1887

Chapter 23 : Ti Plasmid and Chromosomally Encoded Two-Component Systems Important in Plant Cell Transformation by Species

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Ti Plasmid and Chromosomally Encoded Two-Component Systems Important in Plant Cell Transformation by Species, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818319/9781555810894_Chap23-1.gif /docserver/preview/fulltext/10.1128/9781555818319/9781555810894_Chap23-2.gif

Abstract:

Tumorigenic strains incite the formation of crown gall tumors at wound sites on a wide variety of dicotyledonous plants as well as some monocotyledonous species. The second region of the Ti plasmid essential for tumor formation is the virulence (vir) region. The plant signals are recognized and transduced by the products of two vir genes, virA and virG. These two genes are members of the highly conserved class of two-component sensory transduction systems, virA coding for the sensor protein and virG for the response regulator. In addition to the Ti plasmid-encoded virulence genes, several chromosomal loci are important for tumor formation. Thus, genes on both the chromosome and the Ti plasmid are required for tumorigenesis, and two-component regulatory systems that are involved in virulence are located on each replicon. The VirA/VirG system of is one of the few two-component systems in which the signal compounds are known. For two reasons, this class of constitutively -expressing mutant may be difficult to isolate. First, according to the model, this mutant VirA would have to harbor mutations that bypass both the Off and the Standby modes to become constitutively activated. Second, a mutant strain that is constitutively expressing its genes is likely to be less fit, and therefore revertants would arise at a high frequency. The pleiotropic nature of the phenotype suggests that any relation to virulence may be indirect.

Citation: Heath J, Nester E, Charles T. 1995. Ti Plasmid and Chromosomally Encoded Two-Component Systems Important in Plant Cell Transformation by Species, p 367-385. In Hoch J, Silhavy T (ed), Two-Component Signal Transduction. ASM Press, Washington, DC. doi: 10.1128/9781555818319.ch23

Key Concept Ranking

Cell Wall Components
0.43567398
Basic Amino Acids
0.42662546
Agrobacterium tumefaciens
0.4028151
16s rRNA Sequencing
0.40071666
0.43567398
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Overview of crown gall tumorigenesis. Schematic representation of the steps involved in the interaction of with its plant host. (1) In response to plant wound-released sugars and a variety of other substituents of plant wound exudate, moves toward the wound site and attaches to a plant cell. (2) In the acidic environment of the wound, induces expression of its vir genes via the VirA/VirG regulatory system. (3) Transcription and translation of the genes lead to (4) T-DNA processing and (5) T-DNA transfer to the plant cell. (6) The T-DNA and bound gene products are targeted to the plant nucleus where (7) the T-DNA is integrated into the genome and the T-DNA oncogenes are expressed. The expression of the T-DNA encoded oncogenes leads to axenic tumor proliferation and (8) the production of opines that are used as carbon and nitrogen sources by the infecting Agrobacterium.

Citation: Heath J, Nester E, Charles T. 1995. Ti Plasmid and Chromosomally Encoded Two-Component Systems Important in Plant Cell Transformation by Species, p 367-385. In Hoch J, Silhavy T (ed), Two-Component Signal Transduction. ASM Press, Washington, DC. doi: 10.1128/9781555818319.ch23
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Functional domains of the sensor molecule VirA. The VirA protein can be divided into three major functional domains with a body plan of ITR, according to the nomenclature of (the input domain, the transmitter domain, and the receiver domain). The input domain is further divided into the periplasmic domain, harboring the ChvE-responsive region, and the linker domain, which senses phenolic compounds and acidity. The transmitter (or kinase) domain contains the conserved histidine that is phosphorylated. The receiver domain is similar in sequence to the VirG protein, contains a conserved aspartate residue, and may play a regulatory role.

Citation: Heath J, Nester E, Charles T. 1995. Ti Plasmid and Chromosomally Encoded Two-Component Systems Important in Plant Cell Transformation by Species, p 367-385. In Hoch J, Silhavy T (ed), Two-Component Signal Transduction. ASM Press, Washington, DC. doi: 10.1128/9781555818319.ch23
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Models for vir gene induction in . (A) Model for the sensing and transmission of signals by VirA in conjunction with ChvE. The model is consistent with phenolic compounds detected directly by VirA or through the action of a phenolic binding protein. For simplicity, the model is illustrated with VirA as the direct phenolic sensor. (B) Model for the activation of VirG by VirA and activation of gene transcription by activated VirG.

