1887

Chapter 3 : Two-Component Signal Transduction Systems: Structure-Function Relationships and Mechanisms of Catalysis

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Two-Component Signal Transduction Systems: Structure-Function Relationships and Mechanisms of Catalysis, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818319/9781555810894_Chap03-1.gif /docserver/preview/fulltext/10.1128/9781555818319/9781555810894_Chap03-2.gif

Abstract:

Two-component systems are signal-transducing ATPases that use energy released from ATP hydrolysis to effect responses to changing environmental conditions. The phosphorylated aspartate is contained within another type of protein termed a response regulator, which undergoes a phosphorylation-induced conformational change that serves to elicit a response. The histidine kinase domain is invariably flanked by sequences that are not conserved within the family and supply specific regulatory functions. The essential features are kinase dimerization, nucleotide binding, and histidine phosphorylation. A proton donor would also be expected to facilitate the transfer reaction from acyl phosphates through general acid catalysis. There are two ways in which the kinases modulate the rate of response regulator phosphorylation. First, the rate of histidine phosphorylation controls the availability of phosphodonor. This aspect of kinase function is an inherent feature of the kinase proteins, independent of the regulators. The second mechanism involves protein-protein contacts between the kinases and their cognate regulators that enhance the rate and determine the specificity of regulator phosphorylation. Many histidine kinases function to facilitate the rate of dephosphorylation of their cognate response regulators. Histidine kinases must bind the dephosphorylated form of the regulators and release the phosphorylated form. When the rate of histidine phosphorylation is high, the phosphotransfer reaction would predominate; when the rate of histidine phosphorylation is low, the dephosphorylation reaction would be favored.

Citation: Stock J, Park P, Surette M, Levit M. 1995. Two-Component Signal Transduction Systems: Structure-Function Relationships and Mechanisms of Catalysis, p 25-51. In Hoch J, Silhavy T (ed), Two-Component Signal Transduction. ASM Press, Washington, DC. doi: 10.1128/9781555818319.ch3

Key Concept Ranking

Two-Component Signal Transduction Systems
0.41999024
0.41999024
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Organization of sequence motifs in histidine kinases. Examples of different sequence organizations among representative members of the histidine kinase superfamily are shown with the corresponding total number of residues. Conserved sequences are indicated with the number of the first conserved residue given below. As described in the text and Fig. 2 , these are designated as H, N, D, F, and G boxes. Attached response regulator domains are indicated by open boxes, and hydrophobic sequences are indicated by closed boxes. Sequences were chosen from a library of more than 75 different histidine kinase homologs obtained from searching a variety of standard protein sequence data bases. For an extensive delineation of histidine kinase sequences, see .

Citation: Stock J, Park P, Surette M, Levit M. 1995. Two-Component Signal Transduction Systems: Structure-Function Relationships and Mechanisms of Catalysis, p 25-51. In Hoch J, Silhavy T (ed), Two-Component Signal Transduction. ASM Press, Washington, DC. doi: 10.1128/9781555818319.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Amino acid preference plot for the boxes of most conserved residues among members of the histidine protein kinase superfamily. A histogram of the relative occurrence of each amino acid is plotted against the number of the amino acid within the box, starting with the first signature amino acid (H, N, D, F, or G) designated as 0. The D and F boxes are generally contiguous except in CheA and FrzE, which have intervening inserts of 25 to 28 residues. Amino acid frequencies are derived from an analysis of 68 histidine kinases from GenEMBL and SwissProt data bases. Amino acids with less than 10% frequencies of occurrence at a given position are not shown. The pattern code is light, nonpolar (GAVLMIPFYW) and dark, polar (STCNQKRHDE).

Citation: Stock J, Park P, Surette M, Levit M. 1995. Two-Component Signal Transduction Systems: Structure-Function Relationships and Mechanisms of Catalysis, p 25-51. In Hoch J, Silhavy T (ed), Two-Component Signal Transduction. ASM Press, Washington, DC. doi: 10.1128/9781555818319.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Typical domain organizations found in response regulators. For an extensive delineation of response regulator sequences, see .

Citation: Stock J, Park P, Surette M, Levit M. 1995. Two-Component Signal Transduction Systems: Structure-Function Relationships and Mechanisms of Catalysis, p 25-51. In Hoch J, Silhavy T (ed), Two-Component Signal Transduction. ASM Press, Washington, DC. doi: 10.1128/9781555818319.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Ribbon drawing of CheY with a bound Mg(II) at the active site. From the coordinates of the Mg(II) structure of .

