1887

Chapter 29 : A Signal Transduction Network in Includes the DegS/DegU and ComP/ComA Two-Component Systems

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

A Signal Transduction Network in Includes the DegS/DegU and ComP/ComA Two-Component Systems, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818319/9781555810894_Chap29-1.gif /docserver/preview/fulltext/10.1128/9781555818319/9781555810894_Chap29-2.gif

Abstract:

Soil bacteria such as are subject to drastic variations of environmental conditions such as temperature, humidity, and nutrient source availability. At the onset of the stationary phase, faced with a depletion of essential nutrients, can adopt several responses, including synthesis of macromolecule-degrading enzymes, competence for genetic transformation, increased motility and chemotaxis, antibiotic production, and finally, sporulation. Regulation by the two-component systems presents several original features. Some of these original features are discussed, within the framework of the DegS/DegU and ComP/ComA signal transduction network. The chapter describes degradative enzyme synthesis. Sequence similarities with two-component systems suggest the conserved His-189 residue of the DegS protein kinase and Asp-56 residue of the DegU response regulator as likely candidates for the respective phosphorylation sites of the two proteins. The chapter discusses competence gene expression, and signal transduction network. Both the ComP/ComA and DegS/DegU two-component systems control the expression of late competence genes; however, they seem to act through two different branches in the competence regulatory pathway that intersect to allow expression of comK. An exciting area of future research will be to identify the types of signals involved in regulation by each of these two-component systems and by the other regulators such as MecB/MecA and the ComQ-ComX-Spo0K pathway, as well as determining how these regulators interact within the signal transduction network.

Citation: Msadek T, Kunst F, Rapoport G. 1995. A Signal Transduction Network in Includes the DegS/DegU and ComP/ComA Two-Component Systems, p 447-471. In Hoch J, Silhavy T (ed), Two-Component Signal Transduction. ASM Press, Washington, DC. doi: 10.1128/9781555818319.ch29

Key Concept Ranking

Gene Expression and Regulation
0.5899484
0.5899484
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Pleiotropic regulation by DegS/DegU signal transduction pathway controlling degradative enzyme synthesis and competence gene expression in . Arrows indicate positive regulation, and perpendicular bars indicate negative regulation. Regulation by DegS/DegU has not been shown to be direct and may therefore involve possible intermediate genes.

Citation: Msadek T, Kunst F, Rapoport G. 1995. A Signal Transduction Network in Includes the DegS/DegU and ComP/ComA Two-Component Systems, p 447-471. In Hoch J, Silhavy T (ed), Two-Component Signal Transduction. ASM Press, Washington, DC. doi: 10.1128/9781555818319.ch29
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Expression of during growth in competence minimal medium in strains carrying mutations in or genes. Time is expressed in hours before or after the time of transition from the exponential growth phase to the stationary phase. □: D56N; Δ: Δ; ○: wild-type and genes; ▲: Δ(); ●: (Hy) H12L.

Citation: Msadek T, Kunst F, Rapoport G. 1995. A Signal Transduction Network in Includes the DegS/DegU and ComP/ComA Two-Component Systems, p 447-471. In Hoch J, Silhavy T (ed), Two-Component Signal Transduction. ASM Press, Washington, DC. doi: 10.1128/9781555818319.ch29
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Regulation of competence gene expression in . Arrows indicate positive regulation, and perpendicular bars indicate negative regulation. The ComP/ComA and DegS/DegU two-component systems comprise two parallel pathways controlling competence gene expression ( ).

Citation: Msadek T, Kunst F, Rapoport G. 1995. A Signal Transduction Network in Includes the DegS/DegU and ComP/ComA Two-Component Systems, p 447-471. In Hoch J, Silhavy T (ed), Two-Component Signal Transduction. ASM Press, Washington, DC. doi: 10.1128/9781555818319.ch29
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Provisional model of signal transduction network controlling competence gene expression and degradative enzyme synthesis. The phosphorylated form of ComA controls expression, and the phosphorylated form of DegU is required for degradative enzyme synthesis. Negative regulation of expression by MecB/MecA may be relieved by an -generated signal, sensed by MecB, thus allowing expression of late competence genes. DegU is required for expression of , but whether it acts directly or by relieving negative regulation by MecB/MecA remains to be determined (dotted lines). Arrows and perpendicular bars indicate positive and negative regulation, respectively.