Citation: Heath J, Nester E, Charles T. 1995. Ti Plasmid and Chromosomally Encoded Two-Component Systems Important in Plant Cell Transformation by Species, p 367-385. In Hoch J, Silhavy T (ed), Two-Component Signal Transduction. ASM Press, Washington, DC. doi: 10.1128/9781555818319.ch23
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818319.chap23
1. Alt-Moerbe, J.,, H. Kuhlmann,, and J. Schroder. 1989. Differences in induction of Ti plasmid virulence genes virG and virD, and continued control of virD expression by four external factors. Mol. Plant-Microbe Int. 2:301308.
2. Alt-Moerbe, J.,, P. Nedderman,, J. von Lintig,, E. W. Weiler,, and J. Schroder. 1988. Temperature-sensitive step in Ti plasmid vir-region induction and correlation with cytokinin secretion by Agrobacteria. Mol. Gen. Genet. 213:18.
3. Ankenbauer, R.,, P. Albersheim,, and E. Nester. Unpubhshed data.
4. Ankenbauer, R.,, and E. Nester,. 1993. The Agrobacterium Ti plasmid and crown gall tumorigenesis: a model for signal transduction. Host-pathogen interactions, p. 67104. In J. Kurjan, and B. Taylor (ed.), Signal Transduction, Prokaryotic and Simple Eukaryotic Systems. Academic Press, San Diego, Calif.
5. Ankenbauer, R. G.,, E. A. Best,, C. A. Palanca,, and E. W. Nester. 1991. Mutants of the Agrobacterium tumefaciens virA gene exhibiting acetosyringone-independent expression of the vir regulon. Mol. Plant-Microbe Int. 4:400406.
6. Ankenbauer, R. G.,, and E. W. Nester. 1990. Sugar-mediated induction of Agrobacterium tumefaciens virulence genes: structural specificity and activities of monosaccharides. J. Bacteriol. 172: 64426446.
7. Banta, L. M.,, R. D. Joerger,, V. R. Howitz,, A. M. Campbell,, and A. N. Binns. 1994. Glu-225 outside the predicted ChvE binding site in VirA is crucial for sugar enhancement of acetosyringone perception by Agrobacterium tumefaciens. J. Bacteriol. 176:32423249.
8. Blight, M. A.,, and I. B. Holland. 1990. Structure and function of haemolysin B, P-glycoprotein and other members of a novel family of membrane translocators. Mol. Microbiol. 4:873880.
9. Bolton, G. W.,, E. W. Nester,, and M. P. Gordon. 1986. Plant phenohc compounds induce expression of the Agrobacterium tumefaciens loci needed for virulence. Science 232:983985.
10. Braun, A. C. 1947. Thermal studies on the factors responsible for tumor initiation in crown gall. Am J. Bot. 34:234240.
11. Cangelosi, G. A.,, R. G. Ankenbauer,, and E. W. Nester. 1990. Sugars induce the Agrobacterium virulence genes through a periplasmic binding protein and a transmembrane signal protein. Proc. Natl. Acad. Sci. USA 87:67086712.
12. Cangelosi, G. A.,, E. A. Best,, G. Martinetti,, and E. W. Nester. 1991. Genetic analysis of Agrobacterium. Methods Enzymol. 204:384397.
13. Castle, L. A.,, K. D. Smith,, and R. O. Morris. 1992. Cloning and sequencing of an Agrobacterium tumefaciens beta-glucosidase gene involved in modifying a vir-inducing plant signal molecule. J. Bacteriol. 174:14781486.
14. Chang, C.-H.,, and S. C. Winans. 1992. Functional roles assigned to the periplasmic, linker, and receiver domains of the Agrobacterium tumefaciens VirA protein. J. Bacteriol. 174:70337039.
15. Charles, T.,, S. Jin,, and E. Nester. 1992. Two-component sensory transduction systems in phytobacteria. Annu. Rev. Phytopathol. 30:463484.