Citation: Stock J, Park P, Surette M, Levit M. 1995. Two-Component Signal Transduction Systems: Structure-Function Relationships and Mechanisms of Catalysis, p 25-51. In Hoch J, Silhavy T (ed), Two-Component Signal Transduction. ASM Press, Washington, DC. doi: 10.1128/9781555818319.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5
FIGURE 5

(A) Stereo view of the active site of CheY showing the acid pocket composed of Asp-11, Asp-12, and Asp-57 with a bound Mg(II). Asn-59, which coordinates with the metal through a backbone carbonyl oxygen, and Lys-109 are also indicated. (B) Stereo view of the active site of CheY as shown in A, with a phosphoimidazole group positioned to donate its phosphoryl group to the β-carboxyl of Asp-57. From the coordinates of .

Citation: Stock J, Park P, Surette M, Levit M. 1995. Two-Component Signal Transduction Systems: Structure-Function Relationships and Mechanisms of Catalysis, p 25-51. In Hoch J, Silhavy T (ed), Two-Component Signal Transduction. ASM Press, Washington, DC. doi: 10.1128/9781555818319.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 6
FIGURE 6

Small-molecule phosphodonors that can function to phosphorylate response regulators such as CheY.

Citation: Stock J, Park P, Surette M, Levit M. 1995. Two-Component Signal Transduction Systems: Structure-Function Relationships and Mechanisms of Catalysis, p 25-51. In Hoch J, Silhavy T (ed), Two-Component Signal Transduction. ASM Press, Washington, DC. doi: 10.1128/9781555818319.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818319.chap3
1. Aiba, H.,, T. Mizuno,,and S. Mizushima. 1989a. Transfer of phosphoryl group between two regulatory proteins involved in osmoregulatory expression of the ompF and ompC genes in Escherichia coli. J. Biol. Chem. 264: 8563 8567.
2. Aiba, H.,, F. Nakasai,, S. Mizushima,, and T.Mizuno. 1989b. Evidence for physiological importance of the phosphotransfer between the two regulatory components, EnvZ and OmpR, in osmoregulation of Escherichia coli. J. Biol. Chem. 264: 14090 14094.
3. Alper, S.,, L. Duncan,,and R. Losick. 1994. An adenosine nucleotide switch controlling the activity of a cell type-specific transcription factor in B. subtilis. Cell 77: 195 205.
4. Amemura, M.,, K. Makino,, H. Shinagawa,,and A. Nakata. 1990. Cross talk to the phosphate regulon of Escherichia coli by PhoM protein: PhoM is a histidine protein kinase and catalyzes phosphorylation of PhoB and PhoM-open reading frame 2. J. Bacteriol. 172: 6300 6307.
5. Atkinson, M. R.,,and A. J. Ninfa. 1993. Mutational analysis of the bacterial signal-transducing protein kinase/phosphatase nitrogen regulator I (NRn or NtrB) J. Bacteriol. 175: 7016 7023.
6. Baumgartner, J. W.,, C. Kim,, R. E. Brissette,, M. Inouye,, C. Park,,and G. L. Hazelbauer. 1994. Transmembrane signalling by a hybrid protein: communication from the domain of chemoreceptor Trg that recognizes sugar-binding proteins to the kinase/phosphatase domain of osmosensor EnvZ. J. Bacteriol. 176: 1157 1163.
7. Bellsolell, L.,, J. Prieto,, L. Serrano,, and M. Coll. 1994. Magnesium binding to the bacterial chemotaxis protein CheY results in large conformational changes involving its functional surface. J. Mol. Biol. 238: 489 495.
8. Benkovic, S. J.,, and E. J. Sampson. 1971. Structurereactivity correlation for the hydrolysis of phosphoramidate monoanions. J. Am. Chem. Soc. 93: 4009 4016.
9. Benson, A. K.,, G. Ramakrishnan,, N. Ohta,, J. Feng,, A. J. Ninfa,, and A. Newton. 1994. The Caulobacter crescentus HbD protein acts at ftr sequence elements both to activate and to repress transcription of cell cycle-regulated flagellar genes. Proc. Natl. Acad. Sci. USA 91: 4989 4993.
10. Blat, Y.,, and M. Eisenbach. 1994. Phosphorylation-dependent binding of the chemotaxis signal molecule CheY to its phosphatase, CheZ. Biochemistry 33: 902 906.
11. Bochner, B. R.,, and B. N. Ames. 1982. Complete analysis of cellular nucleotides by two-dimensional thin layer chromatography. J. Biol. Chem. 257: 9759 9769.
