1887

Chapter 6 : Chemotactic Signal Transduction in and

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Chemotactic Signal Transduction in and , Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818319/9781555810894_Chap06-1.gif /docserver/preview/fulltext/10.1128/9781555818319/9781555810894_Chap06-2.gif

Abstract:

Bacterial chemotaxis is an important model for two-component regulatory systems. The flow of information through the chemotactic signal transduction pathway and the proteins responsible for it have been characterized in great detail. The most detailed knowledge of the chemotactic signal transduction pathway comes from studies of the closely related enteric bacteria and . The information pathway in these species serves as the model to which all other species are usually compared. Consequently, the chapter focuses exclusively on chemotaxis in and . The components of the signal pathway in these two species are virtually interchangeable. The transmembrane receptors discussed in the chapter detect compounds in the periplasm and transmit this information to the cytoplasm, but separate transport proteins are required for uptake. The chapter provides an overview of the function of components and the pathway as a whole while calling attention to some recent advances. Although chemotaxis is probably the most thoroughly understood of all signal transduction pathways, significant gaps remain in our understanding of it. Computer-based quantitative assays of chemotactic behavior are becoming available and will facilitate quantitative analysis of chemotaxis in whole free-swimming cells.

Citation: Amsler C, Matsumura P. 1995. Chemotactic Signal Transduction in and , p 89-103. In Hoch J, Silhavy T (ed), Two-Component Signal Transduction. ASM Press, Washington, DC. doi: 10.1128/9781555818319.ch6

Key Concept Ranking

Cell Division
0.48265022
Phosphoenolpyruvate Sugar Phosphotransferase System
0.481134
0.48265022
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Overall model of chemotactic signal transduction. Abbreviations: A, CheA; As, CheA; B, CheB; BB, flagellar basal body; CCW, counterclockwise flagellar rotation; CW, clockwise flagellar rotation; FF, flagellar filament; FM, flagellar motor;MCP, methyl-accepting chemotaxis protein; P, phosphate; R, CheR; W, CheW; Y, CheY; Z, CheZ.

Citation: Amsler C, Matsumura P. 1995. Chemotactic Signal Transduction in and , p 89-103. In Hoch J, Silhavy T (ed), Two-Component Signal Transduction. ASM Press, Washington, DC. doi: 10.1128/9781555818319.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Flagellar patterns during smooth swimming and tumble behaviors.

Citation: Amsler C, Matsumura P. 1995. Chemotactic Signal Transduction in and , p 89-103. In Hoch J, Silhavy T (ed), Two-Component Signal Transduction. ASM Press, Washington, DC. doi: 10.1128/9781555818319.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Swimming behavior in homogeneous versus heterogeneous environments. Smooth swimming and tumbles as in Fig. 2 , with length of arrows indicating the duration of smooth swimming. Bacteria swim smoothly longer when their environment is getting better than when it is unchanging. There is no difference in smooth swimming duration between homogeneous environments and gradients when the environment is getting worse.

Citation: Amsler C, Matsumura P. 1995. Chemotactic Signal Transduction in and , p 89-103. In Hoch J, Silhavy T (ed), Two-Component Signal Transduction. ASM Press, Washington, DC. doi: 10.1128/9781555818319.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818319.chap6
1. Adler, J. 1973. A method for measuring chemotaxis and use of the method to determine optimal conditions for chemotaxis by Escherichia coli. J. Gen. Microbiol. 74: 77 91.
2. Adler, J.,, and M. M. Dahl. 1967. A method for measuring the motility of bacteria and for comparing random and non-random motility. J. Gen. Microbiol. 46: 161 173.
3. Adler, J.,, and B. Templeton. 1967. The effect of environmental conditions on the motility of Escherichia coli. J. Gen. Microbiol. 46: 175 184.
4. Ames, P.,, and J. S. Parkinson. 1988. Transmembrane signaling by bacterial chemoreceptors: E. coli transducers with locked signal output. Cell 55: 817 826.
5. Amsler, C. D.,, M. Cho,, and P. Matsumura. 1993. Multiple factors underlying the maximum motility of Escherichia coli as cultures enter post-exponential growth. J. Bacteriol. 175: 6238 6244.
6. Armitage, J. P. 1992. Behavioral responses in bacteria. Annu. Rev. Physiol. 54: 683 714.
Barak, R.,, and M. Eisenbach. 1992a.. Correlation between phosphorylation of the chemotaxis protein- CheY and its activity at the flagellar motor. Biochemistry 31: 1821 1826.
