uhl M, Miller J. 1995. Bordetella pertussis BvgAS Virulence Control System, p 333-349. In Hoch J, Silhavy T (ed), Two-Component Signal Transduction. ASM Press, Washington, DC. doi: 10.1128/9781555818319.ch21
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Alignment of the conserved histidine region in the C termini of BvgS family members. Alignments of a small portion of the C-terminus domain are shown with consensus amino acids noted for matches in six of the eight amino acids sequences. Consensus abbreviations are Ψ for hydrophobic amino acid and + for positively charged amino acid. Amino acid numbering is noted for BvgS, with the conserved histidine in bold. The location of the consensus sequence in the C terminus is shown, with the transmitter and receiver domains included for comparison. BvgS family members are LemA of pv. ; BarA, ArcB, and EvgS of ; RpfC of pv. ; and RteA of ( ). Sequences were aligned with the PILEUP program from the Genetics Computer Group sequence analysis software package. The consensus motif has also been noticed by others ( ).

Citation: Uhl M, Miller J. 1995. Bordetella pertussis BvgAS Virulence Control System, p 333-349. In Hoch J, Silhavy T (ed), Two-Component Signal Transduction. ASM Press, Washington, DC. doi: 10.1128/9781555818319.ch21
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Model for activation of the and loci ( ). Transcription of the operon initiates in the Bvg phase from the P promoter. In the Bvg phase, following activation of BvgAS, BvgA (A) is able to direct RNA polymerase (RNAP) to activate transcription of the and loci at the P and promoters. Relative levels of transcription are represented by arrow thickness. Locations of inverted and direct repeats in the and intergenic regions are illustrated by small numbered arrows, and the sequences comprising these repeats are listed below. Two additional Bvg-phase promoters, P and P, have also been identified and are discussed in the text ( ).

Citation: Uhl M, Miller J. 1995. Bordetella pertussis BvgAS Virulence Control System, p 333-349. In Hoch J, Silhavy T (ed), Two-Component Signal Transduction. ASM Press, Washington, DC. doi: 10.1128/9781555818319.ch21
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Sensory transduction mutations in the BvgS linker region ( ). The structure of the BvgS protein is indicated. Abbreviations: TM, transmembrane region; T, transmitter; A/P1, AP-rich sequence AAPPAAATAATP; R, receiver; A/P2, AALPTPPSPQAAAPA; C, C-terminal region. The amino acid sequence of the linker region is shown along with substitutions resulting from the constitutive mutations in (Bvg, insensitive to modulation). Phenotypes of BvgS wild-type and mutations (; Δ366P; Δ366P) in an reporter system are shown.

Citation: Uhl M, Miller J. 1995. Bordetella pertussis BvgAS Virulence Control System, p 333-349. In Hoch J, Silhavy T (ed), Two-Component Signal Transduction. ASM Press, Washington, DC. doi: 10.1128/9781555818319.ch21
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5
FIGURE 5

In vitro activity of ′BvgS and mutant derivatives. Wild-type ′BvgS and mutant derivatives were phosphorylated in the absence (lanes 1 to 8) or presence (lanes 9 to 16) of BvgA. Lanes 1 and 9, wild-type ′BvgS; lanes 2 and 10, ′BvgS H729Q; lanes 3 and 11, ′BvgS D1023N; lanes 4 and 12, ′BvgS K1080R; lanes 5 and 13, ′BvgS K1080M; lanes 6 and 14, ′BvgS Δ59R; lanes 7 and 15, ′BvgS Ω1051; lanes 8 and 16, ′BvgS Δ15C. Locations of ′BvgS and BvgA are marked with arrows. Adapted from , with permission.

Citation: Uhl M, Miller J. 1995. Bordetella pertussis BvgAS Virulence Control System, p 333-349. In Hoch J, Silhavy T (ed), Two-Component Signal Transduction. ASM Press, Washington, DC. doi: 10.1128/9781555818319.ch21
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 6
FIGURE 6