16. Charles, T. C.,, and E. W. Nester. 1993. A chromosomally encoded two-component sensory transduction system is required for virulence of Agrobacterium tumefaciens. J. Bacteriol. 175:66146625.
17. Chen, C. Y.,, and S. C. Winans. 1991. Controlled expression of the transcriptional activator gene virG in Agrobacterium tumefaciens by using the Escherichia coli lac promoter. J. Bacteriol. 173:11391144.
18. Cornish, A.,, J. A. Greenwood,, and C. W. Jones. 1989. Binding-protein-dependent sugar transport by Agrobacterium radiobacter and A. tumefaciens grown in continuous culture. J. Gen. Microbiol. 135:30013031.
19. Culianez-Macia, F. A.,, and A. G. Hepburn. 1988. The kinetics of T-strand production in a nopaline-type helper strain of Agrobacterium tumefaciens. Mol. Plant-Microbe Int. 1:207214.
20. Doty, S.,, I. Lundin,, and E. Nester. Unpubhshed data.
21. Doty, S. L.,, M. Chang,, and E. W. Nester. 1993. The chromosomal virulence gene, chvE, of Agrobacterium tumefaciens is regulated by a LysR family member. J. Bacteriol. 175:78807886.
22. Douglas, C. J.,, W. Halperin,, and E. W. Nester. 1982. Agrobacterium tumefaciens mutants affected in attachment to plant cells. J. Bacteriol. 152:12651275.
23. Douglas, C. J.,, R. J. Staneloni,, R. A. Rubin,, and E. W. Nester. 1985. Identification and genetic analysis of an Agrobacterium tumefaciens chromosomal virulence region. J. Bacteriol. 161:850860.
24. Duban, M. E.,, K. Lee,, and D. G. Lynn. 1993. Strategies in pathogenesis: mechanistic specificity in the detection of generic signals. Mol. Microbiol. 7:637645.
25. Endoh, H.,, T. Aoyama,, and A. Oka. 1993. Transcription in vitro promoted by the Agrobacterium VirG protein. FEBS Lett. 334:277280.
26. Endoh, H.,, and A. Oka. 1993. Functional analysis of the VirG-like domain contained in the Agrobacterium VirA protein that senses plant factors. Plant Cell Physiol. 34:227235.
27. Feng, J.,, M. R. Atkinson,, W. McCleary,, J. B. Stock,, B. L. Wanner,, and A. J. Ninfa. 1992. Role of phosphorylated metabolic intermediates in the regulation of glutamine synthetase synthesis in Escherichia coli. J. Bacteriol. 174:60616070.
28. Forst, S.,, J. Delgado,, and M. Inouye. 1989. Phosphorylation of OmpR by the osmosensor EnvZ modulates expression of the ompF and ompC genes in Escherichia coli. Proc. Natl. Acad. Sci. USA 86: 60526056.
29. Furlong, C. E., 1987. Osmotic shock-sensitive transport systems, p. 768796. In F. C. Neidhardt,, J. L. Ingraham,, K. B. Low,, B. Magasanik,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology. American Society for Microbiology, Washington, D.C.
30. Garfinkel, D. J.,, and E. W. Nester. 1980. Agrobacterium tumefaciens mutants affected in crown gall tumorigenesis and octopine catabolism. J. Bacteriol. 144:732743.
31. Grignon, C.,, and H. Sentenac. 1991. pH and ionic conditions in the apoplast. Annu. Rev. Plant Physiol. Plant Mol. Biol. 42:103128.
32. Györgypal, Z.,, G. B. Kiss,, and A. Konderosi. 1991. Transduction of plant signal molecules by the Rhizobium NodD proteins. BioAssays 13:575581.
33. Han, D. C.,, C.-Y. Chen,, Y.-F. Chen,, and S. C. Winans. 1992. Altered function mutations of the transcriptional regulatory gene virG of Agrobacterium tumefaciens. J. Bacteriol. 174:70407043.
34. Han, D. C.,, and S. C. Winans. 1994. A mutation in the receiver domain of the Agrobacterium tumefaciens transcriptional regulator VirG increases its affinity for operator DNA. Mol. Microbiol. 12:2330.
