1887

Chapter 1 : Transfer RNA in Its Fourth Decade

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Transfer RNA in Its Fourth Decade, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818333/9781555810733_Chap01-1.gif /docserver/preview/fulltext/10.1128/9781555818333/9781555810733_Chap01-2.gif

Abstract:

Nearly four decades have passed since the discovery of tRNA. Much progress was made in the first two decades: elucidation of the role of tRNA as an adaptor in protein biosynthesis, determination of the primary sequences of several tRNAs, and solution of the three-dimensional structure of a tRNA. In addition, genes for tRNA were synthesized and the synthetic gene for an amber suppressor tRNA was shown to be functional in vivo. Progress has been made on a broad front in the last two decades also, and tRNA has remained an attractive and active area of research. In summarizing the four decades of tRNA research, it is appropriate to note that tRNA has been the source of many firsts in nucleic acid research.

Citation: Raj Bhandary U, Söll D. 1995. Transfer RNA in Its Fourth Decade, p 1-4. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch1

Key Concept Ranking

Gene Expression and Regulation
0.83939844
0.83939844
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

References

/content/book/10.1128/9781555818333.chap1
1. Altman, S. (ed.). 1978. Transfer RNA. MIT Press, Cambridge, Mass.
2. Bruce, A. G.,, and O. C. Uhlenbeck. 1982. Enzymatic replacement of the anticodon of yeast phenylalanine transfer ribonucleic acid. Biochemistry 21: 855 861.
3. Carbon, P.,, E. Haumont,, M. Fournier,, S. de Henau,, and H. Grosjean. 1983. Site-directed in vitro replacements of nucleosides in the anticodon loop of tRNA: application to the study of structural requirements for queuine insertase activity. EMBO J. 2: 1093 1097.
4. Chattapadhyay, R.,, H. Pelka,, and L. H. Schulman. 1990. Initiation of in vivo protein synthesis with non-methionine amino acids. Biochemistry 29: 4263 4268.
5. Francklyn, C.,, and P. Schimmel. 1989. Aminoacylation of RNA minihelices with alanine. Nature ( London) 337: 478 481.
6. Gesteland, R. E.,, and J. F. Atkins (ed.). 1993. The RNA World. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
7. Giege, R.,, J. D. Puglisi,, and C. Florentz. 1993. tRNA structure and aminoacylation efficiency. Prog. Nucleic Acid Res. Mol. Biol. 45: 129 206.
8. Hayase, Y.,, M. Jahn,, M. J. Rogers,, L. A. Sylvers,, M. Koizumi,, H. Inoue,, E. Ohtsuka,, and D. Soil. 1992. Recognition of bases in Escherichia coli tRNA Gln by glutaminyl-tRNA synthetase: a complete identity set. EMBO J. 11: 4159 4165.
9. Ho, Y.-H.,, and Y. W. Kan. 1987. In vivo aminoacylation of human and Xenopus suppressor tRNAs constructed by site specific mutagenesis. Proc. Natl. Acad. Sci. USA 84: 2185 2188.
10. Hutchison, C. A., III,, S. Philips,, M. H. Edgell,, S. Gillam,, P. Jahnke,, and M. Smith. 1978. Mutagenesis at a specific position in a DNA sequence. J. Biol. Chem. 253: 6551 6560.
11. Imuia, N.,, G. B. Weiss,, and R. W. Chambers. 1969. Reconstitution of alanine acceptor activity from fragments of yeast tRNAAia,,. Nature (London) 222: 1147 1148.
12. Khorana, H. G. 1979. Total synthesis of a gene. Science 203: 614 625.
13. Kudo, I.,, M. Leineweber,, and U. L. RajBhandary. 1981. Site-specific mutagenesis on cloned DNAs: generation of a mutant of E. coli tyrosine suppressor tRNA in which the sequence GTTC corresponding to the universal GTψC sequence of tRNAs is changed to GATC. Proc. Natl. Acad. Sci. USA 78: 4753 4757.
14. McClain, W. H. 1993. Rules that govern tRNA identity in protein synthesis. J. Mol. Biol. 234: 257 280.
15. Normanly, J.,, L. G. Kleina,, J.-M. Masson,, J. Abelson,, and J. H. Miller. 1990. Construction of Escherichia coli amber suppressor tRNA genes. III. Determination of tRNA specificity. J. Mol. Biol. 213: 719 726
16. Perona, J. J.,, R. Swanson,, T. A. Steitz,, and D. Soli. 1988. Overproduction and purification of E. coli tRNA Gln2 and its use in crystallization of the glutaminyl-tRNA synthetase tRNA Gln complex. J. Mol. Biol. 202: 121 126.
17. RajBhandary, U. L. 1980. Recent developments in methods for RNA sequencing using in vitro 32P-labeling. Fed. Proc. 39: 2815 2821.
18. Saks, M. E.,, J. R. Sampson,, and J. N. Abelson. 1994. The transfer RNA identity problem: a search for rules. Science 263: 191 197.
19. Sampson, J. R.,, and O. C. Uhlenbeck. 1988. Biochemical and physical characterization of an unmodified yeast phenylalanine transfer RNA in vitro. Proc. Natl. Acad. Sci. USA 85: 1033 1037.
20. Schimmel, P.,, R. Giege,, D. Moras,, and S. Yokoyama. 1993. An operational RNA code for amino acids and possible relationship to genetic code. Proc. Natl. Acad. Sci. USA 90: 8763 8768.
21. Schimmel, P. R.,, D. Söll,, and J. N. Abelson (ed.). 1979. Transfer RNA: Structure, Properties and Recognition. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
22. Schulman, L. H. 1991. Recognition of tRNAs by aminoacyl-tRNA synthetases. Prog. Nucleic Acid Res. Mol. Biol. 41: 23 87.
23. Schulman, L. H.,, and H. Pelka. 1983. Anticodon loop size and sequence requirements for recognition of formylmethionine tRNA by methionyl-tRNA synthetase. Proc. Natl. Acad. Sci. USA 80: 6755 6759.
24. Soil D.,, P. R. Schimmel,, and J. N. Abelson (ed.). 1980. Transfer RNA: Biological Aspects. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
25. Varshney, U.,, and U. L. RajBhandary. 1990. Initiation of protein synthesis using a termination codon. Proc. Natl. Acad. Sci. USA 87: 1586 1590.
26. Varshney, U.,, C. P. Lee,, and U. L. RajBhandary. 1991. Direct analysis of aminoacylation levels of tRNA in vivo. J. Biol. Chem. 266: 24712 24718.
27. Weiner, A. M.,, and N. Maizels. 1987. 3'-terminal tRNA-like structures tag genomic RNA molecules for replication: implications for the origin of protein synthesis. Proc. Natl. Acad. Sci. USA 84: 7383 7387.
28. Zachau, H. G., 1978. Introduction: transfer RNA coming of age. In S. Altman (ed.), Transfer RNA. MIT Press, Cambridge, Mass.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error