Citation: Msadek T, Kunst F, Rapoport G. 1995. A Signal Transduction Network in Includes the DegS/DegU and ComP/ComA Two-Component Systems, p 447-471. In Hoch J, Silhavy T (ed), Two-Component Signal Transduction. ASM Press, Washington, DC. doi: 10.1128/9781555818319.ch29
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818319.chap29
1. Albano, M.,, R. Breitling,, and D. A. Dubnau. 1989. Nucleotide sequence and genetic organization of the Bacillus subtilis comG operon. J. Bacteriol. 171: 5386 5404.
2. Albano, M.,, J. Hahn,, and D. Dubnau. 1987. E x pression of competence genes in Bacillus subtilis. J. Bacteriol. 169: 3110 3117.
3. Albertini, A.,, C. Scotti,, and A. Galizzi (University of Pavia, Pavia,Italy). 1993. Personal communication.
4. Albright, L. M.,, E. Huala,, and F. M. Ausubel. 1989. Prokaryotic signal transduction mediated by sensor and regulator pairs. Annu. Rev. Genet. 23: 311 336.
5. Alex, L. A.,, and M. I. Simon. 1994. Protein histidine kinases and signal transduction in prokaryotes and eukaryotes. Trends Genet. 10: 133 138.
6. Allen, P.,, C. A. Hart,, and J. R. Saunders. 1987. Isolation fiom Klebsiella and characterization of two rcs genes that activate colanic acid capsular biosynthesis in Escherichia coli. J. Gen. Microbiol. 133: 331 340.
7. Amory, A.,, F. Kunst,, E. Aubert,, A. Klier,, and G. Rapoport. 1987. Characterization of the sacQ genes from Bacillus licheniformis and Bacillus subtilis. J. Bacteriol. 169: 324 333.
8. Antoniewski, C.,, B. Savelli,, and P. Stragier. 1990. The spoIIJ gene, which regulates early development steps in Bacillus subtilis, belongs to a class of environmentally responsive genes. J. Bacteriol. 172: 86 93.
9. Aymerich, S.,, G. Gonzy-Tréboul,, and M. Steinmetz. 1986. 5'-noncoding region sacR is the target of all identified regulation affecting the levansucrase gene in Bacillus subtilis. J. Bacteriol. 166: 993 998.
10. Ayusawa, D.,, Y. Yoneda,, K. Yamane,, and B. Maruo. 1975. Pleiotropic phenomena in autolytic enzyme(s) content, flagellation and simultaneous hyperproduction of extracellular (α-amylase and protease in a Bacillus subtilis mutant. J. Bacteriol. 124: 459 469.
11. Baldus, J. M.,, B. D. Green,, P. Youngman,, and C. P. Moran, Jr. 1994. Phosphorylation of Bacillus subtilis transcription factor Spo0A stimulates transcription fiom the spoIIG promoter by enhancing binding to weak 0A boxes. J. Bacteriol. 176: 296 306.
12. Bernhard, F.,, K. Poetter,, K. Geider,, and D. L. Coplin. 1990. The rcsA gene from Erwinia amylovora: identification, nucleotide sequence, and regulation of exopolysaccharide biosynthesis. Mol. Plant-Microb. Int. 3: 429 437.
13. Bischoff, D. S.,, and G. W. Ordal. 1991. Sequence and characterization of Bacillus subtilis CheB, a homolog of Escherichia coli CheY, and its role in a different mechanism of chemotaxis. J. Biol. Chem. 266: 12301 12305.
14. Borkovich, K. A.,, N. Kaplan,, J. F. Hess,, and M. I. Simon. 1989. Transmembrane signal transduction in bacterial chemotaxis involves ligand-dependent activation of phosphate group transfer. Proc. Natl. Acad. Sci. USA 86: 1208 1212.
15. Borkovich, K. A.,, and M. I. Simon. 1990. The dynamics of protein phosphorylation in bacterial chemotaxis. Cell 63: 1339 1348.
16. Bourret, R. B.,, K. A. Borkovich,, and M. I. Simon. 1991. Signal transduction pathways involving protein phosphorylation in prokaryotes. Annu. Rev. Biochem. 60: 401 141.
17. Bourret, R. B.,, J. F. Hess,, K. A. Borkovich,, A. A. Pakula,, and M. I. Simon. 1989. Protein phosphorylation in chemotaxis and two-component regulatory systems of bacteria. J. Biol. Chem. 264: 7085 7088.
18. Bourret, R. B.,, J. F. Hess,, and M. I. Simon. 1990. Conserved aspartate residues and phosphorylation in signal transduction by the chemotaxis protein CheY. Proc. Natl. Acad. Sci. USA 87: 41 45.
19. Breitling, R.,, and D. Dubnau. 1990. A membrane protein with similarity to N-methylphenylalanine pilins is essential for DNA binding by competent Bacillus subtilis. J. Bacteriol. 172: 1499 1508.
20. Brissette, R. E.,, K. Tsung,, and M. Inouye. 1991. Intramolecular second-site revertants to the phosphorylation site mutation in OmpR, a kinase-dependent transcriptional activator in Escherichia coli. J. Bacteriol. 173: 3749 3755.
21. Brown, J. L.,, S. North,, and H. Bussey. 1993. SKN7, a yeast multicopy suppressor of a mutation affecting cell wall β-glucan assembly, encodes a product with domains homologous to prokaryotic two-component regulators and to heat shock transcription factors J. Bacteriol. 175: 6908 6915.
22. Chang, C.,, S. F. Kwok,, A. B. Bleecker,, and E. M. Meyerowitz. 1993. Arabidopsis ethylene-response gene ETRl: similarity of product to two-component regulators. Science 262: 539 544.
23. Chang, C.,, and E. M. Meyerowitz. 1994. Eukaryotes have "two-component" signal transducers. Res. Microbiol. 145: 481 486.
24. Cheo, D. L.,, K. W. Bayles,, and R. E. Yasbin. 1992. Molecular characterization of regulatory elements controlling expression of the Bacillus subtilis recA + gene. Biochimie 74: 755 762.
25. Cheo, D. L.,, K. W. Bayles,, and R. E. Yasbin. 1993. Elucidation of regulatory elements that control damage induction and competence induction of the Bacillus subtilis SOS system. J. Bacteriol. 175: 5907 5915.
26. Choi, S. H.,, and E. P. Greenberg. 1991. The C-terminal region of the Vibrio fischeri LuxR protein contains an inducer-independent lux gene activating domain. Proc. Natl. Acad. Sci. USA 88: 11115 11119.
27. Choi, S. H.,, and E. P. Greenberg. 1992. Genetic dissection of DNA binding and luminescence gene activation by the Vibrio fischeri LuxR protein. J. Bacteriol. 174: 4064 4069.
28. Cole, S. X.,, and O. Raibaud. 1986. The nucleotide sequence of the malT gene encoding the positive regulator of the Escherichia coli maltose regulon. Gene 42: 201 208.
29. Coleman, M.,, R. Pearce,, E. Hitchin,, E. Busfield,, J. W. Mansfield,, and I. S. Roberts. 1990. Molecular cloning, expression andnucleotide sequence of the rcsA gene of Erwinia amylovora,encoding a positive regulator of capsule expression: evidence for a family of related capsule activator proteins. J. Gen. Microbiol. 136: 1799 1806.
30. Coote, J. G. 1991. Antigenic switching and pathogenicity: environmental effects on virulence gene expression in Bordetella pertussis. J. Gen. Microbiol. 137: 2493 2503.