35. Heath, J. D.,, M. Bartell,, and E. Nester. Unpubhshed data a.
36. Heath, J. D.,, I. Lundin,, and E. Nester. Unpubhshed data b.
37. Hess, K. M.,, M. W. Dudley,, D. G. Lynn,, R. D. Joerger,, and A. N. Binns. 1991. Mechanism of phenohc activation of Agrobacterium virulence genes: development of a specific inhibitor of bacterial sensor/response systems. Proc. Natl. Acad. Sci. USA 88:78547858.
38. Higgins, C. F.,, I. D. Hiles,, G. P. C. Salmond,, D. R. Gill,, J. A. Downie,, I. J. Evan,, B. Holland,, L. Gray,, S. D. Buckel,, A. W. Bell,, and M. A. Hermondson. 1986. A family of related ATP-binding subunits coupled to many distant biological processes in bacteria. Nature (London) 323:448450.
39. Howitz, V. R.,, and A. N. Binns (University of Pennsylvania). 1993. Personal communication.
40. Huang, M. L.,, G. A. Cangelosi,, W. Halperin,, and E. W. Nester. 1990. A chromosomal Agrobacterium tumefaciens gene required for effective plant signal transduction. J. Bacteriol. 172:18141822.
41. Jin, S.,, and E. Nester. Unpublished data.
42. Jin, S. G.,, R. K. Prusti,, T. Roitsch,, R. G. Ankenbauer,, and E. W. Nester. 1990a. Phosphorylation of the VirG protein of Agrobacterium tumefaciens by the autophosphorylated VirA protein: essential role in biological activity of VirG. J. Bacteriol. 172:49454950.
43. Jin, S.,, T. Roitsch,, R. G. Ankenbauer,, M. P. Gordon,, and E. W. Nester. 1990b. The VirA protein of Agrobacterium tumefaciens is autophosphorylated and is essential for vir gene regulation. J. Bacteriol. 172:525530.
44. Jin, S. G.,, T. Roitsch,, P. J. Christie,, and E. W. Nester. 1990c. The regulatory VirG protein specifically binds to a cis-acting regulatory sequence involved in transcriptional activation of Agrobacterium tumefaciens virulence genes. J. Bacteriol. 172:531537.
45. Jin, S.,, Y.-N. Song,, W.-Y. Deng,, M. Gordon,, and E. W. Nester. 1993a. The regulatory VirA protein of Agrobacterium tumefaciens does not function at elevated temperatures. J. Bacteriol. 175:68306835.
46. Jin, S.,, Y.-N. Song,, S. Q. Pan,, and E. W. Nester. 1993b. Characterization of a virG mutation that confers constitutive virulence gene expression in Agrobacterium. Mol. Microbiol. 7:555562.
47. Kado, C. 1991. Molecular mechanisms of crown gall tumorigenesis. Crit. Rev. Plant Sci. 101:132.
48. Kahl, G., 1982. Molecular biology of wound healing: the conditioning phenomenon, p. 211267. In G. Kahl, and J. S. Schell (ed.), Molecular Biology of Plant Tumors. Academic Press, London.
49. Lee, K.,, M. W. Dudley,, K. M. Hess,, D. G. Lynn,, R. D. Joerger,, and A. N. Binns. 1992. Mechanism of activation of Agrobacterium virulence genes: identification of phenol-binding proteins. Proc. Natl. Acad. Sci. USA 89:86668670.
50. Lee, S.,, R. Ankenbauer,, and E. Nester. Unpubhshed data a.
51. Lee, S.,, H. Floss,, and E. Nester. Unpublished data b.
52. Lee, S.,, S. Jin,, and E. Nester. Unpubhshed data c.
53. Leroux, B.,, M. F. Yanofsky,, S. C. Winans,, J. E. Ward,, S. F. Ziegler,, and E. W. Nester. 1987. Characterization of the virA locus of Agrobacterium tumefaciens: a transcriptional regulator and host range determinant. Embo J. 6:849856.
54. Liu, C.-N.,, T. R. Steck,, L. L. Habeck,, J. A. Meyer,, and S. B. Gelvin. 1993. Multiple copies of virG allow induction of Agrobacterium tumefaciens vir genes and T-DNA processing at alkaline pH. Mol. Plant-Microbe Int. 6:144156.