Hypothetical model for steps involved in BvgAS signal transduction ( ). After multimerization of BvgS, signal inputs (low temperature, nicotinic acid, MgSO) regulate activity of the protein. BvgS in a conformationally “active” state is able to autophosphorylate at His-729 of the transmitter. After autophosphorylation, the BvgS transmitter intramolecularly transfers to Asp-1023 in the receiver. The BvgS C terminus is also phosphorylated subsequent to receiver phosphorylation ( ). BvgA is phosphorylated by BvgS in a phosphotransfer reaction. Phosphorylated BvgA is able to activate transcription of virulence genes, and initial reports indicate this is through increased affinity for DNA (Boucher et al., 1994). Autophosphorylation and phosphotransfer have been demonstrated for BvgA and BvgS. Mutations that alter the proposed site of autophosphorylation (H→Q) or remove the receiver or C terminus (ΔR, ΔC) prevent autophosphorylation. Both Asp-1023 (D→N) and Lys-1080 (K→R) are necessary for phosphotransfer to BvgA, and Asp-1023 is required for transphosphorylation of the BvgS C terminus ( , and unpublished data). BvgS signal-insensitive muutations, such as , are proposed to lock the protein into an active conformation ( ). Multimerization of BvgS has been suggested by intermolecular complementation of BvgS mutations ( ).