31. Cosmina, P.,, F. Rodriguez,, F. de Ferra,, G. Grandi,, M. Perego,, G. Venema,, and D. van Sinderen. 1993. Sequence and analysis of the genetic locus responsible for surfactin synthesis in Bacillus subtilis. Mol. Microbiol. 8: 821 831.
32. Crutz, A. M.,, and M. Steinmetz. 1992. Transcription of the Bacillus subtilis sacX and sacY genes, encoding regulators of sucrose metabohsm, is both inducible by sucrose and controlled by the DegSDegU signalling system. J. Bacteriol. 174: 6087 6095.
33. Cutting, S.,, and J. Mandelstam. 1986. The nucleotide sequence and the transcription during sporulation of the gerE gene of Bacillus subtilis. J. Gen. Microbiol. 132: 3013 3024.
34. Dahl, M. K.,, T. Msadek,, F. Kunst,, and G. Rapoport. 1991. Mutational analysis of the Bacillus subtilis DegU regulator and its phosphorylation by the DegS protein kinase. J. Bacteriol. 173: 2539 2547.
35. Dahl, M. K.,, T. Msadek,, F. Kunst,, and G. Rapoport. 1992. The phosphorylation state of the DegU response regulator acts as a molecular switch allowing either degradative enzyme synthesis or expression of genetic competence in Bacillus subtilis. J. Biol Chem. 267: 14509 14514.
36. Da Re, S.,, S. Bertagnoli,, J. Fourment,, J.-M. Reyrat,, and D. Kahn. 1994. Intramolecular signal transduction within the FixJ transcriptional activator: in vitro evidence for the inhibitory effect of the phosphorylatable regulatory domain. Nucleic Acids Res. 22: 1555 1561.
37. Delgado, J.,, S. Forst,, S. Harlocker,, and M. Inouye. 1993. Identification of a phosphorylation site and functional analysis of conserved aspartic acid residues of OmpR, a transcriptional activator for ompF and ompC in Escherichia coli. Mol. Microbiol. 10: 1037 1047.
38. Devine, J. H.,, C. Countryman,, and T. O. Baldwin. 1988. Nucleotide sequence of the luxR and luxl genes and structure of the primary regulatory region of the lux regulon of Vibrio fischeri ATCC 7744. Biochemistry 27: 837 842.
39. Dixon, R.,, T. Eydmann,, N. Henderson,, and S. Austin. 1991. Substitutions at a single amino acid residue in the nitrogen-regulated activator protein NTRC differentially influence its activity in response to phosphorylation. Mol. Microbiol. 5: 1657 1667.
40. Dombroski, A. J.,, W. A. Walter,, and C. A. Gross. 1993. Amino-terminal amino acids modulate σ-factor DNA-binding activity. Genes Dev. 7: 2446 2455.
41. D'Souza, C.,, M. M. Nakano,, N. Corbell,, and P. Zuber. 1993. Amino-acylation site mutations in amino acid-activating domains of surfactin synthetase: effects on surfactin production and competence development in Bacillus subtilis. J. Bacteriol. 175: 3502 3510.
42. D'Souza, C.,, M. M. Nakano,, and P. Zuber. 1994. Identification of comS, a gene of the srfA operon that regulates the establishment of genetic competence in Bacillus subtilis. Proc. Natl. Acad. Sci. USA 91: 9397 9401.
43. Dubnau, D. 1991. Genetic competence in Bacillus subtilis. Microbiol. Rev. 55: 395 424.
44. Dubnau, D., 1993. Genetic exchange and homologous recombination, p. 555 584. In A. L. Sonenshein,, J. A. Hoch,, and R. Losick (ed.), Bacillus subtilis and Other Gram-Positive Bacteria: Biochemistry, Physiology, and Molecular Genetics. American Society for Microbiology, Washington, D.C.
45. Dubnau, D.,, J. Hahn,, M. Roggiani,, F. Piazza,, and Y. Weinrauch. 1994. Two-component regulators and genetic competence in Bacillus subtilis. Res. Microbiol. 145: 403 411.
46. Dubnau, D.,, and L. Kong (Public Health Research Institute,New York). 1994. Personal communication.
47. Dubnau, D.,, and M. Roggiani. 1990. Growth medium-independent genetic competence mutants of Bacillus subtilis. J. Bacteriol. 172: 4048 4055.
48. Engebrecht, J.,, and M. Silverman. 1987. Nucleotide sequence of the regulatory locus controlling expression of bacterial genes for bioluminescence. Nucleic Acids Res. 15: 10455 10467.
49. Fath, M. J.,, and R. Kolter. 1993. ABC transporters: bacterial exporters. Microbiol. Rev. 57: 995 1017.
50. Ferrari, F. A.,, K. Trach,, D. LeCoq,, J. Spence,, E. Ferrari,, and J. A. Hoch. 1985. Characterization of the spo0A locus and its deduced product. Proc. Natl. Acad. Sci. USA 82: 2647 2651.
51. Friedrich, M. J.,, and R. J. Kadner. 1987. Nucleotide sequence of the uhp region of Escherichia coli. J. Bacteriol. 169: 3556 3563.
52. Fuhrer, D. K.,, and G. W. Ordal. 1991. Bacillus subtilis CheN, a homolog of CheA, the central regulator of chemotaxis in Escherichia coli. J. Bacteriol. 173: 7443 7448.
53. Fuma, S.,, Y. Fujishima,, N. Corbell,, C. D'Souza,, M. M. Nakano,, P. Zuber,, and K. Yamane. 1993. Nucleotide sequence of 5' portion of srfA that contains the region required for competence establishment in Bacillus subtilis. Nucleic Acids Res. 21: 93 97.
54. Fuqua, W. C.,, S. C. Winans,, and E. P. Greenberg. 1994. Quorum sensing in bacteria: the LuxR-Luxl family of cell density-responsive transcriptional regulators J. Bacteriol. 176: 269 275.
55. Gambello, M. J.,, and B. H. Iglewski. 1991. Cloning and characterization of the Pseudomonas aeruginosa lasR gene, a transcriptional activator of elastase expression. J. Bacteriol. 173: 3000 3009.
56. Gegner, J. A.,, and F. W. Dahlquist. 1991. Signal transduction in bacteria: CheW forms a reversible complex with the protein kinase CheA. Proc. Natl. Acad. Sci. USA 88: 750 754.
57. Gegner, J. A.,, D. R. Graham,, A. F. Roth,., and F. W. Dahlquist. 1992. Assembly of an MCP receptor, CheW, and kinase CheA complex in the bacterial chemotaxis signal transduction pathway. Cell 70: 975 982.
58. Gottesman, S.,, and M. R. Maurizi. 1992. Regulation by proteolysis: energy-dependent proteases and their targets. Microbiol. Rev. 56: 592 621.
59. Gottesman, S.,, C. Squires,, E. Pichersky,, M. Carrington,, M. Hobbs,, J. S. Mattick,, B. Dalrymple,, H. Kuramitsu,, T. Shiroza,, T. Foster,, W. P. Clark,, B. Ross,, C. L. Squires,, and M. R. Maurizi. 1990. Conservation of the regulatory subunit for the Clp ATP-dependent protease in prokaryotes and eukaryotes. Proc. Natl. Acad. Sci. USA 87: 3513 3517.
60. Green, B. D.,, M. G. Bramucci,, and P. Youngman. 1991a. Mutant forms of Spo0A that affect sporulation initiation: a general model for phosphorylation-mediated activation of bacterial signal transduction proteins. Semin. Dev. Biol. 2: 21 29.