8. Barak, R.,, and M. Eisenbach. 1992b. Fumarate or a fumarate metabolite restores switching ability to rotating flagella of bacterial envelopes. J. Bacteriol. 174: 643 645.
9. Bartlett, D. H.,, and P. Matsumura. 1986. Behavorial responses to chemical cues by bacteria. J. Chem. Ecol. 12: 1071 1089.
10. Berg, H. C.,, and D. A. Brown. 1972. Chemotaxis in Escherichia coli analysed by three-dimensional tracking. Nature (London) 239: 500 504.
11. Berg, H. C.,, and D. A. Brown. 1974. Chemotaxis in Escherichia coli analysed by three-dimensional tracking. Antibiot. Chemother. 19: 55 78.
12. Berg, H. C.,, M. D. Manson,, and M. P. Conley. 1982. Dynamics and energetics of flagellar rotation in bacteria. Symp. Soc. Exp. Biol. 35: 1 31.
13. Berg, H. C.,, and E. M. Purcell. 1977. Physics of chemoreception. Biophys.J. 20: 193 219.
14. Berg, H. C.,, and P. M. Tedesco. 1975. Transient response to chemotactic stimuli in Escherichia coli. Proc. Natl. Acad. Sci. USA 72: 3235 3239.
15. Bischoff, D. S.,, and G. W. Ordal. 1992. Bacillis subtilis chemotaxis—a deviation from the paradigm. Mol. Microbiol. 6: 23 28.
16. Blat, Y.,, and M. Eisenbach. 1994. Phosphorylationdependent binding of the chemotaxis signal molecule CheY to its phosphatase, CheZ. Biochemistry 33: 902 906.
17. Borkovich, K. A.,, N. Kaplan,, J. F. Hess,, and M. I. Simon. 1989. Transmembrane signal transduction in bacterial chemotaxis involves ligand-dependent activation of phosphate group transfer. Proc. Natl. Acad. Sci. USA 86: 1208 1212.
18. Borkovich, K. A.,, and M. I. Simon. 1990. The dynamics of signal transduction in bacterial chemotaxis. Cell 63: 1339 1348.
19. Botsford, J. L.,, and J. G. Harman. 1992. Cyclic AMP in prokaryotes. Microbiol. Rev. 56: 100 122.
20. Bourret, R. B.,, K. A. Borkovich,, and M. I. Simon. 1991. Signal transduction pathways involving protein phosphorylation in prokaryotes. Annu. Rev. Biochem. 60: 401 441.
Bourret, R. B.,, J. Davagnino,, and M. I. Simon. 1993a.. The carboxy-terminal portion of CheA kinase mediates regulation of autophosphorylation by transducer and CheW. J. Bacteriol. 175: 2097 2101.
22. Bourret, R. B.,, S. K. Drake,, S. A. Chervitz,, M. I. Simon,, and J. J. Falke. 1993b. Activation of the phosphosignaling protein CheY. 2. Analysis of activated mutants by F19 NMR and protein engineering. J. Biol. Chem. 268: 13089 13096.
23. Bourret, R. B., J. F. Hess,, and M. I. Simon. 1990. Conserved aspartate residues and phosphorylation in signal transduction by the chemotaxis protein CheY. Proc. Natl. Acad. Sci. USA 87: 41 45.
24. Conley, M. P.,, A. J. Wolfe,, D. F. Blair,, and H. C. Berg. 1989. Both CheA and CheW are required for reconstitution of signaling in bacterial chemotaxis. J. Bacteriol. 171: 5190 5193.
25. Dahlquist, F. W.,, R. A. Elwell,, and P. S. Lovely. 1976. Studies of bacterial chemotaxis in defined concentration gradients. A model for chemotaxis toward L-serine. J. Supramol. Struct. 4: 329 342.
26. Dailey, F. E.,, and H. C. Berg. 1993. Change in direction of flagellar rotation in Escherichia coli mediated by acetate kinase. J. Bacteriol. 175: 3236 3239.
27. Drake, S. K.,, R. B. Bourret,, L. A. Luck,, M. I. Simon,, and J. J. Falke. 1993. Activation of the phosphosignaling protein CheY. 1. Analysis of the phosphorylated conformation by F19 NMR and protein engineering. J. Biol. Chem. 268: 13081 13088.