Citation: Uhl M, Miller J. 1995. Bordetella pertussis BvgAS Virulence Control System, p 333-349. In Hoch J, Silhavy T (ed), Two-Component Signal Transduction. ASM Press, Washington, DC. doi: 10.1128/9781555818319.ch21
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818319.chap21
1. Agiato Foster, L. A.,, P. C. Giardina,, M. Wang,, B. J. Akerley,, J. F. Miller,, and D. W. Dyer. 1994. Siderophore biosynthesis in Bordetella bronchiseptica is controlled by the bvg regulon, abstr. 1558. Abstr. 93rd Gen. Meet. Am. Soc. Microbiol. 1994. American Society for Microbiology, Washington, D.C..
2. Akerley, B. J.,, P. A. Cotter,, and J. F. Miller. Ectopic expression of the flagellar regulon alters development of the Bordetella-host interaction. Cell, in press.
3. Akerley, B. J.,, and J. F. Miller. 1993. Flagellin transcription in Bordetella bronchiseptica is regulated by the BvgAS virulence control system. J. Bacteriol. 175: 3468 3479.
4. Akerley, B. J.,, and J. F. Miller. Unpublished data.
5. Akerley, B. J.,, D. M. Monack,, S. Falkow,, and J. F. Miller. 1992. The bvgAS locus negatively controls motility and synthesis of flagella in Bordetella bronchiseptica. J. Bacteriol. 174: 980 990.
6. Ames, P.,, and J. S. Parkinson. 1988. Transmembrane signaling by bacterial chemoreceptors: E. coli transducers with locked signal input. Cell 55: 817 826.
7. Aricò, B.,, J. R Miller,, C. Roy,, S. Stibitz,, D. Monack,, S. Falkow,, R. Gross,, and R. Rappuoli. 1989. Sequences required for expression of Bordetella pertussis virulence factors share homology with prokaryotic signal transduction proteins. Proc. Natl. Acad. Sci. USA 86: 6671 6675.
8. Aricò, B.,, V. Scarlato,, D. M. Monack,, S. Falkow,, and R. Rappuoli. 1991. Structural and genetic analysis of the bvg locus in Bordetella species. Mol. Microbiol. 5: 2481 2491.
9. Beattie, D. T.,, S. Knapp,, and J. J. Mekalanos. 1990. Evidence that modulation requires sequences downstream of the promoters of two vir-repressed genes of Bordetella pertussis. J. Bacteriol. 172: 6997 7004.
10. Beattie, D. T.,, M. J. Mahan,, and J. J. Mekalanos. 1993. Repressor binding to a regulatory site in the DNA coding sequence is sufficient to confer transcriptional regulation of the vir-repressed genes ( vrg genes) in Bordetella pertussis. J. Bacteriol. 175: 519 527.
11. Beattie, D. T.,, R. Shahin,, and J. J. Mekalanos. 1992. A vir-repressed gene of Bordetella pertussis is required for virulence. Infect. Immun. 60: 571 577.
12. Beier, D.,, and R. Gross. Unpublished data.
13. Boucher, P. E.,, F. D. Menozzi,, and C. Locht. 1994. The modular architecture of bacterial response regulators: insights into the activation mechanism of the BvgA transactivator of Bordetella pertussis. J. Mol. Biol. 241: 363 377.
14. Carbonetti, N.,, T. M. Fuchs,, A. A. Patamawenu,, T. J. Irish,, H. Deppisch,, and R. Gross. 1994. Effect of mutations causing overexpression of RNA polymerase α subunit on regulation of virulence factors in Bordetella pertussis. J. Bacteriol 176: 7267 7273.
15. Carbonetti, N. H.,, N. Khelef,, N. Guiso,, and R. Gross. 1993. A phase variant of Bordetella pertussis with a mutation in a new locus involved in the regulation of pertussis toxin and adenylate cyclase toxin expression. J. Bacteriol. 175: 6679 6688.
16. Chang, C.,, S. F. Kwok,, A. B. Bleecker,, and E. M. Meyerowitz. 1993. Arabidopsis ethylene-response gene ETR1: similarity of product to two-component regulators. Science 262: 539 544.
17. Chang, C.,, and S. C. Winans. 1992. Functional roles assigned to the periplasmic, linker, and receiver domains of the Agrobacterium tumefaciens VirA protein. J. Bacteriol. 174: 7033 7039.
18. Charles, I. G.,, G. Dougan,, D. Pickard,, S. Chatfield,, M. Smith,, P. Novotny,, P. Morrissey,, and N. F. Fairweather. 1989. Molecular cloning and characterization of protective outer membrane protein P.69 from Bordetella pertussis. Proc.Natl.Acad. Sci. USA 86: 3554 3558.
19. Collins, L. A.,, S. M. Egan,, and V. Stewart. 1992. Mutational analysis reveals functional similarity between NARX, a nitrate sensor in Escherichia coli K-12, and the methyl-accepting chemotaxis proteins. J. Bacteriol. 174: 3667 3675.
20. Cotter, P. A.,, and J. F. Miller. 1994. The Bvg + phase is necessary and sufficient for the establishment of respiratory tract colonization by Bordetella bronchiseptica: analysis of phase-locked regulatory mutants in a rabbit model. Infect. Immun. 62: 3381 3390.