55. Machida, Y.,, S. Okamoto,, S. Matsumoto,, S. Usami,, A. Yamamoto,, Y. Niwa,, S. D. Jeong,, J. Nagamine,, N. Shimoda,, C. Machida,, and M. Iwahashi. 1989. Mechanisms of crown gall formation: T-DNA transfer from Agrobacterium tumefaciens to plant cells. Bot.Mag. Tokyo 102:331350.
56. Macnab, R. M., 1987. Motility and chemotaxis, p. 732759. In F. C. Neidhardt,, J. L. Ingraham,, K. B. Low,, B. Magasanik,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology. American Society for Microbiology, Washington, D.C.
57. Makino, K.,, H. Shinagawa,, M. Amemura,, T. Kawamoto,, M. Yamada,, and A. Nakata. 1989. Signal transduction in the phosphate regulon of Escherichia coli involves phosphotransfer between PhoR and PhoB proteins. J. Mol. Biol. 210:551559.
58. Mantis, N. J.,, and S. C. Winans. 1992. The Agrobacterium tumefaciens vir gene transcriptional activator virG is transcriptionally induced by acid pH and other stress stimuli. J. Bacteriol. 174:11891196.
59. Mantis, N. J.,, and S. C. Winans. 1993. The chromosomal response regulatory gene chvI of Agrobacterium tumefaciens complements an Escherichia coli phoB mutation and is required for virulence. J. Bacteriol. 175:66266636.
60. Matthysse, A. G. 1987. Characterization of non-attaching mutants of Agrobacterium tumefaciens. J. Bacteriol. 169:313323.
61. McLean, B. G.,, E. A. Greene,, and P. Zambryski. 1994. Mutants of Agrobacterium VirA that activate vir gene expression in the absence of the inducer acetosyringone. J. Biol. Chem. 269:26452651.
62. Mekalanos, J. J. 1992. Environmental signals controlling expression of virulence determinants in bacteria. J. Bacteriol. 174:17.
63. Melchers, L. S.,, T. T. J. Regensburg,, R. B. Bourret,, N. J. Sedee,, R. A. Schilperoort,, and P. J. Hooykaas. 1989a. Membrane topology and functional analysis of the sensory protein VirA of Agrobacterium tumefaciens. EMBO J. 8:19191925.
64. Melchers, L. S.,, A. J. Regensburg-Tuink,, R. A. Schilperoort,, and P. J. Hooykaas. 1989b. Specificity of signal molecules in the activation of Agrobacterium virulence gene expression. Mol. Microbiol. 7:969977.
65. Messens, E.,, R. Dekeyser,, and S. Stachel. 1990. A nontransformable Triticum monococcum monocotyledenous culture produces the potent Agrobacterium vir-inducing compound ethyl ferulate. Proc. Natl. Acad. Sci. USA 87:43684372.
66. Metts, J.,, J. West,, S. H. Doares,, and A. G. Matthysse. 1991. Characterization of three Agrobacterium tumefaciens avirulent mutants with chromosomal mutations that affect induction of vir genes. J. Bacteriol. 173:10801087.
67. Morris, J. W.,, and R. O. Morris. 1990. Identification of an Agrobacterium tumefaciens virulence gene inducer from the pinaceous gymnosperm Pseudotsuga menziesii. Proc. Natl. Acad. Sci. USA 87:36143618.
68. Pan, S. Q.,, T. Charles,, S. Jin,, Z.-L. Wu,, and E. W. Nester. 1993. Preformed dimeric state of the sensor protein VirA is involved in plant-Agrobacterium signal transduction. Proc. Natl. Acad. Sci. USA 90:99399943.
69. Park, C.,, and G. L. Hazelbauer. 1986. Mutations specifically affecting ligand interaction of the Trg chemosensory transducer. J. Bacteriol. 167:101109.
70. Parkinson, J. S.,, and E. C. Kofoid. 1992. Communication modules in bacterial signaling proteins. Annu. Rev. Genet. 26:71112.
