1887

Chapter 4 : Structural and Functional Conservation in Response Regulators

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Structural and Functional Conservation in Response Regulators, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818319/9781555810894_Chap04-1.gif /docserver/preview/fulltext/10.1128/9781555818319/9781555810894_Chap04-2.gif

Abstract:

Most response regulators are multidomain proteins. This chapter focuses on the details of these structures, with the intent of deriving structure and function principles applicable to the regulatory domains of all two-component systems. The first indication of a family of bacterial response regulators appeared in 1985, when the amino acid sequence of CheY was shown to be related to regulatory proteins of other cellular processes, such as membrane protein synthesis and sporulation. A comprehensive structure-function analysis of 103 amino acid sequences of response regulators appeared in late 1993. The CheY family includes the short single-domain response regulators, whereas all others are multi-domain proteins. The five standard domain types of multi-domain response regulators are found in various combinations, joined together by flexible linkers. The chapter presents a narrative guide through the CheY molecule, highlighting the interactions that serve as its principal structural determinants. Mg is required for the phosphoryl group transfer reactions of CheY and, presumably, all other response regulators. Phosphorylation is the required primary event in the activation of CheY and, presumably, all normally functioning response regulators, but phosphorylation and activation can be unlinked.

Citation: Volz K. 1995. Structural and Functional Conservation in Response Regulators, p 53-64. In Hoch J, Silhavy T (ed), Two-Component Signal Transduction. ASM Press, Washington, DC. doi: 10.1128/9781555818319.ch4

Key Concept Ranking

Amino Acids
0.7043069
Fis Protein
0.52380955
Signal Transduction
0.51152223
0.7043069
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Stereo diagram of overall structure of CheY. See discussion in text.

Citation: Volz K. 1995. Structural and Functional Conservation in Response Regulators, p 53-64. In Hoch J, Silhavy T (ed), Two-Component Signal Transduction. ASM Press, Washington, DC. doi: 10.1128/9781555818319.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

(A) Amino acid preference plot for regulatory domains of the response regulator superfamily. A histogram of the percent occurrence of each amino acid type is plotted against CheY numbering. Each bar represents the occurrence of each amino acid type divided by the total number of amino acids per site in the multiple alignment of 79 sequences from Volz ( ). Gaps are not counted. Values less than 10% are omitted for clarity, so the sums for most positions do not reach 100%. The color code is acidic (D, E), red; hydroxyl (S, T), rose; hydrophobic (C, I, L,M, V),yellow; aromatic (F,W,Y),green;polar (H,N,Q),light blue; basic (K,R), dark blue; and structural (A, G, P), light gray. The secondary structural elements of the CheY molecule are shown at the top. (B) Stereo diagram of three-dimensional distribution of amino acid preferences on overall structure of CheY. Amino acid residue types are color coded as in A. The orientation is approximately the same as in Fig. 1 . Highly conserved positions are labeled. The side chains of D12, D13,D57,T87,andK109 are also shown.

Citation: Volz K. 1995. Structural and Functional Conservation in Response Regulators, p 53-64. In Hoch J, Silhavy T (ed), Two-Component Signal Transduction. ASM Press, Washington, DC. doi: 10.1128/9781555818319.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Stereo diagram of CheY region containing the most highly conserved residues of the superfamily. The orientation is approximately the same as in Figs. 1 and 2B . See discussion in text.

Citation: Volz K. 1995. Structural and Functional Conservation in Response Regulators, p 53-64. In Hoch J, Silhavy T (ed), Two-Component Signal Transduction. ASM Press, Washington, DC. doi: 10.1128/9781555818319.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Stereo diagram of superposition of apo-CheY and the two CheY:Mg complex structures. Details of active sites. The color code is white, wild-type apo-CheY; red, wild-type CheY:Mg; blue, wild-type CheY:Mg. From the coordinates of ; and . The orientation is rotated about 40° in the plane of the page as compared with Figs. 1 , 2B , and 3 . See discussion in text.

