1887

Chapter 29 : A Signal Transduction Network in Includes the DegS/DegU and ComP/ComA Two-Component Systems

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

A Signal Transduction Network in Includes the DegS/DegU and ComP/ComA Two-Component Systems, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818319/9781555810894_Chap29-1.gif /docserver/preview/fulltext/10.1128/9781555818319/9781555810894_Chap29-2.gif

Abstract:

Soil bacteria such as are subject to drastic variations of environmental conditions such as temperature, humidity, and nutrient source availability. At the onset of the stationary phase, faced with a depletion of essential nutrients, can adopt several responses, including synthesis of macromolecule-degrading enzymes, competence for genetic transformation, increased motility and chemotaxis, antibiotic production, and finally, sporulation. Regulation by the two-component systems presents several original features. Some of these original features are discussed, within the framework of the DegS/DegU and ComP/ComA signal transduction network. The chapter describes degradative enzyme synthesis. Sequence similarities with two-component systems suggest the conserved His-189 residue of the DegS protein kinase and Asp-56 residue of the DegU response regulator as likely candidates for the respective phosphorylation sites of the two proteins. The chapter discusses competence gene expression, and signal transduction network. Both the ComP/ComA and DegS/DegU two-component systems control the expression of late competence genes; however, they seem to act through two different branches in the competence regulatory pathway that intersect to allow expression of comK. An exciting area of future research will be to identify the types of signals involved in regulation by each of these two-component systems and by the other regulators such as MecB/MecA and the ComQ-ComX-Spo0K pathway, as well as determining how these regulators interact within the signal transduction network.

Citation: Msadek T, Kunst F, Rapoport G. 1995. A Signal Transduction Network in Includes the DegS/DegU and ComP/ComA Two-Component Systems, p 447-471. In Hoch J, Silhavy T (ed), Two-Component Signal Transduction. ASM Press, Washington, DC. doi: 10.1128/9781555818319.ch29

Key Concept Ranking

Gene Expression and Regulation
0.5899484
0.5899484
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Pleiotropic regulation by DegS/DegU signal transduction pathway controlling degradative enzyme synthesis and competence gene expression in . Arrows indicate positive regulation, and perpendicular bars indicate negative regulation. Regulation by DegS/DegU has not been shown to be direct and may therefore involve possible intermediate genes.

Citation: Msadek T, Kunst F, Rapoport G. 1995. A Signal Transduction Network in Includes the DegS/DegU and ComP/ComA Two-Component Systems, p 447-471. In Hoch J, Silhavy T (ed), Two-Component Signal Transduction. ASM Press, Washington, DC. doi: 10.1128/9781555818319.ch29
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Expression of during growth in competence minimal medium in strains carrying mutations in or genes. Time is expressed in hours before or after the time of transition from the exponential growth phase to the stationary phase. □: D56N; Δ: Δ; ○: wild-type and genes; ▲: Δ(); ●: (Hy) H12L.

Citation: Msadek T, Kunst F, Rapoport G. 1995. A Signal Transduction Network in Includes the DegS/DegU and ComP/ComA Two-Component Systems, p 447-471. In Hoch J, Silhavy T (ed), Two-Component Signal Transduction. ASM Press, Washington, DC. doi: 10.1128/9781555818319.ch29
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Regulation of competence gene expression in . Arrows indicate positive regulation, and perpendicular bars indicate negative regulation. The ComP/ComA and DegS/DegU two-component systems comprise two parallel pathways controlling competence gene expression ( ).

Citation: Msadek T, Kunst F, Rapoport G. 1995. A Signal Transduction Network in Includes the DegS/DegU and ComP/ComA Two-Component Systems, p 447-471. In Hoch J, Silhavy T (ed), Two-Component Signal Transduction. ASM Press, Washington, DC. doi: 10.1128/9781555818319.ch29
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Provisional model of signal transduction network controlling competence gene expression and degradative enzyme synthesis. The phosphorylated form of ComA controls expression, and the phosphorylated form of DegU is required for degradative enzyme synthesis. Negative regulation of expression by MecB/MecA may be relieved by an -generated signal, sensed by MecB, thus allowing expression of late competence genes. DegU is required for expression of , but whether it acts directly or by relieving negative regulation by MecB/MecA remains to be determined (dotted lines). Arrows and perpendicular bars indicate positive and negative regulation, respectively.