21. DiRita, V. J.,, and J. J. Mekalanos. 1989. Genetic regulation of bacterial virulence. Annu. Rev. Genet. 23: 455 482.
22. Finn, T. M.,, R. Shahin,, and J. J. Mekalanos. 1991. Characterization of vir-activated Tn phoA gene fusions in Bordetella pertussis. Infect. Immun. 59: 3272 3279.
23. Gentry-Weeks, C. R.,, D. L. Provence,, J. M. Keith,, and R. Curtiss III. 1991. Isolation and characterization of Bordetella avium phase variants. Infect. Immun. 59: 4026 4033.
24. Goldman, W. E.,, D. G. Klapper,, and J. B. Baseman. 1982. Detection, isolation, and analysis of a released Bordetella pertussis product toxic to cultured tracheal cells. Infect. Immun. 36: 782 794.
25. Goyard, S.,, and A. Ullmann. 1991. Analysis of Bordetella pertussis cya operon regulation by use of cya-lac fusions. FEMS Microbiol. Lett. 77: 251 256.
26. Graeff, H.,, D. Beier,, H. Deppisch,, and R. Gross. Unpublished data.
27. Gueirard, P.,, and N. Guiso. 1993. Virulence of Bordetella bronchiseptica: role of adenylate cyclasehemolysin. Infect. Immun. 61: 4072 4078.
28. Hewlett, E. L., 1990. Bordetella species, p. 1756 1762. In G. L. Mandell,, R. G. Douglas, Jr.,, and J. E. Bennett (ed.), Principles and Practice of Infectious Diseases, 3rd ed. Churchill Livingstone, New York..
29. Hewlett, E. L.,, and V. M. Gordon,. 1988. Adenylate cyclase toxin of Bordetella pertussis, p. 193 209. In A. Wardlaw, and R. Parton (ed.), Pathogenesis and Immunity in Pertussis. John Wiley & Sons, Inc., New York..
30. Huh, Y. J.,, and A. A. Weiss. 1991. A 23-kilodalton protein, distinct from BvgA, expressed by virulent Bordetella pertussis binds to the promoter region of vir-regulated genes. Infect. Immun. 59: 2389 2395.
31. Irons, L. I.,, and A. R. Gorringe,. 1988. Pertussis toxin: production, purification, molecular structure, and assay, p. 95 120. In A. Wardlaw, and R. Parton (ed.), Pathogenesis and Immunity in Pertussis. John Wiley & Sons, Inc., New York..
32. Ishige, K.,, S. Nagasawa,, S. Tokishita,, and T. Mizuno. 1994. A novel device of bacterial signal transducers. EMBO J. 13: 5195 5202.
33. Iuchi, S. 1993. Phosphorylation/dephosphorylation of the receiver module at the conserved aspartate residue controls transphosphorylation activity of histidine kinase in sensor protein ArcB of Escherichia coli. J. Biol. Chem. 268: 23972 23980.
34. Iuchi, S.,, and E. C. C. Lin. 1992. Mutational analysis of signal transduction by ArcB, a membrane sensor protein for anaerobic repression of operons involved in the central aerobic pathways in Escherichia coli. J. Bacteriol. 174: 3972 3980.
35. Kalman, L. V.,, and R. P. Gunsalus. 1990. Nitrateand molybdenum-independent signal transduction mutations in narX that alter regulation of anaerobic respiratory genes in Escherichia coli. J. Bacteriol. 172: 7049 7056.
36. Knapp, S.,, and J. J. Mekalanos. 1988. Two trans-acting regulatory genes (vir and mod) control antigenic modulation in Bordetella pertussis. J. Bacteriol. 170: 5059 5066.
37. Lacey, B. W. 1960. Antigenic modulation of Bordetella pertussis. J. Hyg. 58: 57 93.
38. Leininger, E.,, M. Roberts,, J. G. Kenimer,, I. G. Charles,, N. Fairweather,, P. Novotny,, and M. J. Brennan. 1991. Pertactin, an Arg-Gly-Asp-containing Bordetella pertussis surface protein that promotes adherence of mammalian cells. Proc. Natl. Acad. Sci. USA 88: 345 349.
39. Leslie, P. H.,, and A. D. Gardner. 1931. The phases of Haemophilus pertussis. J. Hyg. 31: 423 434.
40. Locht, C.,, M. C. Geoffroy,, and G. Renauld. 1992. Common accessory genes for the Bordetella pertussis filamentous hemagglutinin and fimbriae share sequence similarities with the papC and papD gene families. EMBO J. 11: 3175 3183.
41. Luker, K. E.,, J. L. Collier,, E. W. Kolodziej,, G. R. Marshall,, and W. E. Goldman. 1993. Bordetella pertussis tracheal cytotoxin and other muarmyl peptides: distinct structure-activity relationships for respiratory epithelial cytopathology. Proc.Natl.Acad. Sci. USA 90: 2365 2369.
42. Masure, H.,, R. Shattuck,, and D. Storm. 1987. Mechanisms of bacterial pathogenicity that involve production of calmodulin-sensitive adenylate cyclases. Microbiol. Rev. 51: 60 65.
43. McCleary, W. R.,, and D. R. Zusman. 1990. Purification and characterization of the Myxococcus xanthus FrzE protein shows that it has autophosphorylation activity. J. Bacteriol. 172: 6661 6668.
44. Mekalanos, J. J. 1992. Environmental signals controlling expression of virulence determinants in bacteria J. Bacteriol. 174: 1 7.