Citation: Volz K. 1995. Structural and Functional Conservation in Response Regulators, p 53-64. In Hoch J, Silhavy T (ed), Two-Component Signal Transduction. ASM Press, Washington, DC. doi: 10.1128/9781555818319.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818319.chap4
1. Alatossava, T.,, H. Jutte,, A. Kuhn,, and E. Kellenberger. 1985. Manipulation of intracellular magnesium content in polymyxin B nonapeptide-sensitized Escherichia coli by ionophore A23187. J. Bacteriol. 162:413419.
2. Albright, L. M.,, E. Huala,, and F. M. Ausubel. 1989. Prokaryotic signal transduction mediated by sensor and regulator protein pairs. Annu. Rev. Genet. 23:311336.
3. Bellsolell, L.,, J. Prieto,, L. Serrano,, and M. Coll. 1994. Magnesium binding to the bacterial chemotaxis protein CheY results in large conformational changes involving its functional surface. J. Mol. Biol. 238:489495.
4. Bernstein, F. C.,, T. F. Koetzle,, G. J. B. Williams,, E. F. Meyer, Jr.,, M. D. Brice,, J. R. Rodgers,, O. Kennard,, T. Shimanouchi,, and M. Tasumi. 1977. The protein data bank: a computer based archival file for macromolecular structures. J. Mol. Biol. 112:535542.
5. Borders, C. L., Jr.,, J. A. Broadwater,, P. A. Bekeny,, J. E. Salmon,, A. S. Lee,, A. M. Eldridge,, and V. B. Bett. 1994. A structural role for arginine in proteins: multiple hydrogen bonds to backbone carbonyl oxygens. Protein Sci. 3:541548.
6. Bourret, R. B.,, K. A. Borkovich,, and M. I. Simon. 1991. Signal transduction pathways involving protein phosphorylation in prokaryotes. Annu. Rev. Biochem. 60:401441.
7. Bourret, R. B.,, S. K. Drake,, S. A. Chervitz,, M. I. Simon,, and J. J. Falke. 1993. Activation of the phosphosignaling protein CheY. Analysis of activated mutants by 19F NMR and protein engineering. J Biol. Chem. 268:1308913096.
8. Bourret, R. B.,, J. F. Hess,, and M. I. Simon. 1990. Conserved aspartate residues and phosphorylation in signal transduction by the chemotaxis protein CheY. Proc. Natl. Acad. Sci. USA 87:4145.
9. Bruix, M.,, J. Pascual,, J. Santoro,, J. Prieto,, L. Serrano,, and M. Rico. 1993. 1H and, 5N-NMR assignment and solution structure of the chemotactic Escherichia coli CheY protein. Eur. J. Biochem. 215:573585.
10. Colloc'h, N.,, and F. E. Cohen. 1991. β-Breakers: an aperiodic secondary structure. J. Mol. Biol. 221:603613.
11. Dahlquist, F. W., et al. Unpublished data.
12. Deretic, V.,, C. D. Mohr,, and D. W. Martin. 1991. Mucoid Pseudomonas aeruginosa in cystic fibrosis: signal transduction and histone-like elements in the regulation of bacterial virulence. Mol. Microbiol. 5:15771583.
13. DiRita, V. J.,, and J. J. Mekalanos. 1989. Genetic regulation of bacterial virulence. Annu. Rev. Genet. 23:455482.
14. Dorman, C. 1994. Genetics of Bacterial Virulence. Blackwell Scientific Publications, Oxford, Great Britain.
15. Drake, S. K.,, R. B. Bourret,, L. A. Luck,, M. I. Simon,, and J. J. Falke. 1993. Activation of the phosphosignaling protein CheY. Analysis of the phosphorylated conformation by 19F NMR and protein engineering. J Biol. Chem. 268:1308113088.
16. Ganguli, S.,, H. Wang,, P. Matsumura,, and K. Volz. Uncoupling phosphorylation and activation in bacterial chemotaxis: the 2.1 A structure of a threonine to isoleucine mutant at position 87 of CheY. Submitted for publication.
17. Hess, J. E.,, R. B. Bourret,, K. Oosawa,, P. Matsumura,, and M. I. Simon. 1988a. Protein phosphorylation and bacterial chemotaxis. Cold Spring Harbor Symp. Quant. Biol. 53:4148.