Citation: Msadek T, Kunst F, Rapoport G. 1995. A Signal Transduction Network in Includes the DegS/DegU and ComP/ComA Two-Component Systems, p 447-471. In Hoch J, Silhavy T (ed), Two-Component Signal Transduction. ASM Press, Washington, DC. doi: 10.1128/9781555818319.ch29
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818319.chap29
1. Albano, M.,, R. Breitling,, and D. A. Dubnau. 1989. Nucleotide sequence and genetic organization of the Bacillus subtilis comG operon. J. Bacteriol. 171: 53865404.
2. Albano, M.,, J. Hahn,, and D. Dubnau. 1987. E x pression of competence genes in Bacillus subtilis. J. Bacteriol. 169:31103117.
3. Albertini, A.,, C. Scotti,, and A. Galizzi (University of Pavia, Pavia,Italy). 1993. Personal communication.
4. Albright, L. M.,, E. Huala,, and F. M. Ausubel. 1989. Prokaryotic signal transduction mediated by sensor and regulator pairs. Annu. Rev. Genet. 23: 311336.
5. Alex, L. A.,, and M. I. Simon. 1994. Protein histidine kinases and signal transduction in prokaryotes and eukaryotes. Trends Genet. 10:133138.
6. Allen, P.,, C. A. Hart,, and J. R. Saunders. 1987. Isolation fiom Klebsiella and characterization of two rcs genes that activate colanic acid capsular biosynthesis in Escherichia coli. J. Gen. Microbiol. 133:331340.
7. Amory, A.,, F. Kunst,, E. Aubert,, A. Klier,, and G. Rapoport. 1987. Characterization of the sacQ genes from Bacillus licheniformis and Bacillus subtilis. J. Bacteriol. 169:324333.
8. Antoniewski, C.,, B. Savelli,, and P. Stragier. 1990. The spoIIJ gene, which regulates early development steps in Bacillus subtilis, belongs to a class of environmentally responsive genes. J. Bacteriol. 172:8693.
9. Aymerich, S.,, G. Gonzy-Tréboul,, and M. Steinmetz. 1986.5'-noncoding region sacR is the target of all identified regulation affecting the levansucrase gene in Bacillus subtilis. J. Bacteriol. 166:993998.
10. Ayusawa, D.,, Y. Yoneda,, K. Yamane,, and B. Maruo. 1975. Pleiotropic phenomena in autolytic enzyme(s) content, flagellation and simultaneous hyperproduction of extracellular (α-amylase and protease in a Bacillus subtilis mutant. J. Bacteriol. 124:459469.
11. Baldus, J. M.,, B. D. Green,, P. Youngman,, and C. P. Moran, Jr. 1994. Phosphorylation of Bacillus subtilis transcription factor Spo0A stimulates transcription fiom the spoIIG promoter by enhancing binding to weak 0A boxes. J. Bacteriol. 176:296306.
12. Bernhard, F.,, K. Poetter,, K. Geider,, and D. L. Coplin. 1990. The rcsA gene from Erwinia amylovora: identification, nucleotide sequence, and regulation of exopolysaccharide biosynthesis. Mol. Plant-Microb. Int. 3:429437.
13. Bischoff, D. S.,, and G. W. Ordal. 1991. Sequence and characterization of Bacillus subtilis CheB, a homolog of Escherichia coli CheY, and its role in a different mechanism of chemotaxis. J. Biol. Chem. 266:1230112305.
14. Borkovich, K. A.,, N. Kaplan,, J. F. Hess,, and M. I. Simon. 1989. Transmembrane signal transduction in bacterial chemotaxis involves ligand-dependent activation of phosphate group transfer. Proc. Natl. Acad. Sci. USA 86:12081212.
15. Borkovich, K. A.,, and M. I. Simon. 1990. The dynamics of protein phosphorylation in bacterial chemotaxis. Cell 63:13391348.
16. Bourret, R. B.,, K. A. Borkovich,, and M. I. Simon. 1991. Signal transduction pathways involving protein phosphorylation in prokaryotes. Annu. Rev. Biochem. 60:401141.
17. Bourret, R. B.,, J. F. Hess,, K. A. Borkovich,, A. A. Pakula,, and M. I. Simon. 1989. Protein phosphorylation in chemotaxis and two-component regulatory systems of bacteria. J. Biol. Chem. 264:70857088.
18. Bourret, R. B.,, J. F. Hess,, and M. I. Simon. 1990. Conserved aspartate residues and phosphorylation in signal transduction by the chemotaxis protein CheY. Proc. Natl. Acad. Sci. USA 87:4145.
19. Breitling, R.,, and D. Dubnau. 1990. A membrane protein with similarity to N-methylphenylalanine pilins is essential for DNA binding by competent Bacillus subtilis. J. Bacteriol. 172:14991508.
20. Brissette, R. E.,, K. Tsung,, and M. Inouye. 1991. Intramolecular second-site revertants to the phosphorylation site mutation in OmpR, a kinase-dependent transcriptional activator in Escherichia coli. J. Bacteriol. 173:37493755.
21. Brown, J. L.,, S. North,, and H. Bussey. 1993. SKN7, a yeast multicopy suppressor of a mutation affecting cell wall β-glucan assembly, encodes a product with domains homologous to prokaryotic two-component regulators and to heat shock transcription factors J. Bacteriol. 175:69086915.
22. Chang, C.,, S. F. Kwok,, A. B. Bleecker,, and E. M. Meyerowitz. 1993. Arabidopsis ethylene-response gene ETRl: similarity of product to two-component regulators. Science 262:539544.
23. Chang, C.,, and E. M. Meyerowitz. 1994. Eukaryotes have "two-component" signal transducers. Res. Microbiol. 145:481486.
24. Cheo, D. L.,, K. W. Bayles,, and R. E. Yasbin. 1992. Molecular characterization of regulatory elements controlling expression of the Bacillus subtilis recA+ gene. Biochimie 74:755762.
25. Cheo, D. L.,, K. W. Bayles,, and R. E. Yasbin. 1993. Elucidation of regulatory elements that control damage induction and competence induction of the Bacillus subtilis SOS system. J. Bacteriol. 175: 59075915.
26. Choi, S. H.,, and E. P. Greenberg. 1991. The C-terminal region of the Vibrio fischeri LuxR protein contains an inducer-independent lux gene activating domain. Proc. Natl. Acad. Sci. USA 88:1111511119.
27. Choi, S. H.,, and E. P. Greenberg. 1992. Genetic dissection of DNA binding and luminescence gene activation by the Vibrio fischeri LuxR protein. J. Bacteriol. 174:40644069.
28. Cole, S. X.,, and O. Raibaud. 1986. The nucleotide sequence of the malT gene encoding the positive regulator of the Escherichia coli maltose regulon. Gene 42:201208.
29. Coleman, M.,, R. Pearce,, E. Hitchin,, E. Busfield,, J. W. Mansfield,, and I. S. Roberts. 1990. Molecular cloning, expression andnucleotide sequence of the rcsA gene of Erwinia amylovora,encoding a positive regulator of capsule expression: evidence for a family of related capsule activator proteins. J. Gen. Microbiol. 136:17991806.
30. Coote, J. G. 1991. Antigenic switching and pathogenicity: environmental effects on virulence gene expression in Bordetella pertussis. J. Gen. Microbiol. 137: 24932503.