71. Pazour, G. J.,, C. N. Ta,, and A. Das. 1991. Mutants of Agrobacterium tumefaciens with elevated vir gene expression. Proc. Natl. Acad. Sci. USA 88:69416945.
72. Pazour, G. J.,, C. N. Ta,, and A. Das. 1992. Constitutive mutations of Agrobacterium tumefaciens transcriptional activator virG. J. Bacteriol. 174:41694174.
73. Puvanesarajah, V.,, E. M. Schell,, G. Stacey,, C. J. Douglas,, and E. W. Nester. 1985. Role for 2-linked-beta-D-glucan in the virulence of Agrobacterium tumefaciens. J. Bacteriol. 164:102106.
74. Recourt, K.,, A. A. N. van Brussel,, A. J. M. Driessen,, and B. J. J. Lugtenberg. 1989. Accumulation of a nod gene inducer, the flavonoid naringenin, in the cytoplasmic membrane of Rhizobium leguminosarum biovar viciae is caused by the pH-dependent hydrophobicity of naringenin. J. Bacteriol. 171:43704377.
75. Riker, A. J. 1926. Studies on the influence of some environmental factors on the development of crown gall. J. Agric. Res. 32:8396.
76. Rogler, C. E. 1980. Plasmid-dependent temperature-sensitive phase in crown gall tumorigenesis. Proc. Natl. Acad. Sci. USA 77:26882692.
77. Rogowsky, P. M.,, T. J. Close,, J. A. Chimera,, J. J. Shaw,, and C. I. Kado. 1987. Regulation of the vir genes of Agrobacterium tumefaciens plasmid pTiC58. J. Bacteriol. 169:51015112.
78. Roitsch, T.,, S. Jin,, and E. W. Nester. 1994. The binding site of the transcriptional activator VirG from Agrobacterium comprises both conserved and specific nonconserved sequences. FEBS Lett. 338: 127132.
79. Rong, L.,, N. C. Carpita,, A. Mort,, and S. B. Gelvin. 1994. Soluble cell wall compounds from carrot roots induce the picA and pgl loci of Agrobacterium tumefaciens. Mol. Plant-Microbe Int. 7:614.
80. Sawada, H.,, H. Ieki,, H. Oyaizu,, and S. Matsumoto. 1993. Proposal for rejection of Agrobacterium tumefaciens and revised descriptions for the genus Agrobacterium and for Agrobacterium radiobacter and Agrobacterium mizogenes. Int. J. System. Bacteriol. 43:694702.
81. Seligman, L.,, and C. Manoil. 1994. An amphipathic sequence determinant of membrane protein topology. J. Biol. Chem. 269:1988819896.
82. Shimoda, N.,, A. Toyoda-Yamamoto,, S. Aoki,, and Y. Machida. 1993. Genetic evidence for an interaction between the VirA sensor protein and the ChvE sugar-binding protein of Agrobacterium. J. Biol. Chem. 268:2655226558.
83. Shimoda, N.,, A. Toyoda-Yamamoto,, J. Nagamine,, S. Usami,, M. Katayama,, Y. Sakagami,, and Y. Machida. 1990. Control of expression of Agrobacterium vir genes by synergistic actions of phenohc signal molecules and monosaccharides. Proc. Natl. Acad. Sci. USA 87:66846688.
84. Spencer, P.,, A. Tanaka,, and G. H. N. Towers. 1990. An Agrobacterium signal compound from grapevine cultivars. Phytochemistry 29:37863790.
85. Spencer, P. A.,, and G. H. N. Towers. 1988. Specificity of signal compounds detected by Agrobacterium tumefaciens. Phytochemistry 27:27812785.
86. Stachel, S. E.,, E. Messens,, M. Van Montagu,, and P. Zambryski. 1985. Identification of the signal molecules produced by wounded plant cells that activate T-DNA transfer in Agrobacterium tumefaciens. Nature (London) 318:624629.
87. Stachel, S. E.,, E. W. Nester,, and P. C. Zambryski. 1986. A plant cell factor induces Agrobacterium tumefaciens vir gene expression. Proc. Natl. Acad. Sci. USA 83:379383.
88. Stachel, S. E.,, and P. C. Zambryski. 1986. virA and virG control the plant-induced activation of the T-DNA transfer process of A. tumefaciens. Cell 46:325333.