12. Borkovich, K. A.,, L. A. Alex,, and M. I. Simon. 1992. Attenuation of sensory signaling by covalent modification. Proc. Natl. Acad. Sci. USA 89: 6756 6760.
13. Borkovich, K. A.,, N. Kaplan,, J. F. Hess,, and M. I. Simon. 1989. Transmembrane signal transduction in bacterial chemotaxis involves ligand-dependent activation of phosphate group transfer. Proc. Natl. Acad. Sci. USA 86: 1208 1212.
14. Borkovich, K. A.,, and M. I. Simon. 1990. The dynamics of protein phosphorylation in bacterial chemotaxis. Cell 63: 1339 1348.
15. Bourret, R. B.,, K. A. Borkovich,, and M. I. Simon. 1991. Signal transduction pathways involving protein phosphorylation in prokaryotes. Annu. Rev.Biochem. 60: 401 441.
16. Bourret, R. B.,, J. Davagnino,, and M. I. Simon. 1993a. The carboxy-terminal portion of the CheA kinase mediates regulation of autophosphorylation by transducer and CheW. J. Bacteriol. 175: 2097 2101.
17. Bourret, R. B.,, S. K. Drake,, S. A. Chervitz,, M. I. Simon,, and J. J. Falke. 1993b. Activation of the phosphosignaling protein CheY. Analysis of activated mutants by 19 FNMR and protein engineering. J. Biol. Chem. 268: 13089 13096.
18. Bourret, R. B.,, J. F. Hess,, and M. I. Simon. 1990. Conserved aspartate residues and phosphorylation in signal transduction by the chemotaxis protein CheY. Proc. Natl. Acad. Sci. USA 87: 41 45.
19. Brissette, R. E.,, K. Tsung,, and M. Inouye. 1991. Suppression of a mutation in OmpR at the putative phosphorylation center by a mutant EnvZ protein in Escherichia coli. J. Bacteriol. 173: 601 608.
20. Bruix, M.,, J. Pascual,, J. Santoro,, J. Prieto,, L. Serrano,, and M. Rico. 1993. JH- and 15N-NMR assignment and solution structure of the chemotactic Escherichia coli CheY protein. Eur. J. Biochem. 215: 573 585.
21. BurbuJys, D.,, K. A. Trach,, and J. A. Hoch. 1991. Initiation of sporulation in B. subtilis is controlled by a multicomponent phosphorelay. Cell 64: 545 552.
22. Chang, C.,, S. F. Kwok,, A. B. Bleecker,, and E. M. Meyerowitz. 1993. Arabidopsis ethylene-response gene ETR1: similarity of product to two-component regulators. Science 262: 539 544.
23. DeFranco, A. L.,, and D. E. Koshland, J r. 1981. Molecular cloning of chemotaxis genes and overproduction of gene products in the bacterial sensing system. J. Bacteriol. 147: 390 400.
24. DiSabato, G.,, and W. P. Jencks. 1961. Mechanism and catalysis of reactions of acyl phosphates. I. Nucleophilic reactions. J. Am. Chem. Soc. 83: 4393 4405.
25. Drake, S. K.,, R. B. Bourret,, L. A. Luck,, M. I. Simon,, and J. J. Falke. 1993. Activation of the phosphosignaling protein CheY. J. Biol. Chem. 268: 13081 13088.
26. Dumas, C.,, I. Lascu,, S. Morera,, G. Philippe,, R. Fourme,, V. Wallet,, M.-L. Lacombe,, M. Veron,, and J. Janin. 1992. X-ray structure of nucleoside diphosphate kinase. EMBO J. 11: 3202 3208.
27. Feng, J.,, M. R. Atkinson,, W. McCleary,, J. B. Stock,, B. L. Wanner,, and A. J. Ninfa. 1992. Role of phosphorylated metabolic intermediates in the regulation of glutamine synthetase synthesis in Escherichia coli. J. Bacteriol. 174: 6061 6070.
28. Forst, S.,, D. Comeau,, S. Norioka,, and M. Inouye. 1987. Localization and membrane topology of EnvZ, a protein involved in osmoregulation of OmpF and OmpC in Escherichia coli. J. Biol. Chem. 262: 16433 16438.
29. Fukami, Y.,, and F. Lipmann. 1983. Reversal of Roussarcoma-specific immunoglobulin phosphorylation on tyrosine (ADP sd phosphate acceptor) catalyzed by the src gene kinase. Proc. Natl. Acad. Sci. USA 80: 1872 1876.
30. Gegner, J. A.,, and F. W. Dahlquist. 1991. Signal transduction in bacteria: CheW forms a reversible complex with the protein kinase CheA. Proc. Natl. Acad. Sci. USA 88: 750 754.
31. Gegner, J. A.,, D. R. Graham,, A. F. Roth,, and F. W. Dahlquist. 1992. Assembly of an MCP receptor, CheW, and kinase CheA complex in the bacterial chemotaxis signal transduction pathway. Cell 18: 975 982.