31. Cosmina, P.,, F. Rodriguez,, F. de Ferra,, G. Grandi,, M. Perego,, G. Venema,, and D. van Sinderen. 1993. Sequence and analysis of the genetic locus responsible for surfactin synthesis in Bacillus subtilis. Mol. Microbiol. 8:821831.
32. Crutz, A. M.,, and M. Steinmetz. 1992. Transcription of the Bacillus subtilis sacX and sacY genes, encoding regulators of sucrose metabohsm, is both inducible by sucrose and controlled by the DegSDegU signalling system. J. Bacteriol. 174:60876095.
33. Cutting, S.,, and J. Mandelstam. 1986. The nucleotide sequence and the transcription during sporulation of the gerE gene of Bacillus subtilis. J. Gen. Microbiol. 132:30133024.
34. Dahl, M. K.,, T. Msadek,, F. Kunst,, and G. Rapoport. 1991. Mutational analysis of the Bacillus subtilis DegU regulator and its phosphorylation by the DegS protein kinase. J. Bacteriol. 173:25392547.
35. Dahl, M. K.,, T. Msadek,, F. Kunst,, and G. Rapoport. 1992. The phosphorylation state of the DegU response regulator acts as a molecular switch allowing either degradative enzyme synthesis or expression of genetic competence in Bacillus subtilis. J. Biol Chem. 267:1450914514.
36. Da Re, S.,, S. Bertagnoli,, J. Fourment,, J.-M. Reyrat,, and D. Kahn. 1994. Intramolecular signal transduction within the FixJ transcriptional activator: in vitro evidence for the inhibitory effect of the phosphorylatable regulatory domain. Nucleic Acids Res. 22:15551561.
37. Delgado, J.,, S. Forst,, S. Harlocker,, and M. Inouye. 1993. Identification of a phosphorylation site and functional analysis of conserved aspartic acid residues of OmpR, a transcriptional activator for ompF and ompC in Escherichia coli. Mol. Microbiol. 10:10371047.
38. Devine, J. H.,, C. Countryman,, and T. O. Baldwin. 1988. Nucleotide sequence of the luxR and luxl genes and structure of the primary regulatory region of the lux regulon of Vibrio fischeri ATCC 7744. Biochemistry 27:837842.
39. Dixon, R.,, T. Eydmann,, N. Henderson,, and S. Austin. 1991. Substitutions at a single amino acid residue in the nitrogen-regulated activator protein NTRC differentially influence its activity in response to phosphorylation. Mol. Microbiol. 5:16571667.
40. Dombroski, A. J.,, W. A. Walter,, and C. A. Gross. 1993. Amino-terminal amino acids modulate σ-factor DNA-binding activity. Genes Dev. 7:24462455.
41. D'Souza, C.,, M. M. Nakano,, N. Corbell,, and P. Zuber. 1993. Amino-acylation site mutations in amino acid-activating domains of surfactin synthetase: effects on surfactin production and competence development in Bacillus subtilis. J. Bacteriol. 175:35023510.
42. D'Souza, C.,, M. M. Nakano,, and P. Zuber. 1994. Identification of comS, a gene of the srfA operon that regulates the establishment of genetic competence in Bacillus subtilis. Proc. Natl. Acad. Sci. USA 91:93979401.
43. Dubnau, D. 1991. Genetic competence in Bacillus subtilis. Microbiol. Rev. 55:395424.
44. Dubnau, D., 1993. Genetic exchange and homologous recombination, p. 555584. In A. L. Sonenshein,, J. A. Hoch,, and R. Losick (ed.), Bacillus subtilis and Other Gram-Positive Bacteria: Biochemistry, Physiology, and Molecular Genetics. American Society for Microbiology, Washington, D.C.
45. Dubnau, D.,, J. Hahn,, M. Roggiani,, F. Piazza,, and Y. Weinrauch. 1994. Two-component regulators and genetic competence in Bacillus subtilis. Res. Microbiol. 145:403411.
46. Dubnau, D.,, and L. Kong (Public Health Research Institute,New York). 1994. Personal communication.
47. Dubnau, D.,, and M. Roggiani. 1990. Growth medium-independent genetic competence mutants of Bacillus subtilis. J. Bacteriol. 172:40484055.
48. Engebrecht, J.,, and M. Silverman. 1987. Nucleotide sequence of the regulatory locus controlling expression of bacterial genes for bioluminescence. Nucleic Acids Res. 15:1045510467.
49. Fath, M. J.,, and R. Kolter. 1993. ABC transporters: bacterial exporters. Microbiol. Rev. 57:9951017.
50. Ferrari, F. A.,, K. Trach,, D. LeCoq,, J. Spence,, E. Ferrari,, and J. A. Hoch. 1985. Characterization of the spo0A locus and its deduced product. Proc. Natl. Acad. Sci. USA 82:26472651.
51. Friedrich, M. J.,, and R. J. Kadner. 1987. Nucleotide sequence of the uhp region of Escherichia coli. J. Bacteriol. 169:35563563.
52. Fuhrer, D. K.,, and G. W. Ordal. 1991. Bacillus subtilis CheN, a homolog of CheA, the central regulator of chemotaxis in Escherichia coli. J. Bacteriol. 173:74437448.
53. Fuma, S.,, Y. Fujishima,, N. Corbell,, C. D'Souza,, M. M. Nakano,, P. Zuber,, and K. Yamane. 1993. Nucleotide sequence of 5' portion of srfA that contains the region required for competence establishment in Bacillus subtilis. Nucleic Acids Res. 21:9397.
54. Fuqua, W. C.,, S. C. Winans,, and E. P. Greenberg. 1994. Quorum sensing in bacteria: the LuxR-Luxl family of cell density-responsive transcriptional regulators J. Bacteriol. 176:269275.
55. Gambello, M. J.,, and B. H. Iglewski. 1991. Cloning and characterization of the Pseudomonas aeruginosa lasR gene, a transcriptional activator of elastase expression. J. Bacteriol. 173:30003009.
56. Gegner, J. A.,, and F. W. Dahlquist. 1991. Signal transduction in bacteria: CheW forms a reversible complex with the protein kinase CheA. Proc. Natl. Acad. Sci. USA 88:750754.
57. Gegner, J. A.,, D. R. Graham,, A. F. Roth,., and F. W. Dahlquist. 1992. Assembly of an MCP receptor, CheW, and kinase CheA complex in the bacterial chemotaxis signal transduction pathway. Cell 70: 975982.
58. Gottesman, S.,, and M. R. Maurizi. 1992. Regulation by proteolysis: energy-dependent proteases and their targets. Microbiol. Rev. 56:592621.
59. Gottesman, S.,, C. Squires,, E. Pichersky,, M. Carrington,, M. Hobbs,, J. S. Mattick,, B. Dalrymple,, H. Kuramitsu,, T. Shiroza,, T. Foster,, W. P. Clark,, B. Ross,, C. L. Squires,, and M. R. Maurizi. 1990. Conservation of the regulatory subunit for the Clp ATP-dependent protease in prokaryotes and eukaryotes. Proc. Natl. Acad. Sci. USA 87:35133517.
60. Green, B. D.,, M. G. Bramucci,, and P. Youngman. 1991a. Mutant forms of Spo0A that affect sporulation initiation: a general model for phosphorylation-mediated activation of bacterial signal transduction proteins. Semin. Dev. Biol. 2:2129.