61. Green, B. D.,, G. Olmedo,, and P. Youngman. 1991b. A genetic analysis of Spo0A structure and function. Res. Microbiol. 142: 825 830.
62. Gross, R.,, B. Aricó,, and R. Rappuoli. 1989. Families of bacterial signal-transducing proteins. Mol. Microbiol. 3: 1661 1667.
63. Grossman, A. D.,, K. Ireton,, E. F. HofT,, J. R. LeDeaux,, D. Z. Rudner,, R. Magnuson,, and K. A. Hicks. 1991. Signal transduction and the initiation of sporulation in Bacillus subtilis. Semin. Dev. Biol. 2: 31 36.
64. Hahn, J.,, and D. Dubnau. 1991. Growth stage signal transduction and the requirements for srfA induction in development of competence. J. Bacteriol. 173: 7275 7282.
65. Hahn, J.,, G. Inamine,, Y. Kozlov,, and D. Dubnau. 1993. Characterization of comE, a late competence operon of Bacillus subtilis required for the binding and uptake of transforming DNA. Mol. Microbiol. 10: 99 111.
66. Hahn, J.,, L. Kong,, and D. Dubnau. 1994. The regulation of competence transcription factor synthesis constitutes a critical control point in the regulation of competence in Bacillus subtilis. J. Bacteriol. 176: 5753 5761.
67. Haijema, B.-J.,, L. W. Hamoen,, J. Kooistra,, G. Venema,, and D. van Sinderen. 1995. Expression of the ATP-dependent deoxyribonuclease of Bacillus subtilis is under competence-mediated control. Mol. Microbiol. 15: 203 211.
68. Haijema, B.-J.,, L. W. Hamoen,, J. Kooistra,, G. Venema,, and D. van Sinderen. Regulated expression of the Bacillus subtilis dinR and recA genes during competence development and SOS induction. Mol. Microbiol., in press.
69. Hamoen, L.,, and D. vanSinderen (University of Groningen,The Netherlands). 1993. Personal communication.
70. Hamoen, L. W.,, H. Eshuis,, J. Jongbloed,, G. Venema,, and D. van Sinderen. 1995. A small gene, designated comS, located within the coding region of the fourth amino acid-activation domain of srfA, is required for competence development in Bacillus subtilis. Mol. Microbiol. 15: 55 63.
71. Hanks, S. K.,, A. M. Quinn,, and T. Hunter. 1988. The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science 241: 42 52.
72. Hastrup, S. (NovoNordisk,Denmark). 1992. Personal communication.
73. Helmann, J. D. 1991. Alternative sigma factors and the regulation of flagellar gene expression. Mol. Microbiol. 5: 2875 2882.
74. Helmann, J. D.,, L. M. Márquez,, V. L. Singer,, and M. J. Chamberlin,. 1988. Cloning and characterization of the Bacillus subtilis sigma-28 gene, p. 189 193. In A. T. Ganesan, and J. A. Hoch (ed.), Genetics and Biotechnology of Bacilli, vol. 2. Academic Press, San Diego, Calif.
75. Henikoff, S.,, J. C. Wallace,, and J. P. Brown. 1990. Finding protein similarities with nucleotide sequence databases. Methods Enzymol. 183: 111 132.
76. Henner, D. J.,, E. Ferrari,, M. Perego,, and J. A. Hoch. 1988a. Location of the targets of the hpr-97, sacU32(Hy), and sacQ36(Hy) mutations in upstream regions of the subtihsin promoter. J. Bacteriol. 170: 296 300.
77. Henner, D. J.,, E. Ferrari,, M. Perego,, and J. A. Hoch,. 1988b. Upstream activating sequences in Bacillus subtilis, p. 3 9. In A. T. Ganesan, and J. A. Hoch (ed.), Genetics and Biotechnology of Bacilli, vol. 2. Academic Press, San Diego, Calif.
78. Henner, D. J.,, M. Yang,, L. Band,, H. Shimotsu,, M. Ruppen,, and E. Ferrari,. 1987. Genes of Bacillus subtilis that regulate the expression of degradative enzymes, p. 81 90. In M. Alacevic,, D. Hranueli,, and Z. Toman (ed.), Genetics of Industrial Microorganisms. Proceedings of the 5th International Symposium on the Genetics of Industrial Microorganisms. Pliva, Zagreb, Yugoslavia.
79. Henner, D. J.,, M. Yang,, and E. Ferrari. 1988c. Localization of Bacillus subtilis sacU(Hy) mutations to two linked genes with similarities to the conserved procaryotic family of two-component signalling systems. J. Bacteriol. 170: 5102 5109.
80. Hess, J. F.,, R. B. Bourret,, and M. I. Simon. 1988. Histidine phosphorylation and phosphoryl group transfer in bacterial chemotaxis. Nature (London) 336: 139 143.
81. Higgins, C. F. 1992. ABC transporters: from microorganisms to man. Annu. Rev. Cell Biol. 8: 67 113.
82. Holland, S. K.,, S. Cutting,, and J. Mandelstam. 1987. The possible DNA-binding nature of the regulatory proteins, encoded by spoIID and gerE, involved in the sporulation of Bacillus subtilis. J. Gen. Microbiol. 133: 2381 2391.
83. Honjo, M.,, A. Nakayama,, K. Fukazawa,, K. Kawamura,, K. Ando,, M. Hori,, and Y. Furutani. 1990. A novel Bacillus subtilis gene involved in negative control of sporulation and degradative-enzyme production. J. Bacteriol. 172: 1783 1790.
84. Jaacks, K. J.,, J. Healy,, R. Losick,, and A. D. Grossman. 1989. Identification and characterization of genes controlled by the sporulation-regulatory gene spo0H in Bacillus subtilis. J. Bacteriol. 171: 4121 4129.
85. Jarnagin, A. S.,, and E. Ferrari,. 1992. Extracellular enzymes: gene regulation and structure function relationship studies, p. 189 217. In R. H. Doi, and M. McGloughlin (ed.), Biology of Bacilli: Applications to Industry. Biotechnology, vol. 22. Butterworth-Heinemann, Stoneham, Mass.
86. Jin, S.,, Y.-N. Song,, S. Q. Pan,, and E. W. Nester. 1993. Characterization of a virG mutation that confers constitutive virulence gene expression in Agrobacterium. Mol. Microbiol. 7: 555 562.
87. Kahn, D.,, and G. Ditta. 1991. Modular structure of FixJ: homology of the transcriptional activator domain with the-35 binding domain of sigma factors. Mol. Microbiol. 5: 987 997.
88. Kanamaru, K.,, and T. Mizuno. 1992. Signal transduction and osmoregulation in Escherichia coli: a novel mutant of the positive regulator, OmpR, that functions in a phosphorylation-independent manner. J. Biochem. 111: 425 430.
89. Kirsch, M. L.,, P. D. Peters,, D. W. Hanlon,, J. R. Kirby,, and G. W. Ordal. 1993. Chemotactic methylesterase brings about adaptation to attractants in Bacillus subtilis. J. Biol. Chem. 268: 18610 18616.
90. Klein, C.,, C. Kaletta,, and K.-D. Entian. 1993. Biosynthesis of the antibiotic subtilin is regulated by a histidine kinase/response regulator system. Appl. Environ. Microbiol. 59: 296 303.
91. Klier, A.,, T. Msadek,, and G. Rapoport. 1992. Positive regulation in the Gram-positive bacterium: Bacillus subtilis. Annu. Rev. Microbiol. 46: 429 459.