32. Grimsley, J. K.,, R. B. Tjalkens,, M. A. Strauch,, T. H. Bird,, G. B. Spiegelman,, Z. Hostomsky,, J. M. Whiteley,, and J. A. Hoch. 1994. Subunit composition and domain structure of the SpoOA sporulation transcription factor of Bacillus subtilis. J. Biol. Chem. 269: 16977 16982.
33. Guynn, R.,, H. L. Gelberg,, and R. L. Veech. 1973. Equilibrium constants of the malate dehydrogenase, citrate synthase, citrate lyase, and acetyl coenzyme A hydrolysis reactions under physiological conditions. J. Biol. Chem. 248: 6957 6965.
34. Harlocker, S. L.,, A. Rampersaud,, W.-P. Yang,, and M. Inouye. 1993. Phenotypic revertant mutations of a new OmpR2 mutant (V203Q) of Escherichia coli lie in the envZ gene, which encodes the OmpR kinase. J. Bacteriol. 175: 1956 1960.
35. Hazelbauer, G. L.,, H. C. Berg ,, and P. Matsumura. 1993. Bacterial motility and signal transduction. Cell 73: 15 22.
36. Herschlag, D.,, and W.P. Jencks. 1990. J. Am. Chem.Soc. 112: 1942 1950.
37. Hess, J. F.,, R. B. Bourret,, and M. I. Simon. 1988a. Histidine phosphorylation and phosphoryl group transfer in bacterial chemotaxis. Nature 336: 139 143.
38. Hess, J. E.,, K. Oosawa,, N. Kaplan,, and M. I. Simon. 1988b. Phosphorylation of three proteins in the signaling pathway of bacterial chemotaxis. Cell 53: 79 87.
39. Hubler, L.,, G. N. Gill,, and P. J. Berries. 1989. Reversibility of the epidermal growth factor receptor self-phosphorylation reaction. Evidence for formation of a high energy phosphotyrosine bond. J. Biol. Chem. 264: 1558 1564.
40. Igo, M. M.,, A. J. Ninfa,, J. B. Stock,, and T. J. Silhavy. 1989. Phosphorylation and dephosphorylation of a bacterial transcriptional activator by a transmembrane receptor. Genes Dev. 3: 1725 1734.
41. Iuchi, S. 1993. Phosphorylation/dephosphorylation of the receiver module at the conserved aspartate residue controls transphosphorylation activity of histidine kinase in sensor protein ArcB of Escherichia coli. J. Biol. Chem. 268: 23972 23980.
42. Jencks, W. P. 1968. Handbook of biochemistry. CRC, Cleveland, Ohio.
43. Jencks, W. P. 1980. The utilization of binding energy in coupled vectorial processes. Adv. Enzymol. 51: 75 106.
44. Jin, S.,, R. K. Prusti,, T. Roitsch,, R. G. Ankenbauer,, and E. W. Nester. 1990. Phosphorylation of the VirG protein of Agrobacterium tumefaciens by the autophosphorylated VirA protein: essential role in biological activity of VirG. J. Bacteriol. 172: 4945 4950.
45. Kahn, D.,, and G. S. Ditta. 1991. Modular structure of FixJ: homology of the transcriptional activator domain with the -35 binding domain of sigma factors. Mol. Microbiol. 5: 987 997.
46. Kamberov, E. S.,, M. R. Atkinson,, P. Chandran,, and A. J. Ninfa. 1994. Effect of mutation in Escherichia coli glnL (NtrB), encoding nitrogen regulator II (NRn or NtrB) on the phosphatase activity involved in bacterial nitrogen regulation. J. Biol. Chem. 269: 28294 28299.
47. Kamberov, E. S.,, M. R. Atkinson,, J. Feng,, P. Chandran,, and A. J. Ninfa. Sensory components controlling bacterial nitrogen assimilation. Cell. Mol. Biol. Res., in press.
48. Keener, J.,, and S. Kustu. 1988. Protein kinase and phosphoprotein phosphatase activities of nitrogen regulatory proteins NTRB and NTRC of enteric bacterial: roles of the conserved amino-terminal domain of NTRC. Proc. Natl. Acad. Sci. USA 85: 4976 4980.
49. Kim, S.-H. 1994. "Frozen" dynamic dimer model for transmembrane signaling in bacterial chemotaxis receptors. Protein Sci. 3: 159 165.
50. Kofoid, E. C.,, and J. S. Parkinson. 1991. Tandem translation starts in the cheA locus of Escherichia coli. J. Bacteriol. 173: 2116 2119.
51. Koshland, D. E., Jr. 1951. Effect of catalysts on the hydrolysis of acetyl phosphate. Nucleophilic displacement mechanisms in enzymatic reactions. J. Am. Chem. Soc. 74: 2286 2292.
52. Levit, M.,, and J. B. Stock. Unpublished data.
53. Long, D. G.,, and R. M. Weis. 1992. Oligomerization of the cytoplasmic fragment from the aspartate receptor of Escherichia coli. Biochemistry 31: 9904 9911.