28. Fuhrer, D. K.,, and G. W. Ordal. 1991. Bacillis subtilis CheN, a homolog of a, the central regulator of chemotaxis in Escherichia coli. J. Bacteriol. 173: 7443 7448.
29. Gegner, J. A.,, and F. W. Dahlquist. 1991. Signal transduction in bacteria: CheW forms a reversible complex with the protein kinase CheA. Proc. Natl. Acad. Sci. USA 88: 750 754.
30. Gegner, J. A.,, D. R. Graham,, A. F. Roth,, and F. W. Dahlquist. 1992. Assembly of an MCP receptor, CheW, and kinase CheA complex in the bacterial chemotaxis signal pathway. Cell 70: 975 982.
31. Goy, M. F.,, M. S. Springer,, and J. Adler. 1977. Sensory transduction in Escherichia coli: role of a protein methylation reaction in sensory adaptation. Proc. Natl. Acad. Sci. USA 74: 4964 4968.
32. Hazelbauer, G. L.,, H. C. Berg,, and P. Matsumura. 1993. Bacterial motility and signal transduction. Cell 73: 15 22.
33. Hazelbauer, G. L.,, R. Yaghmai,, G. G. Burrows,, J. W. Baumgartner,, D. P. Dutton,, and D. G. Morgan. 1990. Transducers: transmembrane receptor proteins involved in bacterial chemotaxis. Soc. Gen. Microbiol. Symp. 46: 107 134.
34. Helmann, J. D. 1991. Alternative sigma factors and the regulation of flagellar gene expression. Mol. Microbiol. 12: 2875 2882.
35. Hess, J. E.,, R. B. Bourret,, K. Oosawa,, P. Matsumura,, and M. I. Simon. 1988a. Protein phosphorylation and bacterial chemotaxis. Cold Spring Harbor Symp. Quant. Biol. 53: 41 48.
36. Hess, J. E.,, R. B. Bourret,, and M. I. Simon. 1988b. Histidine phosphorylation and phosphoryl group transfer in bacterial chemotaxis. Nature (London) 336: 139 143.
37. Hess, J. E.,, K. Oosawa,, N. Kaplan,, and M. I. Simon. 1988c. Phosphorylation of three proteins in the signaling pathway of bacterial chemotaxis. Cell 53: 79 87.
38. Huang, C.,, and R. C. Stewart. 1993. CheZ mutants with enhanced ability to dephosphorylate CheY, the response regulator in bacterial chemotaxis. Biochim. Biophys. Acta 1202: 297 304.
39. Ichihara, A.,, J. E. Segal,, S. M. Block,, and H. C. Berg. 1983. Coordination of flagella on filamentous cells of Escherichia coli. J. Bacteriol. 155: 228 237.
40. Kar, L.,, P. Z. Decroos,, S. J. Roman,, P. Matsumura,, and M. E. Johnson. 1992a Specificity and affinity of binding of phosphate-containing compounds to CheY protein. Biochem. J. 287: 533 543.
41. Kar, L.,, P. Matsumura,, and M. E. Johnson. 1992b Bivalent-metal binding to CheY protein—effect on protein conformation. Biochem. J. 287: 521 531.
42. Kehry, M. R.,, T. G. Doak,, and E. W. Dahlquist. 1984. Stimulus-induced changes in methylesterase activity during chemotaxis in Escherichia coli. J. Biol. Chem. 259: 11828 11835.
43. Kehry, M. R.,, T. G. Doak,, and E. W. Dahlquist. 1985. Sensory adaptation in bacterial chemotaxis: regulation of methylesterase activity. J. Bacteriol. 163: 983 990.
44. Khan, S.,, E. Castellano,, J. L. Spudich,, J. A. McCray,, R. S. Goody,, G. P. Reid,, and D. R. Trentham. 1993. Excitatory signaling in bacteria probed by chaged chemoeffectors. Biophys. J. 65: 2368 2382.
45. Kim, S.-H.,, G. G. Prive,, J. Yeh,, W. G. Scott,, and M. V Milburn. 1992. A model for transmembrane signalling in a bacterial chemotaxis model receptor. Cold Spring Harbor Symp. Quant. Biol. 57: 17 24.