61. Green, B. D.,, G. Olmedo,, and P. Youngman. 1991b. A genetic analysis of Spo0A structure and function. Res. Microbiol. 142:825830.
62. Gross, R.,, B. Aricó,, and R. Rappuoli. 1989. Families of bacterial signal-transducing proteins. Mol. Microbiol. 3:16611667.
63. Grossman, A. D.,, K. Ireton,, E. F. HofT,, J. R. LeDeaux,, D. Z. Rudner,, R. Magnuson,, and K. A. Hicks. 1991. Signal transduction and the initiation of sporulation in Bacillus subtilis. Semin. Dev. Biol. 2:3136.
64. Hahn, J.,, and D. Dubnau. 1991. Growth stage signal transduction and the requirements for srfA induction in development of competence. J. Bacteriol. 173:72757282.
65. Hahn, J.,, G. Inamine,, Y. Kozlov,, and D. Dubnau. 1993. Characterization of comE, a late competence operon of Bacillus subtilis required for the binding and uptake of transforming DNA. Mol. Microbiol. 10:99111.
66. Hahn, J.,, L. Kong,, and D. Dubnau. 1994. The regulation of competence transcription factor synthesis constitutes a critical control point in the regulation of competence in Bacillus subtilis. J. Bacteriol. 176:57535761.
67. Haijema, B.-J.,, L. W. Hamoen,, J. Kooistra,, G. Venema,, and D. van Sinderen. 1995. Expression of the ATP-dependent deoxyribonuclease of Bacillus subtilis is under competence-mediated control. Mol. Microbiol. 15:203211.
68. Haijema, B.-J.,, L. W. Hamoen,, J. Kooistra,, G. Venema,, and D. van Sinderen. Regulated expression of the Bacillus subtilis dinR and recA genes during competence development and SOS induction. Mol. Microbiol., in press.
69. Hamoen, L.,, and D. vanSinderen (University of Groningen,The Netherlands). 1993. Personal communication.
70. Hamoen, L. W.,, H. Eshuis,, J. Jongbloed,, G. Venema,, and D. van Sinderen. 1995. A small gene, designated comS, located within the coding region of the fourth amino acid-activation domain of srfA, is required for competence development in Bacillus subtilis. Mol. Microbiol. 15:5563.
71. Hanks, S. K.,, A. M. Quinn,, and T. Hunter. 1988. The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science 241:4252.
72. Hastrup, S. (NovoNordisk,Denmark). 1992. Personal communication.
73. Helmann, J. D. 1991. Alternative sigma factors and the regulation of flagellar gene expression. Mol. Microbiol. 5:28752882.
74. Helmann, J. D.,, L. M. Márquez,, V. L. Singer,, and M. J. Chamberlin,. 1988. Cloning and characterization of the Bacillus subtilis sigma-28 gene, p. 189193. In A. T. Ganesan, and J. A. Hoch (ed.), Genetics and Biotechnology of Bacilli, vol. 2. Academic Press, San Diego, Calif.
75. Henikoff, S.,, J. C. Wallace,, and J. P. Brown. 1990. Finding protein similarities with nucleotide sequence databases. Methods Enzymol. 183:111132.
76. Henner, D. J.,, E. Ferrari,, M. Perego,, and J. A. Hoch. 1988a. Location of the targets of the hpr-97, sacU32(Hy), and sacQ36(Hy) mutations in upstream regions of the subtihsin promoter. J. Bacteriol. 170:296300.
77. Henner, D. J.,, E. Ferrari,, M. Perego,, and J. A. Hoch,. 1988b. Upstream activating sequences in Bacillus subtilis, p. 39. In A. T. Ganesan, and J. A. Hoch (ed.), Genetics and Biotechnology of Bacilli, vol. 2. Academic Press, San Diego, Calif.
78. Henner, D. J.,, M. Yang,, L. Band,, H. Shimotsu,, M. Ruppen,, and E. Ferrari,. 1987. Genes of Bacillus subtilis that regulate the expression of degradative enzymes, p. 8190. In M. Alacevic,, D. Hranueli,, and Z. Toman (ed.), Genetics of Industrial Microorganisms. Proceedings of the 5th International Symposium on the Genetics of Industrial Microorganisms. Pliva, Zagreb, Yugoslavia.
79. Henner, D. J.,, M. Yang,, and E. Ferrari. 1988c. Localization of Bacillus subtilis sacU(Hy) mutations to two linked genes with similarities to the conserved procaryotic family of two-component signalling systems. J. Bacteriol. 170:51025109.
80. Hess, J. F.,, R. B. Bourret,, and M. I. Simon. 1988. Histidine phosphorylation and phosphoryl group transfer in bacterial chemotaxis. Nature (London) 336:139143.
81. Higgins, C. F. 1992. ABC transporters: from microorganisms to man. Annu. Rev. Cell Biol. 8:67113.
82. Holland, S. K.,, S. Cutting,, and J. Mandelstam. 1987. The possible DNA-binding nature of the regulatory proteins, encoded by spoIID and gerE, involved in the sporulation of Bacillus subtilis. J. Gen. Microbiol. 133:23812391.
83. Honjo, M.,, A. Nakayama,, K. Fukazawa,, K. Kawamura,, K. Ando,, M. Hori,, and Y. Furutani. 1990. A novel Bacillus subtilis gene involved in negative control of sporulation and degradative-enzyme production. J. Bacteriol. 172:17831790.
84. Jaacks, K. J.,, J. Healy,, R. Losick,, and A. D. Grossman. 1989. Identification and characterization of genes controlled by the sporulation-regulatory gene spo0H in Bacillus subtilis. J. Bacteriol. 171:41214129.
85. Jarnagin, A. S.,, and E. Ferrari,. 1992. Extracellular enzymes: gene regulation and structure function relationship studies, p. 189217. In R. H. Doi, and M. McGloughlin (ed.), Biology of Bacilli: Applications to Industry. Biotechnology, vol. 22. Butterworth-Heinemann, Stoneham, Mass.
86. Jin, S.,, Y.-N. Song,, S. Q. Pan,, and E. W. Nester. 1993. Characterization of a virG mutation that confers constitutive virulence gene expression in Agrobacterium. Mol. Microbiol. 7:555562.
87. Kahn, D.,, and G. Ditta. 1991. Modular structure of FixJ: homology of the transcriptional activator domain with the-35 binding domain of sigma factors. Mol. Microbiol. 5:987997.
88. Kanamaru, K.,, and T. Mizuno. 1992. Signal transduction and osmoregulation in Escherichia coli: a novel mutant of the positive regulator, OmpR, that functions in a phosphorylation-independent manner. J. Biochem. 111:425430.
89. Kirsch, M. L.,, P. D. Peters,, D. W. Hanlon,, J. R. Kirby,, and G. W. Ordal. 1993. Chemotactic methylesterase brings about adaptation to attractants in Bacillus subtilis. J. Biol. Chem. 268:1861018616.
90. Klein, C.,, C. Kaletta,, and K.-D. Entian. 1993. Biosynthesis of the antibiotic subtilin is regulated by a histidine kinase/response regulator system. Appl. Environ. Microbiol. 59:296303.
91. Klier, A.,, T. Msadek,, and G. Rapoport. 1992. Positive regulation in the Gram-positive bacterium: Bacillus subtilis. Annu. Rev. Microbiol. 46:429459.