18. Hess, J. E.,, K. Oosawa,, N. Kaplan,, and M. I. Simon. 1988b. Phosphorylation of three proteins in the signaling pathway of bacterial chemotaxis. Cell 53:7987.
19. Hess, J. F.,, K. Oosawa,, P. Matsumura,, and M. I. Simon. 1987. Protein phosphorylation is involved in bacterial chemotaxis. Proc. Natl. Acad. Sci. USA 84:76097613.
20. Jiang, M.,, R. B. Bourret,, M. I. Simon,, and K. Volz. Unpublished data.
21. Johnson, R. C.,, C. A. Ball,, D. Pfeffer,, and M. I. Simon. 1988. Isolation of the gene encoding the Hin recombinational enhancer binding protein. Proc. Natl. Acad. Sci. USA 85:34843488.
22. Kar, L.,, P. Matsumura,, and M. E. Johnson. 1992. Bivalent-metal binding to CheY protein. Effect on protein conformation. Biochem. J. 287:521531.
23. Koch, C.,, J. Vandekerckhove,, and R. Kahmann. 1988. Escherichia coli host factor for site-specific DNA inversion: cloning and characterization of the fis gene. Proc. Natl. Acad. Sci. USA 85:42374241.
24. Kofoid, E. C.,, and J. S. Parkinson. 1988. Transmitter and receiver modules in bacterial signaling proteins. Proc. Natl. Acad. Sci. USA 85:49814985.
25. Kostrewa, D.,, J. Granzin,, C. Koch,, H.-W. Choe,, S. Raghunathan,, W. Wolf,, J. Labahn,, R. Kahmann,, and W. Saenger. 1991. Three-dimensional structure of the E. coli DNA binding protein FIS. Nature 349:178180.
26. Kostrewa, D.,, J. Granzin,, D. Stock,, H.-W. Choe,, J. Labahn,, and W. Saenger. 1992. Crystal structure of the factor for inversion stimulation FIS at 2.0 Å resolution. J. Mol. Biol. 226:209226.
27. Lowry, D. F.,, A. F. Roth,, P. B. Rupert,, F. W. Dahlquist,, F. J. Moy,, P. J. Domaille,, and P. Matsumura. 1994. Signal transduction in chemotaxis: a propagating conformational change upon phosphorylation of CheY. J. Biol. Chem. 269: 2635826362.
28. Lukat, G. S.,, B. H. Lee,, J. M. Mottonen,, A. M. Stock,, and J. B. Stock. 1991. Roles of the highly conserved aspartate and lysine residues in the response regulator of bacterial chemotaxis. J. Biol. Chem. 266:83488354.
29. Lukat, G. S.,, A. M. Stock,, and J. B. Stock. 1990. Divalent metal ion binding to the CheY protein and its significance to phosphotransfer in bacterial chemotaxis. Biochemistry 29:54365442.
30. Lusk, J. E.,, R. J. P. Williams,, and E. P. Kennedy. 1986. Magnesium and the growth of Escherichia coli. J. Biol. Chem. 243:26182624.
31. Matsumura, P., et al. Unpublished data.
32. Miller, J. F.,, J. J. Mekalanos,, and S. Falkow. 1989. Coordinate regulation and sensory transduction in the control of bacterial virulence. Science 243:916922.
33. Moy, F. J.,, D. F. Lowry,, P. Matsumura,, F. W. Dahlquist,, J. E. Krywko,, and P. Domaille. 1994. Assignments, secondary structure, global fold, and dynamics of chemotaxis Y protein using three and four-dimensional heteronuclear (13C, 15N) NMR spectroscopy. Biochemistry 33:1073110742.
34. Needham, J. V.,, T. Y. Chen,, and J. J. Falke. 1993. Novel ion specificity of a carboxylate cluster Mg(II) binding site: strong charge selectivity and weak size selectivity. Biochemistry 32:33633367.
35. Ninfa, A. J. 1991. Protein phosphorylation and the regulation of cellular processes by the homologous two-component regulatory systems of bacteria. Genet. Eng. 13:3972.
36. Nixon, B. T.,, C. W. Ronson,, and F. M. Ausubel. 1986. Two-component regulatory systems responsive to environmental stimuli share strongly conserved domains with the nitrogen assimilation regulatory genes ntrB and ntrC. Proc. Natl. Acad. Sci. USA 83:78507854.
37. North, A. K.,, K. E. Klose,, K. M. Stedman,, and S. Kustu. 1993. Prokaryotic enhancer-binding proteins reflect eukaryote-like modularity: the puzzle of nitrogen regulatory protein C. J. Bacteriol. 175:42671273.