46. Komeda, Y. 1982. Fusions of flagellar operons to lactose genes on a Mu lac bacteriophage. J. Bacteriol. 150: 16 26.
47. Komeda, Y.,, and T. lino. 1979. Regulation of the flagellin gene (hag) in Escherichia coli K-12: analysis of hag-lac gene fusions. J. Bacteriol. 139: 721 729.
48. Kort, E. N.,, M. E Goy,, S. H. Larden,, and J. Adler. 1975. Methylation of a membrane protein involved in bacterial chemotaxis. Proc. Natl. Acad. Sci. USA 72: 3939 3943.
49. Koshland, D. E. 1980. Bacterial Chemotaxis as a Model Behavioral System. Distinguished Lecture Series of the Society of General Physiologists. Vol. 2. Raven Press, New York.
50. Kuo, S. C.,, and D. E. Koshland, Jr. 1987. Roles of cheY and cheZ gene products in controlling flagellar rotation in bacterial chemotaxis of Escherichia coli. J. Bacteriol. 169: 1307 1314.
51. Liu, J.,, and J. S. Parkinson. 1989. Role of CheW protein in coupling membrane receptors to the intracellular signalling system of bacterial chemotaxis. Proc. Natl. Acad. Sci. USA 86: 8703 8707.
52. Liu, J.,, and J. S. Parkinson. 1991. Genetic evidence for the interaction between CheW and Tsr proteins during chemoreceptor signaling by Escherichia coli. J. Bacteriol. 173: 4941 4951.
53. Liu, X. Y.,, and P. Matsumura. 1994. The FlhD/ FlhC complex, a transcriptional activator of the Escherichia coli flagellar class II operons. J. Bacteriol. 176: 7345 7351.
54. Lowry, D. E.,, A. Roth,, P. Rupert,, F. W. Dahlquist,, F. Moy,, P. Domaile,, and P. Matsumura. 1994. Signal transduction in chemotaxis; a propagating conformation change upon phosphorylation of CheY. J. Biol. Chem. 269: 26358 26362.
55. Lupas, A.,, and J. Stock. 1989. Phosphorylation of an N-terminal regulatory domain activates CheB methylesterase in bacterial chemotaxis. J. Biol. Chem. 264: 17337 17342.
56. Lynch, B. A.,, and D. E. Koshland, Jr. 1991. Disulfide cross-linking studies of the transmembrane regions of the aspartate sensory receptor of Escherichia coli. Proc. Natl. Acad. Sci. USA 88: 10402 10406.
57. Macnab, R. M. 1977. Bacterial flagella rotating in bundles: a study in helical geometry. Proc. Natl. Acad. Sci. USA 74: 221 225.
58. Macnab, R. M., 1987a. Flagella, p. 70 83. In F. C. Neidhardt,, J. L. Ingraham,, K. B. Low,, B. Magasanik,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology. American Society for Microbiology, Washington, D C.
59. Macnab, R. M., 1987b. Motility and chemotaxis, p. 732 759. In F. C. Neidhardt,, J. L. Ingraham,, K. B. Low,, B. Magasanik,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology. American Society for Microbiology, Washington, DC.
60. Macnab, R. M. 1990. Genetics, structure, and assembly of the bacterial flagellum. Symp. Soc. Gen. Microbiol. 46: 77 106.
61. Macnab, R. M. 1992. Genetics and biogenesis of bacterial flagella. Annu. Rev. Genet. 26: 131 158.
62. Macnab, R. M.,, and S.-I. Aizawa. 1984. Bacterial motility and the bacterial flagellar motor. Annu.Rev. Biophys. Bioeng. 13: 51 83.
63. Macnab, R. M.,, and D. R Han. 1983. Asynchronous switching of flagellar motors on a single bacterial cell. Cell 32: 109 117.
64. Maddock, J. R.,, and L. Shapiro. 1993. Polar localization of the chemoreceptor complex in the Escherichia coli cell. Science 259: 1717 1723.
65. Marwan, W.,, and D. Osterhelt. 1990. Quantitation of photochromism of sensory rhodopsin-I by computerized tracking of Halobacterium halobium cells. J. Biol. Chem. 215: 277 285.
66. Matsumura, P.,, S. Roman,, K. Volz,, and D. Mc-Nally. 1990. Signalling complexes in bacterial chemotaxis. Soc. Gen. Microbiol. Symp. 46: 135 154.
67. Matsumura, P.,, M. Silverman,, and M. Simon. 1977. Synthesis of mot and che gene products of Escherichia coli programmed by hybrid Col El plasmids in minicells. Bacteriology 132: 996 1002.