92. Klose, K. E.,, D. S. Weiss,, and S. Kustu. 1993. Glutamate at the site of phosphorylation of nitrogen-regulatory protein NTRC mimics aspartylphosphate and activates the protein. J. Mol. Biol. 232:6778.
93. Kofoid, E. C.,, and J. S. Parkinson. 1988. Transmitter and receiver modules in bacterial signaling proteins. Proc. Natl. Acad. Sci. USA 85:49814985.
94. Kong, L.,, and D. Dubnau. 1994. Regulation of competence-specific gene expression by Mec-mediated protein-protein interaction in Bacillus subtilis. Proc. Natl. Acad. Sci. USA 91:57935797.
95. Kong, L.,, K. J. Siranosian,, A. D. Grossman,, and D. Dubnau. 1993. Sequence and properties of mecA: a negative regulator of genetic competence in Bacillus subtilis. Mol. Microbiol. 9:365373.
96. Krüger, E.,, U. Völker,, and M. Hecker. 1994. Stress induction of clpC in Bacillus subtilis and involvement in stress tolerance. J. Bacteriol. 176:33603367.
97. Kunst, F. Unpubhshed data.
98. Kunst, F.,, A. Amory,, M. Debarbouille,, I. Martin,, A. Klier,, and G. Rapoport,. 1988a. Polypeptides activating the synthesis of secreted enzymes, p. 2731. In A. T. Ganesan, and J. A. Hoch (ed.), Genetics and Biotechnology of Bacilli, vol. 2. Academic Press, San Diego, Calif.
99. Kunst, F.,, M. Débarbouille,, T. Msadek,, M. Young,, C. Mauël,, D. Karamata,, A. Klier,, G. Rapoport,, and R. Dedonder. 1988b. Deduced polypeptides encoded by the Bacillus subtilis sacU locus share homology with two-component sensor-regulator systems. J. Bacteriol. 170:50935101.
100. Kunst, F.,, T. Msadek,, and G. Rapoport,. 1994. Signal transduction network controlling degradative enzyme synthesis and competence in Bacillus subtilis, p. 120. In P.J. Piggot,, C. P. Moran Jr.,, and P. Youngman (ed.),Regulation of Bacterial Differentiation. American Society for Microbiology, Washington, D.C.
101. Kunst, F.,, M. Pascal,, J. Lepesant-Kejzlarová,, J.-A. Lepesant,, A. Billault,, and R. Dedonder. 1974. Pleiotropic mutations affecting sporulation conditions and the synthesis of extracellular enzymes in Bacillus subtilis 168. Biochimie 56:14811489.
102. Lepesant, J.-A.,, F. Kunst,, J. Lepesant-Kejzlarová,, and R. Dedonder. 1972. Chromosomal location of mutations affecting sucrose metabohsm in Bacillus subtilis Marburg. Mol. Gen. Genet. 118:135160.
103. Londoño-Vallejo, J. A.,, and D. Dubnau. 1993. comF, a Bacillus subtilis late competence locus, encodes a protein similar to ATP-dependent RNA/DNA helicases. Mol. Microbiol. 9:119131.
104. Lonetto, M.,, M. Gribskov,, and C. A. Gross. 1992. The σ70 family: sequence conservation and evolutionary relationships J. Bacteriol. 174:38433849.
105. Louw, M. E.,, S. J. Reid,, D. M. James,., and T. G. Watson. 1994. Cloning and sequencing the degS-degU operon from an alkalophilic Bacillus brevis. Appl. Microbiol. Biotechnol. 42:7884.
106. Lovett, C. M., Jr.,, P. E. Love,, and R. E. Yasbin. 1989. Competence-specific induction of the Bacillus subtilis RecA protein analog: evidence for dual regulation of a recombination protein. J. Bacteriol. 171:23182322.
107. Lukat, G. S.,, W. R. McCleary,, A. M. Stock,, and J. B. Stock. 1992. Phosphorylation of bacterial response regulator proteins by low molecular weight phospho-donors. Proc. Natl. Acad. Sci. USA 89:718722.
108. Maeda, T.,, S. M. Wurgler-Murphy,, and H. Saito. 1994. A two-component system that regulates an osmosensing MAP kinase cascade in yeast. Nature (London) 369:242245.
109. Magnuson, R.,, J. Solomon,, and A. D. Grossman. 1994. Biochemical and genetic characterization of a competence pheromone from Bacillus subtilis. Cell 77:207216.
110. Márquez, L. M.,, J. D. Helmann,, E. Ferrari,, H. M. Parker,, G. W. Ordal,, and M. J. Chamberlin. 1990. Studies of σD-dependent functions in Bacillus subtilis. J. Bacteriol. 172:34353443.
111. Masui, A.,, N. Fujiwara,, M. Takagi,, and T. Imanaka. 1992. Cloning and nucleotide sequence of the regulatory gene, degM, for minor serine protease in Bacillus subtilis. J. Ferment. Bioeng. 74:230233.
112. McCleary, W. R. J. B. Stock,, and A. J. Ninfa. 1993. Is acetyl phosphate a global signal in Escherichia coli? J. Bacteriol. 175:27932798.
113. Melton, A. R.,, and A. A. Weiss. 1989. Environmental regulation of expression of virulence determinants in Bordetella pertussis. J. Bacteriol. 171: 62066212.
114. Melton, A. R.,, and A. A. Weiss. 1993. Characterization of environmental regulators of Bordetella pertussis. Infect. Immun. 61:807815.
115. Miller, J. F.,, J. J. Mekalanos,, and S. Falkow. 1989. Coordinate regulation and sensory transduction in the control of bacterial virulence. Science 243:916922.
116. Mohan, S.,, J. Aghion,, N. Guillen,, and D. Dubnau. 1989. Molecular cloning and characterization of comC, a late competence gene of Bacillus subtilis. J. Bacteriol. 171:60436051.
117. Mohan, S.,, and D. Dubnau. 1990. Transcriptional regulation of comC: evidence for a competencespecific transcription factor in Bacillus subtilis. J. Bacteriol. 172:40644071.
118. Moir, A.,, and E. H. Kemp (UniversityofSheffield,UnitedKingdom). 1991. Personal communication.
119. Moore, J. B.,, S.-P. Shiau,, and L. J. Reitzer. 1993. Alterations of highly conserved residues in the regulatory domain of nitrogen regulator I (NtrC) of Escherichia coli. J. Bacteriol. 175:26922701.
120. Msadek, T. Unpublished data.
121. Msadek, T.,, and F. Kunst. Unpublished data.
122. Msadek, T.,, F. Kunst,, D. Henner,, A. Klier,, G. Rapoport,, and R. Dedonder. 1990. Signal transduction pathway controlling synthesis of a class of degradative enzymes in Bacillus subtilis: expression of the regulatory genes and analysis of mutations in degS and degU. J. Bacteriol. 172:824834.
123. Msadek, T.,, F. Kunst,, A. Klier,, and G. Rapoport. 1991. DegS-DegU and ComP-ComA modulator-effector pairs control expression of the Bacillus subtilis pleiotropic regulatory gene degQ. J. Bacteriol. 173:23662377.
124. Msadek, T.,, F. Kunst,, and G. Rapoport,. 1993. Two-component regulatory systems, p. 729745. In A. L. Sonenshein,, J. A. Hoch,, and R. Losick (ed.), Bacillus subtilis and Other Gram-Positive Bacteria: Biochemistry, Physiology, and Molecular Genetics. American Society for Microbiology, Washington, D.C.