45. Melton, A. R.,, and A. A. Weiss. 1989. Environmental regulation of expression of virulence determinants in Bordetella pertussis. J. Bacteriol. 171: 6206 6212.
46. Melton, A. R.,, and A. A. Weiss. 1993. Characterization of environmental regulators of Bordetella pertussis. Infect. Immun. 61: 807 815.
47. Miller, J. F.,, S. A. Johnson,, W. J. Black,, D. T. Beattie,, J. J. Mekalanos,, and S. Falkow. 1992. Isolation and analysis of constitutive sensory transduction mutations in the Bordetella pertussis bvgS gene. J. Bacteriol. 174: 970 979.
48. Miller, J. F.,, J. J. Mekalanos,, and S. Falkow. 1989a. Coordinate regulation and sensory transduction in the control of bacterial virulence. Science 243: 916 922.
49. Miller, J. F.,, C. R. Roy,, and S. Falkow. 1989b. Analysis of Bordetella pertussis virulence gene regulation by use of transcriptional fusions in Escherichia coli. J. Bacteriol. 171: 6345 6348.
50. Monack, D. M.,, B. Aricò,, R. Rappuoli,, and S. Falkow. 1989. Phase variants of Bordetella bronchiseptica arise by spontaneous deletions in the vir locus. Mol. Microbiol 3: 1719 1728.
51. Mooi, F. R.,, W. H. Jansen,, H. Brunings,, H. Gielen,, H. G. J. van der Heide,, H. C. Walvoort,, and P. A. M. Guinee. 1992. Construction and analysis of Bordetella pertussis mutants defective in the production of fimbriae. Microb. Pathog. 12: 127 135.
52. Ota, I. M.,, and A. Varshavsky. 1993. A yeast protein similar to two-component regulators. Science 262: 566 569.
53. Parkinson, J. S.,, and E. C. Kofoid. 1992. Communication modules in bacterial signaling proteins. Annu. Rev. Genet. 26: 71 112.
54. Pazour, G. J.,, C. N. Ta,, and A. Das. 1991. Mutants of Agrobacterium tumefaciens with elevated vir expression. Proc. Natl. Acad. Sci. USA 88: 6941 6945.
55. Pittman, M. 1984. The concept of pertussis as a toxin-mediated disease. Pediatr. Infect. Dis. 3: 467 486.
56. Radford, S. E.,, E. D. Laue,, R. N. Perham,, S. R. Martin,, and E. Appella. 1989. Conformational flexibility and folding of synthetic peptides representing an interdomain segment of polypeptide chain in the pyruvate dehydrogenase multienzyme complex of Escherichia coli. J. Biol. Chem. 264: 767 775.
57. Relman, D.,, E. Tuomanen,, S. Falkow,, D. T. Golenbock,, K. Saukkonen,, and S. D. Wright. 1990. Recognition of a bacterial adhesin by an intergrin: macrophage CR3 (α Mβ2, CDllb/CD18) binds filamentous hemagglutinin of Bordetella pertussis. Cell 61: 1375 1382.
58. Roberts, M.,, N. F. Fairweather,, E. Leininger,, D. Pickard,, E. L. Hewlett,, A. Robinson,, C. Hayward,, G. Dougan,, and I. G. Charles. 1991. Construction and characterization of Bordetella pertussis mutants lacking the vir-regulated P.69 outer membrane protein. Mol. Microbiol. 5: 1393 1404.
59. Roy, C. R.,, and S. Falkow. 1991. Identification of Bordetella pertussis regulatory sequences required for transcriptional activation of the fhaB gene and autoregulation of the bvgAS operon. J. Bacteriol. 173: 2385 2392.
60. Roy, C. R.,, J. F. Miller,, and S. Falkow. 1989. The bvgA gene of Bordetella pertussis encodes a transcriptional activator required for coordinate regulation of several virulence genes. J. Bacteriol. 171: 6338 6344.
61. Roy, C. R.,, J. F. Miller,, and S. Falkow. 1990. Autogenous regulation of the Bordetella pertussis bvgABC operon. Proc. Natl. Acad. Sci. USA 87: 3763 3767.
62. Scarlato, V.,, B. Aricò,, A. Prugnola,, and R. Rappuoli. 1991. Sequential activation and environmental regulation of virulence genes in Bordetella pertussis. EMBO J. 10: 3971 3975.
63. Scarlato, V.,, B. Aricò,, and R. Rappuoli. 1993. DNA topology affects transcriptional regulation of the pertussis toxin gene of Bordetella pertussis in Escherichia coli and in vitro. J. Bacteriol. 175: 4764 4771.
64. Scarlato, V.,, A. Prugnola,, B. Aricò,, and R. Rappuoli. 1990. Positive transcriptional feedback at the bvg locus controls expression of virulence factors in Bordetella pertussis. Proc. Natl. Acad. Sci. USA 87: 6753 6757.
65. Scarlato, V.,, and R. Rappuoli. 1991. Differential response of the bvg virulence regulon of Bordetella pertussis to MgSO 4 modulation. J. Bacteriol. 173: 7401 7404.
66. Schneider, D.,, and C. Parker. 1982. Effect of pyridines on phenotypic properties of Bordetella pertussis. Infect. Immun. 38: 548 553.
67. Stibitz, S. 1994. Mutations in the bvgA gene of Bordetella pertussis that differentially affect regulation of virulence determinants. J. Bacteriol. 176: 5615 5621.
68. Stibitz, S. Complementation analysis of the vir locus of Bordetella pertussis. Submitted for publication.