54. Lukat, G. S.,, B. H. Lee,, J. M. Mottonen,, A. M. Stock,, and J. B. Stock. 1991. Roles of the highly conserved aspartate and lysine residues in the response regulator of bacterial chemotaxis. J. Biol. Chem. 266: 8348 8354.
55. Lukat, G. S.,, W. R. McCleary,, A. M. Stock,, and J. B. Stock. 1992. Phosphorylation of bacterial response regulator proteins by low molecular weight phospho-donors. Proc. Natl. Acad. Sci. USA 89: 718 722.
56. Lukat, G. S.,, and J. B. Stock. Unpublished data.
57. Lukat, G. S.,, A. M. Stock,, and J. B. Stock. 1990. Divalent metal ion binding to the CheY protein and its significance to phosphotransfer in bacterial chemotaxis. Biochemistry 29: 5436 5442.
58. Lupas, A.,, and J. Stock. 1989. Phosphorylation of an N-terminal regulatory domain activates the CheB methylesterase in bacterial chemotaxis. J. Biol. Chem. 264: 17337 17342.
59. Maeda, T.,, S. M. Wurgler-Murphy,, and H. Saito. 1994. A two-component system that regulates an osmosensing MAP kinase cascade in yeast. Nature 369: 242 245.
60. Magariyama, Y.,, S. Yamaguchi,, and S.-I. Aizawa. 1990. Genetic and behavioral analysis of flagellar switch mutants of Salmonella typhimurium. J. Bacteriol. 172: 4359 369.
61. Makino, K.,, M. Amemura,, S.-K. Kim,, A. Nakata,, and H. Shinagawa,. 1994. Mechanism of transcriptional activation of the phosphate regulon in Escherichia coli, p. 5 12. In A. Torriani-Gorini,, E. Yagil,, and S. Silver (ed.), Phosphate in Microorganisms: Cellular and Molecular Biology. American Society for Microbiology, Washington, DC.
62. Makino, K.,, M. Shinagawa,, M. Amemura,, T. Kawamoto,, M. Yamada,, and A. Nakata. 1989. Signal transduction in the phosphate regulon of Escherichia coli involves phosphotransfer between PhoR and PhoB proteins. J. Mol. Biol. 210: 551 559.
63. McCleary, W.,, M. McBride,, and D. Zusman. 1990. Developmental sensory transduction in Myxococcus xanthus involves methylation and demethylation of FrzCD. J. Bacteriol. 172: 4877 4887.
64. McCleary, W. R.,, and J. B. Stock. 1994. Acetyl phosphate and the activation of two-component response regulators. J. Biol. Chem. 269: 31567 31572.
65. McCleary, W. R. J. B. Stock, and A. J. Ninfa. 1993. Is acetyl phosphate a global signal in Escherichia coli? J. Bacteriol. 175: 2793 2798.
66. Milburn, M. V.,, G. G. Prive,, D. L. Milligan,, W. G. Scott,, J. Yeh,, J. Jancarik,, D. E. J. Koshland,, and S.-H. Kim. 1991. Three-dimensional structures of the ligand-binding domain of the bacterial aspartate receptor with and without a ligand. Science 254: 1342 1347.
67. Milligan, D. L.,, and D. E. Koshland, J r. 1988. Site-directed cross-linking. Establishment of the dimeric structure of the aspartate receptor of bacterial chemotaxis. J. Biol. Chem. 263: 6268 6275.
68. Milligan, D. L.,, and D. E. Koshland, Jr.. 1993. Purification and characterization of the periplasmic domain of the aspartatereceptor. J. Biol. Chem. 268: 19991 19997.
69. Min, K.-T.,, C. M. Hilditch,, B. Diederich,, J. Errington,, and M. D. Yudkin. 1993. σ F, the first compartment-specific transcription factor of B. subtilis, is regulated by an anti-σ factor that is also a protein kinase. Cell 74: 735 742.
70. Morrison, T. B.,, and J. S. Parkinson. 1994. Liberation of aninteraction domain from the phosphotransfer region of CheA, a signaling kinase of Escherichia coli. Proc. Natl. Acad. Sci. USA 91: 5485 5489.
71. Moy, F. J.,, D. F. Lowry,, P. Matsumura,, F. W. Dahlquist,, J. E. Krywko,, and P. J. Domaille. 1994. Assignments, secondary structure, global fold, and dynamics of chemotaxis Y protein using three and four-dimensional heteronuclear ( 13C, 15N) NMR spectroscopy. Biochemistry 33: 10731 10742.
72. Needham, J. V.,, T. Y. Chen,, and J. J. Falke. 1993. Novel ion specificity of a carboxylate cluster Mg(II) binding site: strong charge selectivity and weak size selectivity. Biochemistry 32: 3363 3367.