92. Klose, K. E.,, D. S. Weiss,, and S. Kustu. 1993. Glutamate at the site of phosphorylation of nitrogen-regulatory protein NTRC mimics aspartylphosphate and activates the protein. J. Mol. Biol. 232: 67 78.
93. Kofoid, E. C.,, and J. S. Parkinson. 1988. Transmitter and receiver modules in bacterial signaling proteins. Proc. Natl. Acad. Sci. USA 85: 4981 4985.
94. Kong, L.,, and D. Dubnau. 1994. Regulation of competence-specific gene expression by Mec-mediated protein-protein interaction in Bacillus subtilis. Proc. Natl. Acad. Sci. USA 91: 5793 5797.
95. Kong, L.,, K. J. Siranosian,, A. D. Grossman,, and D. Dubnau. 1993. Sequence and properties of mecA: a negative regulator of genetic competence in Bacillus subtilis. Mol. Microbiol. 9: 365 373.
96. Krüger, E.,, U. Völker,, and M. Hecker. 1994. Stress induction of clpC in Bacillus subtilis and involvement in stress tolerance. J. Bacteriol. 176: 3360 3367.
97. Kunst, F. Unpubhshed data.
98. Kunst, F.,, A. Amory,, M. Debarbouille,, I. Martin,, A. Klier,, and G. Rapoport,. 1988a. Polypeptides activating the synthesis of secreted enzymes, p. 27 31. In A. T. Ganesan, and J. A. Hoch (ed.), Genetics and Biotechnology of Bacilli, vol. 2. Academic Press, San Diego, Calif.
99. Kunst, F.,, M. Débarbouille,, T. Msadek,, M. Young,, C. Mauël,, D. Karamata,, A. Klier,, G. Rapoport,, and R. Dedonder. 1988b. Deduced polypeptides encoded by the Bacillus subtilis sacU locus share homology with two-component sensor-regulator systems. J. Bacteriol. 170: 5093 5101.
100. Kunst, F.,, T. Msadek,, and G. Rapoport,. 1994. Signal transduction network controlling degradative enzyme synthesis and competence in Bacillus subtilis, p. 1 20. In P.J. Piggot,, C. P. Moran Jr.,, and P. Youngman (ed.), Regulation of Bacterial Differentiation. American Society for Microbiology, Washington, D.C.
101. Kunst, F.,, M. Pascal,, J. Lepesant-Kejzlarová,, J.-A. Lepesant,, A. Billault,, and R. Dedonder. 1974. Pleiotropic mutations affecting sporulation conditions and the synthesis of extracellular enzymes in Bacillus subtilis 168. Biochimie 56: 1481 1489.
102. Lepesant, J.-A.,, F. Kunst,, J. Lepesant-Kejzlarová,, and R. Dedonder. 1972. Chromosomal location of mutations affecting sucrose metabohsm in Bacillus subtilis Marburg. Mol. Gen. Genet. 118: 135 160.
103. Londoño-Vallejo, J. A.,, and D. Dubnau. 1993. comF, a Bacillus subtilis late competence locus, encodes a protein similar to ATP-dependent RNA/DNA helicases. Mol. Microbiol. 9: 119 131.
104. Lonetto, M.,, M. Gribskov,, and C. A. Gross. 1992. The σ 70 family: sequence conservation and evolutionary relationships J. Bacteriol. 174: 3843 3849.
105. Louw, M. E.,, S. J. Reid,, D. M. James,., and T. G. Watson. 1994. Cloning and sequencing the degS-degU operon from an alkalophilic Bacillus brevis. Appl. Microbiol. Biotechnol. 42: 78 84.
106. Lovett, C. M., Jr.,, P. E. Love,, and R. E. Yasbin. 1989. Competence-specific induction of the Bacillus subtilis RecA protein analog: evidence for dual regulation of a recombination protein. J. Bacteriol. 171: 2318 2322.
107. Lukat, G. S.,, W. R. McCleary,, A. M. Stock,, and J. B. Stock. 1992. Phosphorylation of bacterial response regulator proteins by low molecular weight phospho-donors. Proc. Natl. Acad. Sci. USA 89: 718 722.
108. Maeda, T.,, S. M. Wurgler-Murphy,, and H. Saito. 1994. A two-component system that regulates an osmosensing MAP kinase cascade in yeast. Nature (London) 369: 242 245.
109. Magnuson, R.,, J. Solomon,, and A. D. Grossman. 1994. Biochemical and genetic characterization of a competence pheromone from Bacillus subtilis. Cell 77: 207 216.
110. Márquez, L. M.,, J. D. Helmann,, E. Ferrari,, H. M. Parker,, G. W. Ordal,, and M. J. Chamberlin. 1990. Studies of σ D-dependent functions in Bacillus subtilis. J. Bacteriol. 172: 3435 3443.
111. Masui, A.,, N. Fujiwara,, M. Takagi,, and T. Imanaka. 1992. Cloning and nucleotide sequence of the regulatory gene, degM, for minor serine protease in Bacillus subtilis. J. Ferment. Bioeng. 74: 230 233.
112. McCleary, W. R. J. B. Stock,, and A. J. Ninfa. 1993. Is acetyl phosphate a global signal in Escherichia coli? J. Bacteriol. 175: 2793 2798.
113. Melton, A. R.,, and A. A. Weiss. 1989. Environmental regulation of expression of virulence determinants in Bordetella pertussis. J. Bacteriol. 171: 6206 6212.
114. Melton, A. R.,, and A. A. Weiss. 1993. Characterization of environmental regulators of Bordetella pertussis. Infect. Immun. 61: 807 815.
115. Miller, J. F.,, J. J. Mekalanos,, and S. Falkow. 1989. Coordinate regulation and sensory transduction in the control of bacterial virulence. Science 243: 916 922.
116. Mohan, S.,, J. Aghion,, N. Guillen,, and D. Dubnau. 1989. Molecular cloning and characterization of comC, a late competence gene of Bacillus subtilis. J. Bacteriol. 171: 6043 6051.
117. Mohan, S.,, and D. Dubnau. 1990. Transcriptional regulation of comC: evidence for a competencespecific transcription factor in Bacillus subtilis. J. Bacteriol. 172: 4064 4071.
118. Moir, A.,, and E. H. Kemp (UniversityofSheffield,UnitedKingdom). 1991. Personal communication.
119. Moore, J. B.,, S.-P. Shiau,, and L. J. Reitzer. 1993. Alterations of highly conserved residues in the regulatory domain of nitrogen regulator I (NtrC) of Escherichia coli. J. Bacteriol. 175: 2692 2701.
120. Msadek, T. Unpublished data.
121. Msadek, T.,, and F. Kunst. Unpublished data.
122. Msadek, T.,, F. Kunst,, D. Henner,, A. Klier,, G. Rapoport,, and R. Dedonder. 1990. Signal transduction pathway controlling synthesis of a class of degradative enzymes in Bacillus subtilis: expression of the regulatory genes and analysis of mutations in degS and degU. J. Bacteriol. 172: 824 834.
123. Msadek, T.,, F. Kunst,, A. Klier,, and G. Rapoport. 1991. DegS-DegU and ComP-ComA modulator-effector pairs control expression of the Bacillus subtilis pleiotropic regulatory gene degQ. J. Bacteriol. 173: 2366 2377.
124. Msadek, T.,, F. Kunst,, and G. Rapoport,. 1993. Two-component regulatory systems, p. 729 745. In A. L. Sonenshein,, J. A. Hoch,, and R. Losick (ed.), Bacillus subtilis and Other Gram-Positive Bacteria: Biochemistry, Physiology, and Molecular Genetics. American Society for Microbiology, Washington, D.C.