89. Turk, S. C.,, L. S. Melchers,, H. den Dulk-Ras,, T. A. J. Regensburg,, and P. J. Hooykaas. 1991. Environmental conditions differentially affect vir gene induction in different Agrobacterium strains. Role of the VirA sensor protein. Plant Mol. Biol. 16:10511059.
90. Turk, S. C. H. J. 1993. Characterization of the VirA receptor protein from Agrobacterium tumefaciens. Ph.D. dissertation. Leiden University, The Netherlands.
91. Turk, S. C. H. J.,, E. W. Nester,, and P. J. J. Hooykaas. 1993a. The virA promoter is a hostrange determinant in Agrobacterium tumefaciens. Mol. Microbiol. 7:719724.
92. Turk, S. C. H. J.,, R. P. vanLange,, E. Sonneveld,, and P. J. J. Hooykaas. 1993b. The chimeric VirA-Tar receptor is locked into a highly responsive state. J. Bacteriol. 175:57065709.
93. Usami, S.,, S. Okamoto,, I. Takebe,, and Y. Machida. 1988. Factor inducing Agrobacterium tumefaciens vir gene expression is present in monocotyledonous plants. Proc. Natl. Acad. Sci. USA 85:37483752.
94. Veluthambi, K.,, R. K. Jayaswal,, and S. B. Gelvin. 1987. Virulence genes A, G, and D mediate the double-stranded border cleavage of T-DNA from the Agrobacterium Ti plasmid. Proc. Natl. Acad. Sci. USA 84:18811885.
95. Vernade, D.,, E. A. Herrera,, K. Wang,, and M. M. Van. 1988. Glycine betaine allows enhanced induction of the Agrobacterium tumefaciens vir genes by acetosyringone at low pH. J. Bacteriol. 170:58225829.
96. Weiss, V.,, and B. Magasanik. 1988. Phosphorylation of nitrogen regulator I (NRI) of Escherichia coli. Proc. Natl. Acad. Sci. USA 85:89198923.
97. Winans, S. C. 1990. Transcriptional induction of an Agrobacterium regulatory gene at tandem promoters by plant-released phenohc compounds, phosphate starvation, and acidic growth media. J. Bacteriol. 172:24332438.
98. Winans, S. C. 1992. Two way chemical signalling in Agrobacterium-plant interactions. Microbiol. Rev. 56: 1231.
99. Winans, S. C. (Cornell University). 1994. Personal communication.
100. Winans, S. C.,, P. R. Ebert,, S. E. Stachel,, M. P. Gordon,, and E. W. Nester. 1986. A gene essential for Agrobacterium virulence is homologous to a family of positive regulatory loci. Proc. Natl. Acad. Sci. USA 83:82788282.
101. Winans, S. C.,, R. A. Kerstetter,, and E. W. Nester. 1988. Transcriptional regulation of the virA and virG genes of Agrobacterium tumefaciens. J. Bacteriol. 170:40474054.
102. Winans, S. C.,, R. A. Kerstetter,, J. E. Ward,, and E. W. Nester. 1989. A protein required for transcriptional regulation of Agrobacterium virulence genes spans the cytoplasmic membrane. J. Bacteriol. 171:16161622.
103. Winans, S. C.,, N. J. Mantis,, C.-Y. Chen,, C.-H. Chang,, and D. C. Han. 1994. Host recognition by the VirA, VirG two-component regulatory proteins of Agrobacterium tumefaciens. Res. Microbiol. 145:461473.
104. Wu, L.,, and E. Nester. Unpubhshed data.
105. Zerback, R.,, K. Dressier,, and D. Hess. 1989. Flavonoid compounds from pollen and stigma of Petunia hybrida: inducers of the vir region of the Agrobacterium tumefaciens Ti-plasmid. Plant Sci. 62: 8391.
106. Zorreguieta, A.,, R. Geremia,, S. Cavaignac,, G. Cangelosi,, E. Nester,, and R. Ugalde. 1988. Identification of the product of an Agrobacterium tumefaciens chromosomal virulence gene. Mol. Plant-Microbe Int. 1:121127.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error