125. Msadek, T.,, F. Kunst,, and G. Rapoport. 1994. MecB of Bacillus subtilis, a member of the ClpC ATPase family, is a pleiotropic regulator controlling competence gene expression and growth at high temperature. Proc. Natl. Acad. Sci. USA 91:57885792.
126. Mueller, J. P.,, G. Bukusoglu,, and A. L. Sonenshein. 1992. Transcriptional regulation of Bacillus subtilis glucose starvation-inducible genes: control of gsiA by the ComP-ComA signal transduction system. J. Bacteriol. 174:43614373.
127. Mueller, J. P.,, and A. L. Sonenshein. 1992. Role of the Bacillus subtilis gsiA gene in regulation of early sporulation gene expression. J. Bacteriol. 174:43744383.
128. Mukai, K.,, M. Kawata,, and T. Tanaka. 1990. Isolation and phosphorylation of the Bacillus subtilis degS and degU gene products. J. Biol Chem. 265:2000020006.
129. Mukai, K.,, M. Kawata-Mukai,, and T. Tanaka. 1992. Stabilization of phosphorylated Bacillus subtilis DegU by DegR. J. Bacteriol. 174:79547962.
130. Nagami, Y.,, and T. Tanaka. 1986. Molecular cloning and nucleotide sequence of a DNA fragment from Bacillus natto that enhances production of extracellular proteases and levansucrase in Bacillus subtilis. J. Bacteriol. 166:2028.
131. Nakano, M. M.,, R. Magnuson,, A. Myers,, J. Curry,, A. D. Grossman,, and R. Zuber. 1991a. srfA is an operon required for surfactin production, competence development, and efficient sporulation in Bacillus subtilis. J. Bacteriol. 173:17701778.
132. Nakano, M. M.,, M. A. Marahiel, and R Zuber. 1988. Identification of a genetic locus required for biosynthesis of the lipopeptide antibiotic surfactin in Bacillus subtilis. J. Bacteriol. 170:56625668.
133. Nakano, M. M.,, L. Xia,., and P. Zuber. 1991b. Transcription initiation region of the srfA operon, which is controlled by the comP-comA signal transduction system in Bacillus subtilis. J. Bacteriol. 173:54875493.
134. Nakano, M. M.,, and P. Zuber. 1989. Cloning and characterization of srfB, a regulatory gene involved in surfactin production and competence in Bacillus subtilis. J. Bacteriol. 171:53475353.
135. Nakano, M. M.,, and P. Zuber,. 1990. Identification of genes required for the biosynthesis of the lipopeptide antibiotic surfactin in Bacillus subtilis, p. 397405. In M. M. Zukowski,, A. T. Ganesan,, and J. A. Hoch (ed.), Genetics and Biotechnology of Bacilli, vol. 3. Academic Press, San Diego, Calif.
136. Nakano, M. M.,, and P. Zuber. 1991. The primary role of ComA in establishment of the competent state in Bacillus subtilis is to activate expression of srfA. J. Bacteriol. 173:72697274.
137. Nakano, M. M.,, and P. Zuber. 1993. Mutational analysis of the regulatory region of the srfA operon in Bacillus subtilis. J. Bacteriol. 175:31883191.
138. Nassif, X.,, N. Honoré,, T. Vasselon,, S. T. Cole,, and P. J. Sansonetti. 1989. Positive control of colanic acid synthesis in Escherichia coli by rmpA and rmpB, two virulence-plasmid genes of Klebsiella pneumoniae. Mol. Microbiol. 3:13491359.
139. Neuwald, A. F.,, D. E. Berg,, and G. V. Stauffer. 1992. Mutational analysis of the Escherichia coli serB promoter region reveals transcriptional linkage to a downstream gene. Gene 120:19.
140. Nixon, B. T.,, C. W. Ronson,, and E. M. Ausubel. 1986. Two-component regulatory systems responsive to environmental stimuli share strongly conserved domains with the nitrogen assimilation regulatory genes ntrB and ntrC. Proc. Natl. Acad. Sci. USA 83:78507854.
141. Ogasawara, N.,, S. Nakai,, and H. Yoshikawa. 1994. Systematic sequencing of the 180 kilo bases region of the Bacillus subtilis chromosome containing the replication origin. DNA Res. 1:114.
142. Ogura, M.,, M. Kawata-Mukai,, M. Itaya,, K. Takio,, and T. Tanaka. 1994. Multiple copies of the proB gene enhance degS-dependent extracellular protease production in Bacillus subtilis. J. Bacteriol. 176: 56735680.
143. Ota, I. M.,, and A. Varshavsky. 1993. A yeast protein similar to bacterial two-component regulators. Science 262:566569.
144. Parkinson, J. S. 1993. Signal transduction schemes of bacteria. Cell 73:857871.
145. Parkinson, J. S.,, and E. C. Kofoid. 1992. Communication modules in bacterial signaling proteins. Annu. Rev. Genet. 26:71112.
146. Pazour, G. J.,, C. N. Ta,, and A. Das. 1992. Constitutive mutations of Agrobacterium tumefaciens transcriptional activator virG. J. Bacteriol. 174:41694174.
147. Perego, M.,, S. P. Cole,, D. Burbulys,, K. Trach,, and J. A. Hoch. 1989. Characterization of the gene for a protein kinase which phosphorylates the sporulation- regulatory proteins Spo0A and Spo0F of Bacillus subtilis. J. Bacteriol. 171:61876196.
148. Perego, M.,, C. Hanstein,, K. M. Welsh,, T. Djavakhishvili,, R. Glaser,, and J. A. Hoch. 1994. Multiple protein aspartate phosphatases provide a mechanism for the integration of diverse signals in the control of development in B. subtilis. Cell 79: 10471055.
149. Perego, M.,, C. R Higgins,, S. R. Pearce,, M. P. Gallagher,, and J. A. Hoch. 1991. The oligopeptide transport system of Bacillus subtilis plays a role in the initiation of sporulation. Mol. Microbiol. 5:173185.
150. Perego, M.,, and J. A. Hoch. 1988. Sequence analysis and regulation of the hpr locus, a regulatory gene for protease production and sporulation in Bacillus subtilis. J. Bacteriol. 170:25602567.
151. Podvin, L.,, and M. Steinmetz. 1992. A degU-containing SPβ prophage complements superactivator mutations affecting the Bacillus subtilis degSU operon. Res. Microbiol. 143:559567.
152. Poetter, K.,, and D. L. Coplin. 1991. Structural and functional analysis of the rcsA gene from Erwinia stewartii. Mol. Gen. Genet. 229:155160.
153. Popham, D. L.,, D. Szeto,, J. Keener,, and S. Kustu. 1989. Function of a bacterial activator protein that binds to transcriptional enhancers. Science 243:629635.
154. Popov, K. M.,, Y. Zhao,, Y. Shimomura,, M. J. Kuntz,, and R. A. Harris. 1992. Branched chain α-ketoacid dehydrogenase kinase: molecular cloning, expression, and sequence similarity with histidine protein kinases. J. Biol. Chem. 267:1312713130.
155. Porter, S. C.,, A. K. North,, A. B. Wedel,, and S. Kustu. 1993. Ohgomerization of NTRC at the glnA enhancer is required for transcriptional activation. Genes Dev. 7:22582273.