68. McBride, M. J.,, T. Kohler,, and D. R. Zusman. 1992. Methylation of FrzCD, a methyl-accepting taxis protein of Myxococcus xanthus, is correlated with factors affecting cell behavior. J. Bacteriol. 174: 4246 4257.
69. McNally, D. R.,, and P. Matsumura. 1991. Bacterial chemotaxis signaling complexes: formation of a CheA/CheW complex enhances autophosphorylation and affinity for CheY. Proc. Natl. Acad. Sci. USA 88: 6229 6273.
70. Milburn, M. V.,, G. G. Prive,, D. L. Milligan,, W. G. Scott,, J. Yeh,, J. Jancarik,, D. E. Koshland, Jr.,, and S.-H. Kim. 1991. Three-dimensional structures of the ligand-binding domain of the bacterial aspart receptor with and without a ligand. Science 254: 1342 1347.
71. Milligan, D. L.,, and D. E. Koshland, J r. 1988. Site-directed cross-linking establishing the dimeric structure of the aspartate receptor of bacterial chemotaxis. J. Biol. Chem. 263: 6268 6275.
72. Milligan, D. L.,, and D. E. Koshland, J r. 1991. Intrasubunit signal transduction by the aspartate chemoreceptor. Science 254: 1651 1654.
73. Ninfa, E. G.,, A. Stock,, S. Mowbray,, and J. Stock. 1991. Reconstitution of the bacterial chemotaxis signal transduction system from purified components. J. Biol. Chem. 266: 9764 9770.
74. Oosawa, K.,, J. E Hess,, and M. I. Simon. 1988. Mutants defective in bacterial chemotaxis show modified protein phosphorylation. Cell 53: 89 96.
75. Ordal, G. W. 1985. Bacterial chemotaxis: biochemistry of behavior in a single cell. Crit. Rev. Microbiol. 12: 95 130.
76. Oxender, D. L. 1972. Membrane transport. Annu. Rev. Biochem. 41: 777 814.
77. Pakula, A. A.,, and M. I. Simon. 1992a Determination of transmembrane protein structure by disulfide cross-linking: the Escherichia coli Tar receptor. Proc. Natl. Acad. Sci. USA 89: 4144 4148.
78. Pakula, A. A.,, and M. I. Simon. 1992b Pivits or pistons? Nature (London) 355: 496 497.
79. Parkinson, J. S. 1993. Signal transduction schemes of bacteria. Cell 73: 857 871.
80. Parkinson, J. S.,, and D.E. Blair. 1993. Does E. coli have a nose? Science 259: 1701 1702.
81. Parkinson, J. S.,, and E. C. Kofoid. 1992. Communication modules in bacterial signaling proteins. Annu. Rev. Genet. 26: 71 112.
82. Parkinson, J. S.,, and S. R. Parker. 1979. Identification of the cheC and cheZ gene products is required for chemotactic behavior in Escherichia coli. Proc. Natl. Acad. Sci. USA 76: 2390 2394.
83. Parkinson, J. S.,, S. R. Parker,, P. B. Talbert,, and S. E. Houts. 1983. Interactions between chemotaxis genes and flagellar genes in Escherichia coli. J. Bacteriol. 155: 265 274.
84. Poole, P. S.,, D. R. Sinclair,, and J. P. Armitage. 1988. Real-time computer tracking of free-swimming and tethered rotating cells. Anal. Biochem. 175: 52 58.
85. Pruss, B.,, and A. J. Wolfe. 1994. Regulation of acetyl phosphate synthesis and degradation and the control of flagellar expression in Escherichia coli. Mol. Microbiol. 12: 973 984.
86. Roman, S. J.,, M. Meyers,, K. Volz,, and P. Matsumura. 1992. A chemotactic signaling surface on CheY defined by suppressors of flagellar switch mutations. J. Bacteriol. 174: 6247 6255.
87. Sager, B. M.,, J. J. Sekelsky,, P. Matsumura,, and J. Adler. 1988. Use of a computer to assay motility in bacteria. Anal. Biochem. 173: 271 277.
88. Sanders, D. A.,, B. L. Gillece-Castro,, and A. M. Stock. 1989. Identification of the site of phosphorylation of the chemotaxis response regulator protein, CheY. J. Biol. Chem. 264: 21770 21778.