73. Neuhard, J.,, and P. Nygaard,. 1987. Purines andpyrimidines, p. 445 473. In F. C. Neidhart,, J. L. Ingraham,, K. B. Low,, B. Magasanik,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology. American Society for Microbiology, Washington, DC.
74. Ninfa, A. J. 1986. Covalent modification of the glnG product, NRI, by the glnL product, NRII, regulates the transcription of the glnALG operon in Escherichia coli. Proc. Natl. Acad. Sci. USA 83: 5909 5913.
75. Ninfa, A. J.,, and R. L. Bennett. 1991. Identification of the site of autophosphorylation of the bacterial protein kinase/phosphatase NRII. J. Biol. Chem. 266: 6888 6893.
76. Ninfa, A. J.,, E. G. Ninfa,, A. N. Lupas,, A. Stock,, B. Magasanik,, and J. Stock. 1988. Crosstalk between bacterial chemotaxis signal transduction proteins and the regulators of transcription of the Ntr regulon: evidence that nitrogen assimilation and chemotaxis are controlled by a common phosphotransfer mechanism. Proc. Natl. Acad. Sci. USA 85: 5492 5496.
77. Ninfa, A. J.,, S. Ueno-Nishio,, T. P. Hunt,, B. Robustell,, and B. Magasanik. 1986. Purification of nitrogen regulator II, the product of the glnL (ntrB) gene of Escherichia coli. J. Bacteriol. 168: 1002 1004.
78. Ninfa, E. G. 1992. Ph.D. thesis. Princeton University, Princeton, N.J.
79. Ninfa, E. G.,, M. R. Atkinson,, E. S. Kamberov,, and A. J. Ninfa. 1993. Mechanism of autophosphorylation of Escherichia coli nitrogen regulator II (NRn or NtrB): frans-phosphorylation between subunits. J. Bacteriol. 175: 7024 7032.
80. Ninfa, E. G.,, A. Stock,, S. Mowbray,, and J. Stock. 1991. Reconstitution of the bacterial chemotaxis signal transduction system from purified components J. Biol. Chem. 266: 9764 9770.
81. Olmedo, G.,, E. G. Ninfa,, J. Stock,, and P. Youngman. 1990. Novel mutations that alter the regulation of sporulation in Bacillus subtilis. J. Mol. Biol. 215: 359 372.
82. Ota, I. M.,, and A. Varshavsky. 1993. A yeast protein similar to bacterial two-component regulators. Science 262: 566 570.
83. Pan, S. Q.,, T. Charles,, S. Jin,, Z. - L. Wu, and E. W. Nester. 1993. Preformed dimeric state of the sensor protein VirA is involved in phnt-Agrobacterium signal transduction. Proc. Natl. Acad. Sci. USA 90: 9939 9943.
84. Parkinson, J. S. 1993. Signal transduction schemes of bacteria. Cell 73: 857 871.
85. Parkinson, J. S.,, and E. C. Kofoid. 1992. Communication modules in bacterial signaling proteins. Annu. Rev. Genet. 26: 71 112.
86. Parkinson, J. S.,, and S. R. Parker. 1979. Interaction of the cheC and cheZ gene products is required for chemotactic behavior in Escherichia coli. Proc. Natl. Acad. Sci. USA 76: 2390 2394.
87. Parkinson, J. S.,, S. R. Parker,, P. B. Talbert,, and S. E. Houts. 1983. Interactions between chemotaxis genes and flagellar genes in Escherichia coli. J. Bacteriol. 155: 265 274.
88. Perego, M.,, C. Hanstein,, K. W. Welsh,, T. Djavakhishvili,, P. Glaser,, and J. A. Hoch. 1994. Multiple protein aspartate phosphatases provide a mechanism for the integration of diverse signals in the control of development in Bacillus subtilis. Cell 79: 1047 1055.
89. Popov, K. M.,, Y. Zhao,, Y. Shimomura,, M. J. Kuntz,, and R. A. Harris. 1992. Branched-chain a-ketoacid dehydrogenase kinase: molecular cloning, expression, and sequence similarity with histidine protein kinases. J. Biol. Chem. 267: 13127 13130.
90. Ramakrishnan, G.,, and A. Newton. 1990. FlbD of Caulobacter crescentus is a homologue of the NtrC (NRi) protein and activates CT54-dependent flagellar gene promoters. Proc. Natl. Acad. Sci. USA 87: 2369 2373.
91. Ramakrishnan, G.,, and A. Newton. Personal communication.
92. Rao, N. N.,, M. F. Roberts,, A. Torriani,, and J. Yashphe. 1993. Effect of glpT and glpD mutations on expression of the phoA gene in Escherichia coli. J. Bacteriol. 175: 74 79.
93. Rao, S.,, and M. G. Rossmann. 1973. Comparison of super-secondary structures in proteins. J. Mol. Biol. 76: 241 256.