38. Parkinson, J. S.,, and E. C. Kofoid. 1992. Communication modules in bacterial signaling proteins. Annu. Rev. Genet. 26:71112.
39. Ptitsyn, O. B. 1969. Statistical analysis of the distribution of amino acid residues among helical and nonhelical regions in globular proteins. J. Mol. Biol. 42:501510.
40. Roman, S. J.,, M. Meyers,, K. Volz,, and P. Matsumura. 1992. A chemotactic signaling surface on CheY defined by supressors of flagellar switch mutations. J. Bacteriol. 174:62476255.
41. Roychoudhury, S.,, N. A. Zeilinski,, A. J. Ninfa,, N. E. Allen,, L. N. Jungheim,, T. I. Nicas,, and A. M. Chakrabarty. 1993. Inhibitors of two-component signal transduction systems: inhibition of alginate gene activation in Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 90:965969.
42. Sanders, D. A.,, B. L. Gillece-Castro,, A. M. Stock,, A. L. Burlingame,, and D. E. Koshland, Jr. 1989. Identification of the site of phosphorylation of the chemotaxis response regulator protein, CheY. J. Biol. Chem. 264:2177021778.
43. Sockett, H.,, S. Yamaguchi,, M. Kihara,, V. M. Irikura,, and R. M. Macnab. 1992. Molecular analysis of the flagellar switch protein FliM of Salmonella typhimurium. J. Bacteriol. 174:793806.
44. Stewart, R. C.,, and F. W. Dahlquist. 1987. Molecular components of bacterial chemotaxis. Chem. Rev. 87:9971025.
45. Stock, A. M.,, D. E. Koshland, Jr.,, and J. B. Stock. 1985. Homologies between the Salmonella typhimurium CheY protein and proteins involved in the regulation of chemotaxis, membrane protein synthesis, and sporulation. Proc. Natl. Acad. Sci. USA 82:79897993.
46. Stock, A. M.,, E. Martinez-Hackert,, B. F. Rasmussen,, A. H. West,, J. B. Stock,, D. Ringe,, and G. A. Petsko. 1993. Structure of the Mg2+-bound form of CheY and mechanism of phosphoryl transfer in bacterial chemotaxis. Biochemistry 32:1337513380.
47. Stock, A. M.,, J. M. Mottonen,, J. B. Stock,, and C. E. Schutt. 1989. Three dimensional structure of CheY, the response regulator of bacterial chemotaxis. Nature 337:745749.
48. Stock, J. B.,, G. S. Lukat,, and A. M. Stock. 1991. Bacterial chemotaxis and the molecular logic of intracellular signal transduction networks. Annu. Rev. Biophys. Biophys. Chem. 20:109136.
49. Stock, J. B.,, A. J. Ninfa,, and A. M. Stock. 1989. Protein phosphorylation and regulation of adaptive responses in bacteria. Microbiol. Rev. 53:450490.
50. Volz, K. 1993. Structural conservation in the CheY superfamily. Biochemistry 32:1174111753.
51. Volz, K.,, J. Beman,, and P. Matsumura. 1986. Crystallization and preliminary characterization of CheY, a chemotaxis control protein from Escherichia coli. J. Biol. Chem. 261:47234725.
52. Volz, K.,, and P. Matsumura. 1991. Crystal structure of Escherichia coli CheY refined at 1.7 Å resolution. J. Biol. Chem. 266:1551115519.
53. Yuan, H. S.,, S. E. Finkel,, J.-A. Feng,, M. Kaczor-Grzeskowiak,, R. C. Johnson,, and R. E. Dickerson. 1991. The molecular structure of wild-type and a mutant Fis protein: relationship between mutational changes and recombinational enhancer function or DNA binding. Proc. Natl. Acad. Sci. USA 88:95589562.

Tables

Generic image for table
TABLE 1

Structural roles o f “conserved” residues in CheY

Citation: Volz K. 1995. Structural and Functional Conservation in Response Regulators, p 53-64. In Hoch J, Silhavy T (ed), Two-Component Signal Transduction. ASM Press, Washington, DC. doi: 10.1128/9781555818319.ch4

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error