69. Stibitz, S.,, W. Aaronson,, D. Monack,, and S. Falkow. 1989. Phase variation in Bordetella pertussis by a frameshift in a gene for a novel two component system. Nature (London) 338: 266 269.
70. Stibitz, S.,, W. Black,, and S. Falkow. 1986. The construction of a cloning vector designed for gene replacement in Bordetella pertussis. Gene 50: 133 140.
71. Stibitz, S.,, A. A. Weiss,, and S. Falkow. 1988. Genetic analysis of a region of the Bordetella pertussis chromosome encoding filamentous hemagglutinin and the pleiotropic regulatory locus vir. J. Bacteriol. 170: 2904 2913.
72. Stibitz, S.,, and M. S. Yang. 1991. Subcellular localization and immunological detection of proteins encoded by the vir locus of Bordetella pertussis. J. Bacteriol. 173: 4288 4296.
73. Stock, J.,, A. J. Ninfa,, and A. M. Stock. 1989. Protein phosphorylation and regulation of adaptive responses in bacteria. Microbiol. Rev. 53: 450 490.
74. Swanson, R. V.,, R. B. Bourret,, and M. Simon. 1993. Intermolecular complementation of the kinase activity of CheA. Mol. Microbiol. 8: 435 441.
75. Tuomanen, E.,, H. Towbin,, G. Rosenfelder,, D. Braun,, G. Larson,, G. Hansson,, and R. Hill. 1988. Receptor analogs and monoclonal antibodies that inhibit adherence of Bordetella pertussis for human ciliated respiratory-epithelial cells. J. Exp. Med. 168: 267 277.
76. Tuomanen, E.,, and A. A. Weiss. 1985. Characterization of two adhesins of Bordetella pertussis for human ciliated respiratory-epithelial cells. J. Infect. Dis. 152: 118 125.
77. Uhl, M. A.,, and J. F. Miller. 1994. Autophosphorylation and phosphotransfer in the Bordetella pertussis BvgAS signal transduction cascade. Proc. Natl. Acad. Sci. USA 91: 1163 1167.
78. Uhl, M. A.,, and J. F. Miller. Comparative analysis of Bvg-dependent activation of the Bordetella pertussis ptx and fha promoters in E. coli. Submitted for publication.
79. Uhl, M. A.,, and J. F. Miller. Unpublished data.
80. Ui, M., 1988. The multiple biological activities of pertussis toxin, p. 121 146. In A. Wardlaw, and R. Parton (ed.), Pathogenesis and Immunity in Pertussis. John Wiley & Sons, Inc., New York..
81. Utsumi, R.,, S. Katayama,, M. Taniguchi,, T. Horie,, M. Dteda,, S. Igaki,, H. Nakagawa,, A. Miwa,, H. Tanabe,, and M. Noda. 1994. Newly identified genes involved in the signal transduction of Escherichia coli K-12. Gene 140: 73 77.
82. Weiss, A.,, E. L. Hewlett,, G. A. Myers,, and S. Falkow. 1983. Tn 5-induced mutations affecting virulence factors of Bordetella pertussis. Infect. Immun. 42: 33 41.
83. Weiss, A. A.,, and S. Falkow. 1982. Plasmid transfer to Bordetella pertussis: conjugation and transformation. J. Bacteriol. 152: 549 552.
84. Weiss, A. A.,, and S. Falkow. 1984. Genetic analysis of phase variation in Bordetella pertussis. Infect. Immun. 43: 263 269.
85. Weiss, A. A.,, and M. S. M. Goodwin. 1989. Lethal infection by Bordetella pertussis mutants in the infant mouse model. Infect. Immun. 57: 3757 3764.
86. Weiss, A. A.,, and E. L. Hewlett. 1986. Virulence factors of Bordetella pertussis. Annu. Rev. Microbiol. 40: 661 686.
87. Weiss, A. A.,, A. R. Melton,, K. E. Walker,, C. Andraos-Selim,, and J. J. Meidl. 1989. Use of the promoter fusion transposon Tn 5 lac to identify mutations in Bordetella pertussis vir-regulated genes. Infect. Immun. 57: 2674 2682.
88. Willems, R. J. L.,, C. Geuijen,, H. G. J. van der Heide,, G. Renauld,, P. Bertin,, W. M. R. van den Akker,, C. Locht,, and F. R. Mooi. 1994. Mutational analysis of the Bordetella pertussis fim/fha gene cluster: identification of a gene with sequence similarities to haemolysin accessory genes involved in export of FHA. Mol. Microbiol. 11: 387 397.
89. Willems, R. J. L.,, H. G. J. van der Heide,, and F. R. Mooi. 1992. Characterization of a Bordetella pertussis fimbrial gene cluster which is located directly downstream of the filamentous hemagglutinin gene. Mol. Microbiol. 6: 2661 2671.
90. Wootton, J. C.,, and M. H. Drummond. 1989. The Q-linker: a class of interdomain sequences found in bacterial multidomain regulatory proteins. Protein Eng. 2: 535 543.

Tables

Generic image for table
TABLE 1

BvgA and BvgS mutations and phenotypes in vivo and in vitro

Citation: Uhl M, Miller J. 1995. Bordetella pertussis BvgAS Virulence Control System, p 333-349. In Hoch J, Silhavy T (ed), Two-Component Signal Transduction. ASM Press, Washington, DC. doi: 10.1128/9781555818319.ch21

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error