156. Rabin, R. S.,, and V. Stewart. 1993. Dual response regulators (NarL and NarP) interact with dual sensors (NarX and NarQ) to control nitrate- and nitrite- regulated gene expression in Escherichia coli K-12 J. Bacteriol. 175:32593268.
157. Raibaud, A.,, M. Zalacain,, T. G. Holt,, R. Tizard,, and C. J. Thompson. 1991. Nucleotide sequence analysis reveals linked N-acetyl hydrolase, thioesterase, transport, and regulatory genes encoded by the bialaphos biosynthetic gene cluster of Streptomyces hygroscopicus. J. Bacteriol. 173:44544463.
158. Reyrat, J.-M.,, M. David,, J. Batut,, and R. Boistard. 1994. FixL of Rhizobium meliloti enhances the transcriptional activity of a mutant FixJD54N protein by phosphorylation of an alternate residue. J. Bacteriol. 176:19691976.
159. Richet, E.,, and O. Raibaud. 1989. MalT, the regulatory protein of the Escherichia coli maltose system, is an ATP-dependent transcriptional activator. EMBO J. 8:981987.
160. Roggiani, M.,, and D. Dubnau. 1993. ComA, a phosphorylated response regulator protein of Bacillus subtilis, binds to the promoter region of srfA. J. Bacteriol. 175:31823187.
161. Roggiani, M.,, J. Hahn,, and D. Dubnau. 1990. Suppression of early competence mutations in Bacillus subtilis by mec mutations. J. Bacteriol. 172:40564063.
162. Ronson, C. W.,, B. T. Nixon,, and F. M. Ausubel. 1987. Conserved domains in bacterial regulatory proteins that respond to environmental stimuli. Cell 49:579581.
163. Rudner, D. Z.,, J. R. LeDeaux,, K. Ireton,, and A. D. Grossman. 1991. The spoo0K locus of Bacillus subtilis is homologous to the oligopeptide permease locus and is required for sporulation and competence. J. Bacteriol. 173:13881398.
164. Ruppen, M. E.,, G. L. Van Alstine,, and L. Band. 1988. Control of intracellular serine protease expression in Bacillus subtilis. J. Bacteriol. 170:136140.
165. Scarlato, V.,, A. Prugnola,, B. Arico,, and R. Rappuoli. 1990. Positive transcriptional feedback at the bvg locus controls expression of virulence factors in Bordetella pertussis. Proc. Natl. Acad. Sci. USA 87:67536757.
166. Schaeffer, P.,, J. Millet,, and J.-P. Aubert. 1965. Catabolic repression of bacterial sporulation. Proc. Natl. Acad. Sci. USA 54:704711.
167. Schell, M. A.,, T. P. Denny,, and J. Huang. 1993. VsrA, a second two-component sensor regulating virulence genes of Pseudomonas solanacearum. Mol. Microbiol. 11:489500.
168. Scotti, C.,, M. Piatti,, A. Cuzzoni,, P. Perani,, A. Tognoni,, G. Grandi,, A. Galizzi,, and A. M. Albertini. 1993. A Bacillus subtilis large ORF coding for a polypeptide highly similar to polyketide synthases. Gene 130:6571.
169. Seki, T.,, H. Yoshikawa,, H. Takahashi,, and H. Saito. 1987. Cloning and nucleotide sequence of phoP, the regulatory gene for alkaline phosphatase and phosphodiesterase in Bacillus subtilis. J. Bacteriol. 169:29132916.
170. Seki, T.,, H. Yoshikawa,, H. Takahashi,, and H. Saito. 1988. Nucleotide sequence of the Bacillus subtilis phoR gene J. Bacteriol. 170:59355938.
171. Shimotsu, H.,, and D. J. Henner. 1986. Modulation of Bacillus subtilis levansucrase gene expression by sucrose and regulation of the steady-state mRNA level by sacU and sacQ genes. J. Bacteriol. 168:380388.
172. Sloma, A.,, C. F. Rudolph,, G. A. Rufo, Jr.,, B. J. Sullivan,, K. A. Theriault,, D. Ally,, and J. Pero. 1990a. Gene encoding a novel extracellular metalloprotease in Bacillus subtilis. J. Bacteriol. 172:10241029.
173. Sloma, A.,, G. A. Rufo, Jr.,, C. F. Rudolph,, B. J. Sullivan,, K. A. Theriault,, and J. Pero. 1990b. Bacillopeptidase F of Bacillus subtilis: purification of the protein and cloning of the gene. J. Bacteriol. 172:14701477.
174. Sloma, A.,, G. A. Rufo, Jr.,, K. A. Theriault,, M. Dwyer,, S. W. Wilson,, and J. Pero. 1991. Cloning and characterization of the gene for an additional extracellular serine protease of Bacillus subtilis. J. Bacteriol. 173:68896895.
175. Smith, I., 1993. Regulatory proteins that control late-growth development, p. 785800. In A. L. Sonenshein,, J. A. Hoch,, and R. Losick (ed.), Bacillus subtilis and Other Gram-Positive Bacteria: Biochemistry, Physiology, and Molecular Genetics. American Society for Microbiology, Washington, D.C.
176. Smith, I.,, E. Dubnau,, M. Predich,, U. Bai,, and R. Rudner. 1992. Early spo gene expression in Bacillus subtilis: the role of interrelated signal transduction systems. Biochimie 74:669678.
177. Smith, I.,, I. Mandic-Mulec,, and N. Gaur. 1991. The role of negative control in sporulation. Res. Microbiol. 142:831839.
178. Sonenshein, A. L., 1989. Metabolic regulation of sporulation and other stationary-phase phenomena, p. 109130. In I. Smith,, R. A. Slepecky,, and P. Sedow (ed.), Regulation of Procaryotic Development: Structural and Functional Analysis of Bacterial Sporulation and Germination. American Society for Microbiology, Washington, D.C.
179. Sorokin, A.,, E. Zumstein,, V. Azevedo,, S. D. Ehrlich,, and P. Serror. 1993. The organization of the Bacillus subtilis 168 chromosome region between the spoVA and serA genetic loci, based on sequence data. Mol. Microbiol. 10:385395.
180. Squires, C.,, and C. L. Squires. 1992. The Clp proteins: proteolysis regulators or molecular chaperones? J. Bacteriol. 174:10811085.
181. Squires, C. L.,, S. Pedersen,, B. M. Ross,, and C. Squires. 1991. ClpB is the Escherichia coli heat shock protein F 84. 1. J. Bacteriol. 173:42544262.
182. Stock, J. B.,, A. J. Ninfa,, and A. M. Stock. 1989. Protein phosphorylation and regulation of adaptive responses in bacteria. Microbiol. Rev. 53:450490.
183. Stock, J. B.,, A. M. Stock,, and J. M. Mottonen. 1990. Signal transduction in bacteria. Nature (London) 344:395400.
184. Stout, V.,, A. Torres-Cabassa,, M. R. Maurizi,, D. Gutnick,, and S. Gottesman. 1991. RcsA, an unstable positive regulator of capsular polysaccharide synthesis. J. Bacteriol. 173:17381747.
185. Strauch, M. A.,, and J. A. Hoch,. 1992. Control of postexponential gene expression by transition state regulators, p. 105121. In R. H. Doi, and M. Mc- Gloughlin (ed.), Biology of Bacilli: Applications to Industry. Biotechnology, vol. 22. Butterworth-Heinemann, Stoneham, Masss.