125. Msadek, T.,, F. Kunst,, and G. Rapoport. 1994. MecB of Bacillus subtilis, a member of the ClpC ATPase family, is a pleiotropic regulator controlling competence gene expression and growth at high temperature. Proc. Natl. Acad. Sci. USA 91: 5788 5792.
126. Mueller, J. P.,, G. Bukusoglu,, and A. L. Sonenshein. 1992. Transcriptional regulation of Bacillus subtilis glucose starvation-inducible genes: control of gsiA by the ComP-ComA signal transduction system. J. Bacteriol. 174: 4361 4373.
127. Mueller, J. P.,, and A. L. Sonenshein. 1992. Role of the Bacillus subtilis gsiA gene in regulation of early sporulation gene expression. J. Bacteriol. 174: 4374 4383.
128. Mukai, K.,, M. Kawata,, and T. Tanaka. 1990. Isolation and phosphorylation of the Bacillus subtilis degS and degU gene products. J. Biol Chem. 265: 20000 20006.
129. Mukai, K.,, M. Kawata-Mukai,, and T. Tanaka. 1992. Stabilization of phosphorylated Bacillus subtilis DegU by DegR. J. Bacteriol. 174: 7954 7962.
130. Nagami, Y.,, and T. Tanaka. 1986. Molecular cloning and nucleotide sequence of a DNA fragment from Bacillus natto that enhances production of extracellular proteases and levansucrase in Bacillus subtilis. J. Bacteriol. 166: 20 28.
131. Nakano, M. M.,, R. Magnuson,, A. Myers,, J. Curry,, A. D. Grossman,, and R. Zuber. 1991a. srfA is an operon required for surfactin production, competence development, and efficient sporulation in Bacillus subtilis. J. Bacteriol. 173: 1770 1778.
132. Nakano, M. M.,, M. A. Marahiel, and R Zuber. 1988. Identification of a genetic locus required for biosynthesis of the lipopeptide antibiotic surfactin in Bacillus subtilis. J. Bacteriol. 170: 5662 5668.
133. Nakano, M. M.,, L. Xia,., and P. Zuber. 1991b. Transcription initiation region of the srfA operon, which is controlled by the comP-comA signal transduction system in Bacillus subtilis. J. Bacteriol. 173: 5487 5493.
134. Nakano, M. M.,, and P. Zuber. 1989. Cloning and characterization of srfB, a regulatory gene involved in surfactin production and competence in Bacillus subtilis. J. Bacteriol. 171: 5347 5353.
135. Nakano, M. M.,, and P. Zuber,. 1990. Identification of genes required for the biosynthesis of the lipopeptide antibiotic surfactin in Bacillus subtilis, p. 397 405. In M. M. Zukowski,, A. T. Ganesan,, and J. A. Hoch (ed.), Genetics and Biotechnology of Bacilli, vol. 3. Academic Press, San Diego, Calif.
136. Nakano, M. M.,, and P. Zuber. 1991. The primary role of ComA in establishment of the competent state in Bacillus subtilis is to activate expression of srfA. J. Bacteriol. 173: 7269 7274.
137. Nakano, M. M.,, and P. Zuber. 1993. Mutational analysis of the regulatory region of the srfA operon in Bacillus subtilis. J. Bacteriol. 175: 3188 3191.
138. Nassif, X.,, N. Honoré,, T. Vasselon,, S. T. Cole,, and P. J. Sansonetti. 1989. Positive control of colanic acid synthesis in Escherichia coli by rmpA and rmpB, two virulence-plasmid genes of Klebsiella pneumoniae. Mol. Microbiol. 3: 1349 1359.
139. Neuwald, A. F.,, D. E. Berg,, and G. V. Stauffer. 1992. Mutational analysis of the Escherichia coli serB promoter region reveals transcriptional linkage to a downstream gene. Gene 120: 1 9.
140. Nixon, B. T.,, C. W. Ronson,, and E. M. Ausubel. 1986. Two-component regulatory systems responsive to environmental stimuli share strongly conserved domains with the nitrogen assimilation regulatory genes ntrB and ntrC. Proc. Natl. Acad. Sci. USA 83: 7850 7854.
141. Ogasawara, N.,, S. Nakai,, and H. Yoshikawa. 1994. Systematic sequencing of the 180 kilo bases region of the Bacillus subtilis chromosome containing the replication origin. DNA Res. 1: 1 14.
142. Ogura, M.,, M. Kawata-Mukai,, M. Itaya,, K. Takio,, and T. Tanaka. 1994. Multiple copies of the proB gene enhance degS-dependent extracellular protease production in Bacillus subtilis. J. Bacteriol. 176: 5673 5680.
143. Ota, I. M.,, and A. Varshavsky. 1993. A yeast protein similar to bacterial two-component regulators. Science 262: 566 569.
144. Parkinson, J. S. 1993. Signal transduction schemes of bacteria. Cell 73: 857 871.
145. Parkinson, J. S.,, and E. C. Kofoid. 1992. Communication modules in bacterial signaling proteins. Annu. Rev. Genet. 26: 71 112.
146. Pazour, G. J.,, C. N. Ta,, and A. Das. 1992. Constitutive mutations of Agrobacterium tumefaciens transcriptional activator virG. J. Bacteriol. 174: 4169 4174.
147. Perego, M.,, S. P. Cole,, D. Burbulys,, K. Trach,, and J. A. Hoch. 1989. Characterization of the gene for a protein kinase which phosphorylates the sporulation- regulatory proteins Spo0A and Spo0F of Bacillus subtilis. J. Bacteriol. 171: 6187 6196.
148. Perego, M.,, C. Hanstein,, K. M. Welsh,, T. Djavakhishvili,, R. Glaser,, and J. A. Hoch. 1994. Multiple protein aspartate phosphatases provide a mechanism for the integration of diverse signals in the control of development in B. subtilis. Cell 79: 1047 1055.
149. Perego, M.,, C. R Higgins,, S. R. Pearce,, M. P. Gallagher,, and J. A. Hoch. 1991. The oligopeptide transport system of Bacillus subtilis plays a role in the initiation of sporulation. Mol. Microbiol. 5: 173 185.
150. Perego, M.,, and J. A. Hoch. 1988. Sequence analysis and regulation of the hpr locus, a regulatory gene for protease production and sporulation in Bacillus subtilis. J. Bacteriol. 170: 2560 2567.
151. Podvin, L.,, and M. Steinmetz. 1992. A degU-containing SPβ prophage complements superactivator mutations affecting the Bacillus subtilis degSU operon. Res. Microbiol. 143: 559 567.
152. Poetter, K.,, and D. L. Coplin. 1991. Structural and functional analysis of the rcsA gene from Erwinia stewartii. Mol. Gen. Genet. 229: 155 160.
153. Popham, D. L.,, D. Szeto,, J. Keener,, and S. Kustu. 1989. Function of a bacterial activator protein that binds to transcriptional enhancers. Science 243: 629 635.
154. Popov, K. M.,, Y. Zhao,, Y. Shimomura,, M. J. Kuntz,, and R. A. Harris. 1992. Branched chain α-ketoacid dehydrogenase kinase: molecular cloning, expression, and sequence similarity with histidine protein kinases. J. Biol. Chem. 267: 13127 13130.
155. Porter, S. C.,, A. K. North,, A. B. Wedel,, and S. Kustu. 1993. Ohgomerization of NTRC at the glnA enhancer is required for transcriptional activation. Genes Dev. 7: 2258 2273.