89. Schuster, S. C.,, R. V. Swanson,, L. A. Alex,, R. B. Bourret,, and M. I. Simon. 1993. Assembly and function of a quaternary signal transduction complex monitored by surface plasmon resonance. Nature (London) 365: 343 347.
90. Shaw, C. H. 1991. Swimming against the tide: chemotaxis in Agrobacterium. Bioessays 13: 25 29.
91. Shi, W.,, Y. Zhou,, J. Wild,, J. Adler,, and C. A. Gross. 1992. DnaK, DnaJ, and GrpE are required for flagellum synthesis in Escherichia coli. J. Bacteriol. 174: 6256 6263.
92. Shioi, J.,, C. V. Dang,, and B. L. Taylor. 1987. Oxygen as attractant and repellant in bacterial chemotaxis. J. Bacteriol. 169: 3118 3123.
93. Shioi, J.,, R. C. Tribhuwan,, S. T. Berg,, and B. L. Taylor. 1988. Signal transduction in chemotaxis to oxygen in Escherichia coli and Salmonella typhimurium. J. Bacteriol. 170: 5507 5511.
94. Shukla, D.,, and P. Matsumura. Unpublished data.
95. Silverman, M.,, and M. Simon. 1974. Characterization of Escherichia coli mutants that are insensitive to catabolite repression. J. Bacteriol. 120: 1196 1203.
96. Silverman, M.,, and M. Simon. 1977. Chemotaxis in Escherichia coli: methylation of che gene products. Proc. Natl. Acad. Sci. USA 74: 3317 3321.
97. Simms, S. A.,, M. G. Keane,, and J. Stock. 1985. Multiple forms of the CheB methyl transferase in bacterial chemosensing. J. Biol. Chem. 260: 10161 10168.
98. Smith, R. A.,, and J. S. Parkinson. 1980. Overlapping genes at the cheA locus of Escherichia coli. Proc. Natl. Acad. Sci. USA 77: 5370 5374.
99. Sockett, H.,, S. Yamaguchi,, M. Kihara,, V. M. Irikura,, and R. M. Macnab. 1992. Molecular analysis of the flagellar switch protein FliM of Salmonella typhimurium. J. Bacteriol. 174: 793 806.
100. Springer, M. S.,, M. F. Goy,, and J. Adler. 1977. Sensory transduction in Escherichia coli: two complementary pathways of information processing that involve methylated proteins. Proc. Natl. Acad. Sci. USA 74: 3312 3316.
101. Springer, M. S.,, and B. Zanolari. 1984. Sensory transduction in Escherichia coli: regulation of the demethylation rate by CheA protein. Proc. Natl. Acad. Sci. USA 81: 5061 5065.
102. Springer, M. S.,, B. Zanolari,, and P. A. Pierzchala. 1982. Ordered methylation of the methyl-accepting chemotaxis proteins of Escherichia coli. J. Biol. Chem. 257: 6861 6866.
103. Springer, W. R.,, and D. E. Koshland, Jr. 1977. Identification of a protein methyltransferase as the cheR gene product in the bacterial sensing system. Proc. Natl. Acad. Sci. USA 74: 533 537.
104. Stewart, R. C. 1993. Activating and inhibitory mutations in the regulatory domain of CheB, the methylesterase in bacterial chemotaxis. J. Biol. Chem. 268: 1921 1930.
105. Stewart, R. C.,, and F. W. Dahlquist. 1987. Molecular components of bacterial chemotaxis. Chem. Rev. 87: 997 1025.
106. Stewart, R. C.,, and E. W. Dahlquist. 1988. N-terminal half of CheB is involved in methylesterase response to negative chemotactic stimuli in Escherichia coli. J. Bacteriol. 170: 5728 5737.
107. Stock, A. M.,, J. M. Mottonen,, J. B. Stock,, and C. E. Schutt. 1989. Three-dimensional structure of CheY, the response regulator of bacterial chemotaxis. Nature (London) 337: 745 749.
108. Stock, J. B.,, and D. E. Koshland, Jr. 1978. A protein methylesterase involved in bacterial sensing. Proc. Natl. Acad. Sci. USA 75: 3659 3663.
109. Stock, J. B.,, and D. E. Koshland, Jr. 1981. Changing reactivity of receptor carboxyl groups during bacterial sensing. J. Biol. Chem. 256: 10826 10833.