186. Strauch, M. A.,, and J. A. Hoch. 1993. Transition-state regulators: sentinels of Bacillus subtilis post-exponential gene expression. Mol. Microbiol. 7:337342.
187. Stülke, J. (UniversityofGreifswald,Germany). 1994. Personal communication.
188. Tanaka, T.,, and M. Kawata. 1988. Cloning and characterization of Bacillus subtilis iep, which has positive and negative effects on production of extracellular proteases. J. Bacteriol. 170:35933600.
189. Tanaka, T.,, M. Kawata,, and K. Mukai. 1991. Altered phosphorylation of Bacillus subtilis DegU caused by single amino acid changes in DegS. J. Bacteriol. 173:55075515.
190. Tanaka, T.,, M. Kawata,, Y. Nagami,, and H. Uchiyama. 1987. prtR enhances the mRNA level of the Bacillus subtilis extracellular proteases. J. Bacteriol. 169:30443050.
191. Tanaka, T.,, and M. Kawata-Mukai. 1994. Stabilization of the phosphorylated form of Bacillus subtilis DegU caused by degU9 mutation. FEMS Microbiol. Lett. 115:9396.
192. Taylor, S. S. 1989. cAMP-dependent protein kinase. J. Biol. Chem. 264:84438446.
193. Tokunaga, T.,, M. H. Rashid,, A. Kuroda,, and J. Sekiguchi. 1994. Effect of degS-degU mutations on the expression of sigD, encoding an alternative sigma factor, and autolysin operon of Bacillus subtilis. J. Bacteriol. 176:51775180.
194. Tomioka, N.,, M. Honjo,, K. Funahashi,, K. Manabe,, A. Akaoka,, I. Mita,, and Y. Furutani. 1985. Cloning, sequencing, and some properties of a novel Bacillus amyloliquefaciens gene involved in the increase of extracellular protease activities. J. Biotechnol. 3:8596.
195. Trach, K. A.,, J. W. Chapman,, P. J. Piggot,, and J. A. Hoch. 1985. Deduced product of the stage 0 sporulation gene spo0F shares homology with Spo0A, OmpR, and SfrA proteins. Proc. Natl. Acad. Sci. USA 82:72607264.
196. Trach, K. A.,, and J. A. Hoch. 1993. Multisensory activation of the phosphorelay initiating sporulation in Bacillus subtilis: identification and sequence of the protein kinase of the alternate pathway. Mol. Microbiol. 8:6979.
197. vanSinderen, D. (UniversityofGroningen,TheNetherlands). 1993. Personal communication.
198. van Sinderen, D.,, G. Gali,, P. Cosmina,, F. de Ferra,, S. Withoff,, G. Venema,, and G. Grandi. 1993. Characterization of the srfA locus of Bacillus subtilis: only the valine-acrivating domain of srfA is involved in the establishment of genetic competence. Mol. Microbiol. 8:833841.
199. van Sinderen, D.,, A. Luttinger,, L. Kong,, D. Dubnau,, G. Venema,, and L. Hamoen. 1995. comK encodes the competence transcription factor, the key regulatory protein for competence development in Bacillus subtilis. Mol. Microbiol. 15:455462.
200. van Sinderen, D.,, A. ten Berge,, B.-J. Haijema,, L. Hamoen,, and G. Venema. 1994. Molecular cloning and sequence of comK, a gene required for genetic competence in Bacillus subtilis. Mol. Microbiol. 11:695703.
201. vanSinderen, D.,, and G. Venema. 1994. comK acts as an autoregulatory switch in the signal transduction route to competence in Bacillus subtilis. J. Bacteriol. 176:57625770.
202. van Sinderen, D.,, S. Withoff,, H. Boels,, and G. Venema. 1990. Isolation and characterization of comL, a transcription unit involved in competence development of Bacillus subtilis. Mol. Gen. Genet. 224:396404.
203. Vasselon, T.,, P. J. Sansonetti,, and X. Nassif. 1991. Nucleotide sequence of rmpB, a Klebsiella pneumoniae gene that positively controls colanic acid biosynthesis in Escherichia coli. Res. Microbiol. 142: 4754.
204. Völker, U.,, H. Mach,, R. Schmid,, and M. Hecker. 1992. Stress proteins and cross-protection by heat shock and salt stress in Bacillus subtilis. J. Gen. Microbiol. 138:21252135.
205. Volz, K. 1993. Structural conservation in the CheY superfamily. Biochemistry 32:1174111753.
206. Weinrauch, Y.,, N. Guillen,, and D. A. Dubnau. 1989. Sequence and transcription mapping of Bacillus subtilis competence genes comB and comA, one of which is related to a family of bacterial regulatory determinants. J. Bacteriol. 171:53625375.
207. Weinrauch, Y.,, T. Msadek,, F. Kunst,, and D. Dubnau. 1991. Sequence and properties of comQ a new competence regulatory gene of Bacillus subtilis. J. Bacteriol. 173:56855693.
208. Weinrauch, Y.,, R. Penchev,, E. Dubnau,, I. Smith,, and D. Dubnau. 1990. A Bacillus subtilis regulatory gene product for genetic competence and sporulation resembles sensor protein members of the bacterial two-component signal-transduction systems. Genes Dev. 4:860872.
209. Weiss, V.,, F. Claverie-Martin,, and B. Magasanik. 1992. Phosphorylation of nitrogen regulator- I of Escherichia coli induces strong cooperative binding to DNA essential for activation of transcription. Proc. Natl. Acad. Sci. USA 89:50885092.
210. Yang, M.,, E. Ferrari,, E. Chen,, and D. J. Henner. 1986. Identification of the pleiotropic sacQ gene of Bacillus subtilis. J. Bacteriol. 166:113119.
211. Yang, M.,, H. Shimotsu,, E. Ferrari., and D. J. Henner. 1987. Characterization and mapping of the Bacillus subtilis prtR gene. J. Bacteriol. 169: 434437.
212. Yasbin, R. E.,, D. L. Cheo,, and K. W. Bayles. 1992. Inducible DNA repair and differentiation in Bacillus subtilis: interactions between global regulons. Mol. Microbiol. 6:12631270.
213. Yoshikawa, H.,, J. Kazami,, S. Yamashita,, T. Chibazakura,, H. Sone,, F. Kawamura,, M. Oda,, M. Isaka,, Y. Kobayashi,, and H. Saito. 1986. Revised assignment for the Bacillus subtilis spo0F gene and its homology with spo0A and with two Escherichia coli genes. Nucleic Acids Res. 14:10631072.
214. Zheng, L.,, R. Halberg,, S. Roels,, H. Ichikawa,, L. Kroos,, and R. Losick. 1992. Sporulation regulatory protein GerE from Bacillus subtilis binds to and can activate or repress transcription from promoters for mother-cell-specific genes. J. Mol. Biol. 226: 10371050.

Tables

Generic image for table
TABLE 1

Mutations in the and genes and their associated phenotypes

Citation: Msadek T, Kunst F, Rapoport G. 1995. A Signal Transduction Network in Includes the DegS/DegU and ComP/ComA Two-Component Systems, p 447-471. In Hoch J, Silhavy T (ed), Two-Component Signal Transduction. ASM Press, Washington, DC. doi: 10.1128/9781555818319.ch29

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error