94. Reyrat, J. M.,, M. David,, P. Blonski,, C. Boiski,, P. Boistard,, and J. Batut. 1993. Oxygen-regulated transcription of Rhizobium meliloti nifA and JixK genes J. Bacteriol. 175: 6867 6872.
95. Roberts, D. L.,, D. W. Bennett,, and S. A. Forst. 1993. Identification of the site of phosphorylation on the osmosenser, EnvZ, of Escherichia coli. J. Biol. Chem. 269: 8728 8733.
96. Roman, S. J.,, M. Meyers,, K. Volz,, and P. Matsumura. 1992. A chemotactic signaling surface on CheY defined by suppressors of flagellar switch mutations. J. Bacteriol. 174: 6247 6255.
97. Sanders, D. A.,, B. L. Gillece-Castro,, A. L. Burlingame,, and D. E. Koshland, Jr. 1992. Phosphorylation site of NtrC, a protein phosphatase whose covalent intermediate activates transcription. J. Bacteriol. 174: 5117 5122.
98. Sanders, D. A.,, B. L. Gillece-Castro,, A. M. Stock,, A. L. Burlingame,, and D. E. Koshland, Jr. 1989. Identification of the site of phosphorylation of the chemotaxis response regulator protein, CheY. J. Biol. Chem. 264: 21770 21778.
99. Schneider-Poetsch, H. A. W. 1992. Signal transduction by phytochrome: phytochromes have a module related to the transmitter modules of bacterial sensor proteins. Photochem. Photobiol. 56: 839 846.
100. Schroder, I.,, C. D. Wolin,, R. Cavicchioli,, and R. P. Gunsalus. 1994. Phosphorylation and dephosphorylation of the NarQ, NarX, and NarL proteins of the nitrate-dependent two-component regulatory system of Escherichia coli. J. Bacteriol. 176: 4985 4992.
101. Schuster, S. C , R. V. Swanson, L. A. Alex, R. B. Bourret, and M. I. Simon. 1993. Assembly and function of a quaternary signal transduction complex monitored by surface plasmon resonance. Nature 365: 343 347.
102. Scott, W. G.,, D. L. Milligan,, M. V. Milburn,, G. G. Prive,, J. Yeh,, D. E. J. Koshland,, and S.-H. Kim. 1993. Refined structures of the ligand-binding domain of the aspartate receptor from Salmonella typhimurium. J. Mol. Biol. 232: 555 573.
103. Shizuta, Y.,, J. A. Beavo,, P. J. Bechtel, E Hofmann, and E. G. Krebs. 1975. Reversibility of adenosine 3':5'-monophosphate-dependent protein kinase reactions. J. Biol. Chem. 250: 6891 6896.
104. Simms, S. A.,, M. G. Keane,, and J. Stock. 1985. Multiple forms of the CheBmethylesterase in bacterial chemosensing. J. Biol. Chem. 260: 10161 10168.
105. Sockett, H.,, S. Yamaguchi,, M. Kihara,, V. M. Irikura,, and R. M. Macnab. 1992. Molecular analysis of the flagellar switch protein FliM of Salmonella typhimurium. J. Bacteriol. 174: 793 806.
106. Stewart, R. C.,, A. E Roth, and E W. Dahlquist. 1990. Mutations that affect control of the methylesterase activity of CheB, a component of the chemotaxis adaptation system in Escherichia coli. J. Bacteriol. 172: 3388 3399.
107. Stock, A. M.,, E. Martinez-Hackert,, B. F. Rasmussen,, A. H. West,, J. B. Stock,, D. Ringe,, and G. A. Petsko. 1993. Structure of the Mg 2+-bound form of CheY and mechanism of phosphoryl transfer in bacterial chemotaxis. Biochemistry 32: 13375 13380.
108. Stock, A. M.,, J. M. Mottonen,, J. B. Stock,, and C. E. Schutt. 1989. Three-dimensional structure of CheY, the response regulator of bacterial chemotaxis. Nature 337: 745 749.
109. Stock, A. M.,, D. C. Wylie,, J. M. Mottonen,, A. M. Lupas,, E. G. Ninfa,, A. J. Ninfa,, C. E. Schutt,, and J. B. Stock. 1988. Phospho-proteins involved in bacterial signal transduction. Cold Spring Harbor Symp. Quant. Biol. 53: 49 57.
110. Stock, J. B.,, G. S. Lukat,, and A. M. Stock. 1991. Bacterial chemotaxis and the molecular logic of intracellular signal transduction networks. Annu. Rev. Biophys. Biophys. Chem. 20: 109 136.
111. Stock, J. B.,, A. J. Ninfa,, and A. M. Stock. 1989. Protein phosphorylation and regulation of adaptive responses in bacteria. Microbiol. Rev. 53: 450 490.
112. Stock, J. B.,, A. M. Stock,, and J. M. Mottonen. 1990. Signal transduction in bacteria. Nature 344: 395 400.
113. Swanson, R. V.,, R. B. Bourret,, and M. I. Simon. 1993a. Intermolecular complementation of the kinase activity of CheA. Mol. Microbiol. 8: 435 441.