110. Stock, J. B.,, and G. S. Lukat. 1991. Bacterial chemotaxis and the molecular logic of intracellular signal transduction networks. Annu. Rev. Biophys. Biophys. Chem. 20: 109 136.
111. Stock, J. B.,, A. J. Ninfa,, and A. M. Stock. 1989. Protein phosphorylation and regulation of adaptive responses in bacteria. Microbiol. Rev. 53: 450 490.
112. Swanson, R. V.,, R. B. Bourret,, and M. I. Simon. 1993a. Intramolecular compartmentalization of the kinase activity of CheA. Mol. Microbiol. 8: 435 441.
113. Swanson, R. V.,, S. C. Schyster,, and M. I. Simon. 1993b. Expression of CheA fragments which define domains encoding kinase, phosphotransfer, and CheY binding activities. Biochemistry 32: 7623 7629.
114. Taylor, B. L. 1983a How do bacteria find the optimal concentration of oxygen? Trends Biochem. Sci. 8: 438 441.
115. Taylor, B. L. 1983b. Role of proton motive force in sensory transduction in bacteria. Annu. Rev. Microbiol. 37: 551 573.
116. Tisa, L. S.,, and J. Adler. 1992. Calcium ions are involved in Escherichia coli chemotaxis. Proc. Natl. Acad. Sci. USA. 89: 11804 11808.
117. Titgemeyer, F. 1993. Signal transduction in chemotaxis mediated by the bacterial phosphotransferase system. J. Cell. Biochem. 51: 69 74.
118. Toews, M. L.,, and J. Adler. 1979. Methanol formation in vivo from methylated chemotaxis proteins in Escherichia coli. J. Biol. Chem. 254: 1761 1764.
119. Toews, M. L.,, M. F. Goy,, M. S. Springer,, and J. Adler. 1979. Attractants and repellents control demethylation of methylated chemotaxis proteins in Escherichia coli. Proc. Natl. Acad. Sci. USA 76: 5544 5548.
120. Volz, K. 1993. Structural conservation in the CheY superfamily. Biochemistry 32: 11741 11753.
121. Volz, K.,, and P. Matsumura. 1991. Crystal structure of Escherichia coli CheY refined at 1.7 Å. J. Biol. Chem. 266: 15511 15519.
122. Wang, H.,, D. F. McNally,, and P. Matsumura. Unpublished data.
123. Welch, M.,, K. Oosawa,, S.-I. Aizawa,, and M. Eisenbach. 1993. Phosphorylation-dependent binding of a signal molecule to the flagellar switch of bacteria. Proc. Natl. Acad. Sci. USA 90: 8787 8791.
124. Wolfe, A. J.,, P. Conley,, and H. C. Berg. 1988. Acetyladenylate plays a role in controlling the direction of flagellar rotation. Proc. Natl. Acad. Sci. USA 85: 6711 6715.
125. Wolfe, A. J.,, P. Conley,, T. J. Cramer,, and H. C. Berg. 1987. Reconstitution of signaling in bacterial chemotaxis J. Bacteriol. 169: 1878 1885.
126. Wolfe, A. J.,, and R. C. Stewart. 1993. The short form of CheA protein restores kinase activity and chemotactic ability to kinase-deficient mutants. Proc. Natl. Acad. Sci. USA 90: 1518 1522.
127. Yamaguchi, S.,, S.-I. Aizawa,, M. Kihara,, M. Isomura,, C. J. Jones., and R. M. Macnab. 1986a. Genetic evidence for a switching and energy-transducing complex in the flagellar motor of Salmonella typhimurium. J. Bacteriol. 168: 1172 1179.
128. Yamaguchi, S.,, H. Fujita,, A. Ishihara,, S.-I. Aizawa,, and R. M. Macnab. 1986b. Subdivision of flagellar genes of Salmonella typhimurium into regions responsible for assembly, rotation, and switching. J. Bacteriol. 166: 187 193.
129. Yeh, J. I.,, H.-P. Biemann,, J. Pandit,, D. E. Koshland,, and S.-H. Kim. 1993. The three-dimensional structure of the ligand-binding domain of a wild-type bacterial chemotaxis receptor. J. Biol. Chem. 268: 9787 9792.
130. Zhulin, I. B.,, and J. P. Armitage. 1993. Motility, chemotaxis, and methylation-independent chemotaxis in Azospirillum brasilense. J. Bacteriol. 175: 952 958.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error