156. Rabin, R. S.,, and V. Stewart. 1993. Dual response regulators (NarL and NarP) interact with dual sensors (NarX and NarQ) to control nitrate- and nitrite- regulated gene expression in Escherichia coli K-12 J. Bacteriol. 175: 3259 3268.
157. Raibaud, A.,, M. Zalacain,, T. G. Holt,, R. Tizard,, and C. J. Thompson. 1991. Nucleotide sequence analysis reveals linked N-acetyl hydrolase, thioesterase, transport, and regulatory genes encoded by the bialaphos biosynthetic gene cluster of Streptomyces hygroscopicus. J. Bacteriol. 173: 4454 4463.
158. Reyrat, J.-M.,, M. David,, J. Batut,, and R. Boistard. 1994. FixL of Rhizobium meliloti enhances the transcriptional activity of a mutant FixJD54N protein by phosphorylation of an alternate residue. J. Bacteriol. 176: 1969 1976.
159. Richet, E.,, and O. Raibaud. 1989. MalT, the regulatory protein of the Escherichia coli maltose system, is an ATP-dependent transcriptional activator. EMBO J. 8: 981 987.
160. Roggiani, M.,, and D. Dubnau. 1993. ComA, a phosphorylated response regulator protein of Bacillus subtilis, binds to the promoter region of srfA. J. Bacteriol. 175: 3182 3187.
161. Roggiani, M.,, J. Hahn,, and D. Dubnau. 1990. Suppression of early competence mutations in Bacillus subtilis by mec mutations. J. Bacteriol. 172: 4056 4063.
162. Ronson, C. W.,, B. T. Nixon,, and F. M. Ausubel. 1987. Conserved domains in bacterial regulatory proteins that respond to environmental stimuli. Cell 49: 579 581.
163. Rudner, D. Z.,, J. R. LeDeaux,, K. Ireton,, and A. D. Grossman. 1991. The spoo0K locus of Bacillus subtilis is homologous to the oligopeptide permease locus and is required for sporulation and competence. J. Bacteriol. 173: 1388 1398.
164. Ruppen, M. E.,, G. L. Van Alstine,, and L. Band. 1988. Control of intracellular serine protease expression in Bacillus subtilis. J. Bacteriol. 170: 136 140.
165. Scarlato, V.,, A. Prugnola,, B. Arico,, and R. Rappuoli. 1990. Positive transcriptional feedback at the bvg locus controls expression of virulence factors in Bordetella pertussis. Proc. Natl. Acad. Sci. USA 87: 6753 6757.
166. Schaeffer, P.,, J. Millet,, and J.-P. Aubert. 1965. Catabolic repression of bacterial sporulation. Proc. Natl. Acad. Sci. USA 54: 704 711.
167. Schell, M. A.,, T. P. Denny,, and J. Huang. 1993. VsrA, a second two-component sensor regulating virulence genes of Pseudomonas solanacearum. Mol. Microbiol. 11: 489 500.
168. Scotti, C.,, M. Piatti,, A. Cuzzoni,, P. Perani,, A. Tognoni,, G. Grandi,, A. Galizzi,, and A. M. Albertini. 1993. A Bacillus subtilis large ORF coding for a polypeptide highly similar to polyketide synthases. Gene 130: 65 71.
169. Seki, T.,, H. Yoshikawa,, H. Takahashi,, and H. Saito. 1987. Cloning and nucleotide sequence of phoP, the regulatory gene for alkaline phosphatase and phosphodiesterase in Bacillus subtilis. J. Bacteriol. 169: 2913 2916.
170. Seki, T.,, H. Yoshikawa,, H. Takahashi,, and H. Saito. 1988. Nucleotide sequence of the Bacillus subtilis phoR gene J. Bacteriol. 170: 5935 5938.
171. Shimotsu, H.,, and D. J. Henner. 1986. Modulation of Bacillus subtilis levansucrase gene expression by sucrose and regulation of the steady-state mRNA level by sacU and sacQ genes. J. Bacteriol. 168: 380 388.
172. Sloma, A.,, C. F. Rudolph,, G. A. Rufo, Jr.,, B. J. Sullivan,, K. A. Theriault,, D. Ally,, and J. Pero. 1990a. Gene encoding a novel extracellular metalloprotease in Bacillus subtilis. J. Bacteriol. 172: 1024 1029.
173. Sloma, A.,, G. A. Rufo, Jr.,, C. F. Rudolph,, B. J. Sullivan,, K. A. Theriault,, and J. Pero. 1990b. Bacillopeptidase F of Bacillus subtilis: purification of the protein and cloning of the gene. J. Bacteriol. 172: 1470 1477.
174. Sloma, A.,, G. A. Rufo, Jr.,, K. A. Theriault,, M. Dwyer,, S. W. Wilson,, and J. Pero. 1991. Cloning and characterization of the gene for an additional extracellular serine protease of Bacillus subtilis. J. Bacteriol. 173: 6889 6895.
175. Smith, I., 1993. Regulatory proteins that control late-growth development, p. 785 800. In A. L. Sonenshein,, J. A. Hoch,, and R. Losick (ed.), Bacillus subtilis and Other Gram-Positive Bacteria: Biochemistry, Physiology, and Molecular Genetics. American Society for Microbiology, Washington, D.C.
176. Smith, I.,, E. Dubnau,, M. Predich,, U. Bai,, and R. Rudner. 1992. Early spo gene expression in Bacillus subtilis: the role of interrelated signal transduction systems. Biochimie 74: 669 678.
177. Smith, I.,, I. Mandic-Mulec,, and N. Gaur. 1991. The role of negative control in sporulation. Res. Microbiol. 142: 831 839.
178. Sonenshein, A. L., 1989. Metabolic regulation of sporulation and other stationary-phase phenomena, p. 109 130. In I. Smith,, R. A. Slepecky,, and P. Sedow (ed.), Regulation of Procaryotic Development: Structural and Functional Analysis of Bacterial Sporulation and Germination. American Society for Microbiology, Washington, D.C.
179. Sorokin, A.,, E. Zumstein,, V. Azevedo,, S. D. Ehrlich,, and P. Serror. 1993. The organization of the Bacillus subtilis 168 chromosome region between the spoVA and serA genetic loci, based on sequence data. Mol. Microbiol. 10: 385 395.
180. Squires, C.,, and C. L. Squires. 1992. The Clp proteins: proteolysis regulators or molecular chaperones? J. Bacteriol. 174: 1081 1085.
181. Squires, C. L.,, S. Pedersen,, B. M. Ross,, and C. Squires. 1991. ClpB is the Escherichia coli heat shock protein F 84. 1. J. Bacteriol. 173: 4254 4262.
182. Stock, J. B.,, A. J. Ninfa,, and A. M. Stock. 1989. Protein phosphorylation and regulation of adaptive responses in bacteria. Microbiol. Rev. 53: 450 490.
183. Stock, J. B.,, A. M. Stock,, and J. M. Mottonen. 1990. Signal transduction in bacteria. Nature (London) 344: 395 400.
184. Stout, V.,, A. Torres-Cabassa,, M. R. Maurizi,, D. Gutnick,, and S. Gottesman. 1991. RcsA, an unstable positive regulator of capsular polysaccharide synthesis. J. Bacteriol. 173: 1738 1747.
185. Strauch, M. A.,, and J. A. Hoch,. 1992. Control of postexponential gene expression by transition state regulators, p. 105 121. In R. H. Doi, and M. Mc- Gloughlin (ed.), Biology of Bacilli: Applications to Industry. Biotechnology, vol. 22. Butterworth-Heinemann, Stoneham, Masss.