114. Swanson, R. V.,, S. C. Schuster,, and M. I. Simon. 1993b. Expression of CheA fragments which define domains encoding kinase, phosphotransfer, and CheY binding activities. Biochemistry 32: 7623 7629.
115. Tanford, C. 1984. Twenty questions concerning the reaction cycle of the sarcoplasmic reticulum calcium pump. CRC Crit. Rev. Biochem. 17: 123 151.
116. Tawa, P.,, and R. C. Stewart. 1994a. Mutational activation of CheA, the protein kinase in the chemotaxis system of Escherichia coli. J. Bacteriol. 176: 4210 4218.
117. Tawa, P.,, and R. C. Stewart. 1994b. Kinetics of CheA autophosphorylation and dephosphorylation reactions. Biochemistry 33: 7917 7924.
118. Taylor, S. S.,, D. R. Knighton,, J. Zheng,, L. F. Ten Eyck,, and J. M. Sowadski. 1992. Structural framework for the protein kinase family. Annu. Rev. Cell Biol. 8: 429 462.
119. Volz, K. 1993. Structural conservation in the CheY superfamily. Biochemistry 32: 11741 11753.
120. Volz, K.,, and P. Matsumura. 1991. Crystal structure of Escherichia coli CheY refined at 1.7-Å resolution. J. Biol. Chem. 266: 15511 15519.
121. Waukau, J.,, and S. Forst. 1992. Molecular analysis of the signaling pathway between EnvZ and OmpR in Escherichia coli. J. Bacteriol. 174: 1522 1527.
122. Weigel, N.,, M. A. Kukuruzinska,, A. Nakazawa,, E. B. Waygood,, and S. Roseman. 1982. Sugar transport by the bacterial phosphotransferase system. J. Biol. Chem. 257: 14477 14491.
123. Weiss, D. S.,, J. Batut,, K. E. Klose,, J. Keener,, and S. Kustu. 1991. The phosphorylated form of the enhancer- binding protein N T R C has an ATPase activity that is essential for activation of transcription. Cell 67: 155 167.
124. Weiss, V.,, and B. Magasanik. 1988. Phosphorylation of nitrogen regulator I (NRI) of Escherichia coli. Proc. Natl. Acad. Sci. USA 85: 8919 8923.
125. Welch, M.,, K. Oosawa,, S.-I. Aizawa,, and M. Eisenbach. 1993. Phosphorylation-dependent binding of a signal molecule to the flagellar switch of bacteria. Proc. Natl. Acad. Sci. USA 90: 8787 8793.
126. Williams, R. L.,, D. A. Oren,, J. Munoz-Dorado,, S. Inouye,, M. Inouye,, and E. Arnold. 1993. Crystal structure of Myxococcus xanthus nucleoside diphosphate kinase and its interactions with a nucleotide substrate at 2.0 Å resolution. J. Mol. Biol. 234: 1230 1247.
127. Wolfe, A. J.,, B. P. McNamara,, and R. Stewart. 1994. The short form of CheA couples chemoreception to CheA phosphorylation. J. Bacteriol. 176: 4483 4491.
128. Wolfe, A. J., and R C. Stewart. 1993. The short form of the CheA protein restores kinase activity and chemotactic ability to kinase-deficient mutants. Proc. Natl. Acad. Sci. USA 90: 1518 1522.
129. Wolodko, W. T.,, M. E. Fraser,, M. N. G. James,, and W. A. Bridger. 1994. The crystal structure of succinyl-CoA synthetase from Escherichia coli at 2.5-Å resolution. J. Biol. Chem. 269: 10883 10890.
130. Wylie, D.,, A. Stock,, C.-Y. Wong,, and J. Stock. 1988. Sensory transduction in bacterial chemotaxis involves phosphotransfer between Che proteins. Biochem. Biophys. Res. Commun. 151: 891 896.
131. Yamaguchi, S.,, S.-I. Aizawa,, M. Kihara,, M. Isomura,, C. J. Jones,, and R. M. Macnab. 1986. Genetic evidence for a switching and energy-transducing complex in the flagellar motor of Salmonella typhimurium. J. Bacteriol. 168: 1172 1179.
132. Yang, Y.,, and M. Inouye. 1992. Intermolecular complementation between two defective mutant signal-transducing receptors. Proc. Natl. Acad. Sci. USA 88: 11057 11061.
133. Yang, Y.,, and M. Inouye. 1993. Requirement of both kinase and phosphatase activities of an Escherichia coli receptor (Tazl) for ligand-dependent signal transduction. J. Mol. Biol. 231: 335 342.
134. Yeh, J. I.,, H. R Biemann,, J. Pandit,, D. E. Koshland,, and S.-H. Kim. 1993. The three-dimensional structure of the ligand-binding domain of a wild-type bacterial chemotaxis receptor. J. Biol. Chem. 268: 9787 9792.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error