186. Strauch, M. A.,, and J. A. Hoch. 1993. Transition-state regulators: sentinels of Bacillus subtilis post-exponential gene expression. Mol. Microbiol. 7: 337 342.
187. Stülke, J. (UniversityofGreifswald,Germany). 1994. Personal communication.
188. Tanaka, T.,, and M. Kawata. 1988. Cloning and characterization of Bacillus subtilis iep, which has positive and negative effects on production of extracellular proteases. J. Bacteriol. 170: 3593 3600.
189. Tanaka, T.,, M. Kawata,, and K. Mukai. 1991. Altered phosphorylation of Bacillus subtilis DegU caused by single amino acid changes in DegS. J. Bacteriol. 173: 5507 5515.
190. Tanaka, T.,, M. Kawata,, Y. Nagami,, and H. Uchiyama. 1987. prtR enhances the mRNA level of the Bacillus subtilis extracellular proteases. J. Bacteriol. 169: 3044 3050.
191. Tanaka, T.,, and M. Kawata-Mukai. 1994. Stabilization of the phosphorylated form of Bacillus subtilis DegU caused by degU9 mutation. FEMS Microbiol. Lett. 115: 93 96.
192. Taylor, S. S. 1989. cAMP-dependent protein kinase. J. Biol. Chem. 264: 8443 8446.
193. Tokunaga, T.,, M. H. Rashid,, A. Kuroda,, and J. Sekiguchi. 1994. Effect of degS-degU mutations on the expression of sigD, encoding an alternative sigma factor, and autolysin operon of Bacillus subtilis. J. Bacteriol. 176: 5177 5180.
194. Tomioka, N.,, M. Honjo,, K. Funahashi,, K. Manabe,, A. Akaoka,, I. Mita,, and Y. Furutani. 1985. Cloning, sequencing, and some properties of a novel Bacillus amyloliquefaciens gene involved in the increase of extracellular protease activities. J. Biotechnol. 3: 85 96.
195. Trach, K. A.,, J. W. Chapman,, P. J. Piggot,, and J. A. Hoch. 1985. Deduced product of the stage 0 sporulation gene spo0F shares homology with Spo0A, OmpR, and SfrA proteins. Proc. Natl. Acad. Sci. USA 82: 7260 7264.
196. Trach, K. A.,, and J. A. Hoch. 1993. Multisensory activation of the phosphorelay initiating sporulation in Bacillus subtilis: identification and sequence of the protein kinase of the alternate pathway. Mol. Microbiol. 8: 69 79.
197. vanSinderen, D. (UniversityofGroningen,TheNetherlands). 1993. Personal communication.
198. van Sinderen, D.,, G. Gali,, P. Cosmina,, F. de Ferra,, S. Withoff,, G. Venema,, and G. Grandi. 1993. Characterization of the srfA locus of Bacillus subtilis: only the valine-acrivating domain of srfA is involved in the establishment of genetic competence. Mol. Microbiol. 8: 833 841.
199. van Sinderen, D.,, A. Luttinger,, L. Kong,, D. Dubnau,, G. Venema,, and L. Hamoen. 1995. comK encodes the competence transcription factor, the key regulatory protein for competence development in Bacillus subtilis. Mol. Microbiol. 15: 455 462.
200. van Sinderen, D.,, A. ten Berge,, B.-J. Haijema,, L. Hamoen,, and G. Venema. 1994. Molecular cloning and sequence of comK, a gene required for genetic competence in Bacillus subtilis. Mol. Microbiol. 11: 695 703.
201. vanSinderen, D.,, and G. Venema. 1994. comK acts as an autoregulatory switch in the signal transduction route to competence in Bacillus subtilis. J. Bacteriol. 176: 5762 5770.
202. van Sinderen, D.,, S. Withoff,, H. Boels,, and G. Venema. 1990. Isolation and characterization of comL, a transcription unit involved in competence development of Bacillus subtilis. Mol. Gen. Genet. 224: 396 404.
203. Vasselon, T.,, P. J. Sansonetti,, and X. Nassif. 1991. Nucleotide sequence of rmpB, a Klebsiella pneumoniae gene that positively controls colanic acid biosynthesis in Escherichia coli. Res. Microbiol. 142: 47 54.
204. Völker, U.,, H. Mach,, R. Schmid,, and M. Hecker. 1992. Stress proteins and cross-protection by heat shock and salt stress in Bacillus subtilis. J. Gen. Microbiol. 138: 2125 2135.
205. Volz, K. 1993. Structural conservation in the CheY superfamily. Biochemistry 32: 11741 11753.
206. Weinrauch, Y.,, N. Guillen,, and D. A. Dubnau. 1989. Sequence and transcription mapping of Bacillus subtilis competence genes comB and comA, one of which is related to a family of bacterial regulatory determinants. J. Bacteriol. 171: 5362 5375.
207. Weinrauch, Y.,, T. Msadek,, F. Kunst,, and D. Dubnau. 1991. Sequence and properties of comQ a new competence regulatory gene of Bacillus subtilis. J. Bacteriol. 173: 5685 5693.
208. Weinrauch, Y.,, R. Penchev,, E. Dubnau,, I. Smith,, and D. Dubnau. 1990. A Bacillus subtilis regulatory gene product for genetic competence and sporulation resembles sensor protein members of the bacterial two-component signal-transduction systems. Genes Dev. 4: 860 872.
209. Weiss, V.,, F. Claverie-Martin,, and B. Magasanik. 1992. Phosphorylation of nitrogen regulator- I of Escherichia coli induces strong cooperative binding to DNA essential for activation of transcription. Proc. Natl. Acad. Sci. USA 89: 5088 5092.
210. Yang, M.,, E. Ferrari,, E. Chen,, and D. J. Henner. 1986. Identification of the pleiotropic sacQ gene of Bacillus subtilis. J. Bacteriol. 166: 113 119.
211. Yang, M.,, H. Shimotsu,, E. Ferrari., and D. J. Henner. 1987. Characterization and mapping of the Bacillus subtilis prtR gene. J. Bacteriol. 169: 434 437.
212. Yasbin, R. E.,, D. L. Cheo,, and K. W. Bayles. 1992. Inducible DNA repair and differentiation in Bacillus subtilis: interactions between global regulons. Mol. Microbiol. 6: 1263 1270.
213. Yoshikawa, H.,, J. Kazami,, S. Yamashita,, T. Chibazakura,, H. Sone,, F. Kawamura,, M. Oda,, M. Isaka,, Y. Kobayashi,, and H. Saito. 1986. Revised assignment for the Bacillus subtilis spo0F gene and its homology with spo0A and with two Escherichia coli genes. Nucleic Acids Res. 14: 1063 1072.
214. Zheng, L.,, R. Halberg,, S. Roels,, H. Ichikawa,, L. Kroos,, and R. Losick. 1992. Sporulation regulatory protein GerE from Bacillus subtilis binds to and can activate or repress transcription from promoters for mother-cell-specific genes. J. Mol. Biol. 226: 1037 1050.

Tables

Generic image for table
TABLE 1

Mutations in the and genes and their associated phenotypes

Citation: Msadek T, Kunst F, Rapoport G. 1995. A Signal Transduction Network in Includes the DegS/DegU and ComP/ComA Two-Component Systems, p 447-471. In Hoch J, Silhavy T (ed), Two-Component Signal Transduction. ASM Press, Washington, DC. doi: 10.1128/9781555818319.ch29

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error