1887

Chapter 12 : Modified Nucleosides and Codon Recognition

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Modified Nucleosides and Codon Recognition , Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818333/9781555810733_Chap12-1.gif /docserver/preview/fulltext/10.1128/9781555818333/9781555810733_Chap12-2.gif

Abstract:

This chapter focuses on the mechanisms by which the post-transcriptional modifications regulate the codon recognition of tRNAs, primarily from the viewpoint of conformational characteristics of modified nucleosides. Post-transcriptional modifications are heavily involved in the specificities of codon recognition and also of aminoacylation. Interestingly, the roles of the modifications in the anticodon are in many cases the altered conformational properties such as conformational "rigidity" and "flexibility," which directly result in the rigidity or flexibility in codon recognition, although the chemical structures of the modified nucleosides are so much different from each other. It is quite natural because the "wobble" of the base from the original location for the Watson-Crick base pair is essential for non-Watson-Crick base pairing. In the future, more direct structural studies should be done on the anticodon-codon recognition in the decoding center of the ribosome. In addition to such studies at the level of molecular structures, biological studies on the roles of posttranscriptional modifications are required. For example, Q is mostly conserved from bacteria to higher eukaryotes but is missing in tRNAs from and mitochondria. If the Q modification is not indispensable for protein synthesis, it is a wonder that why many organisms have to have such a complicated hypermodification. The real biological role of Q may be to play an essential role in other unknown functions of tRNA. For answering this question, more biological approaches such as gene targeting of modification enzymes in mammalian systems appear to be important and are therefore in progress in laboratories.

Citation: Yokoyama S, Nishimura S. 1995. Modified Nucleosides and Codon Recognition , p 207-223. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch12

Key Concept Ranking

Nuclear Magnetic Resonance Spectroscopy
0.51044214
0.51044214
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1.
Figure 1.

G•C and G•U base pairs.

Citation: Yokoyama S, Nishimura S. 1995. Modified Nucleosides and Codon Recognition , p 207-223. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch12
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

Base pairs of inosine (I) at first position of anticodon with U, C, A, A+, and G at third position of codon.

Citation: Yokoyama S, Nishimura S. 1995. Modified Nucleosides and Codon Recognition , p 207-223. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch12
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

C2′-endo and C3′-endo forms of ribose ring, the G andG forms about the C3′—03′ bond, and the gg, gt, and tg forms about C1′—C3′ bond of ribonucleotide unit.

Citation: Yokoyama S, Nishimura S. 1995. Modified Nucleosides and Codon Recognition , p 207-223. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch12
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4.
Figure 4.

G- form about C3′—03′ bond with C2′-endo and C3′-endo forms of ribose ring.

Citation: Yokoyama S, Nishimura S. 1995. Modified Nucleosides and Codon Recognition , p 207-223. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch12
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

Wobble U•G base pair.

Citation: Yokoyama S, Nishimura S. 1995. Modified Nucleosides and Codon Recognition , p 207-223. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch12
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6
Figure 6

Wobble U•U base pair.

Citation: Yokoyama S, Nishimura S. 1995. Modified Nucleosides and Codon Recognition , p 207-223. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch12
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 7
Figure 7

Base pairs of U (or xoU) at first position of anticodon with adenosine (a) and uridine (b) at third position of codons.

Citation: Yokoyama S, Nishimura S. 1995. Modified Nucleosides and Codon Recognition , p 207-223. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch12
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 8
Figure 8

U•G and C•A base pairs.•

Citation: Yokoyama S, Nishimura S. 1995. Modified Nucleosides and Codon Recognition , p 207-223. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch12
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 9
Figure 9

C•U and U•U base pairs.

Citation: Yokoyama S, Nishimura S. 1995. Modified Nucleosides and Codon Recognition , p 207-223. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch12
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 10
Figure 10

Base pairs of A and G in syn form at first position of anticodon with A or G at third position of codons.

Citation: Yokoyama S, Nishimura S. 1995. Modified Nucleosides and Codon Recognition , p 207-223. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch12
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 11
Figure 11

Mechanisms of stabilization of C3′-endo form by 2-thiolation and 2′--methylation of pyrimidine nucleosides.

Citation: Yokoyama S, Nishimura S. 1995. Modified Nucleosides and Codon Recognition , p 207-223. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch12
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 12
Figure 12

Hydrogen bonding of 5-methylaminomethyl group of mnmU at position 34 and unmodified U at position 33 in U turn structure of tRNA.

Citation: Yokoyama S, Nishimura S. 1995. Modified Nucleosides and Codon Recognition , p 207-223. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch12
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 13
Figure 13

Putative k C•A base pairs in comparison with C•G base pair.

Citation: Yokoyama S, Nishimura S. 1995. Modified Nucleosides and Codon Recognition , p 207-223. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch12
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 14
Figure 14

Queuosine and guanosine (A), conformation of Q at first position of anticodon (B), and Q•U and Q•C base pairs (C).

Citation: Yokoyama S, Nishimura S. 1995. Modified Nucleosides and Codon Recognition , p 207-223. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch12
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818333.chap12
1. Agris, P. F.,, D. Söll,, and T. Seno. 1973. Biological function of 2-thiouridine in Escherichia coli glutamic acid transfer ribonucleic acid. Biochemistry 12: 4331 4337.
2. Andachi, X.,, and S. Osawa. Personal communication.
3. Andachi, T.,, F. Yamao,, M. Iwami,, A. Muto,, and S. Osawa. 1987. Occurrence of unmodified adenine and uracil at the first position of the anticodon in threonine tRNAs in Mycoplasma capricolum. Proc. Natl. Acad. Sci. USA 84: 7398 7402.
4. Andachi, T.,, F. Yamao,, A. Muto,, and S. Osawa. 1989. Codon recognition pattern as deduced from sequences of the complete set of transfer RNA species in Mycoplasma capricolum. J. Mol. Biol. 209: 37 54.
5. Barnes, W. M. 1978. DNA sequence from the histidine op-eron control region: seven histidine codons in a row. Proc. Natl. Acad. Sci. USA 75: 4281 4285.
6. Beier, H.,, M. Barciszewska,, and H. Sickinger. 1984. The molecular basis for the differential translation of TMV RNA in tobacco protoplasts and wheat germ extracts. EMBO J. 3: 1091 1096.
7. Björk, G. R.,, P. M. Wikström,, and A. S. Byström. 1989. Prevention of translational frameshifting by the modified nucleoside 1-methylguanosine. Science 244: 986 989.
8. Boren, T.,, P. Elias,, T. Samuelsson,, C. Claesson,, M. Barciszewska,, C. W. Gehrke,, K. C. T. Kuo,, and F. Lustig. 1993. Undiscriminating codon reading with adenosine in the wobble position. J. Mol. Biol. 230: 739 749.
9. Chakraburtty, K.,, A. Steinschneider,, V. R. Case,, and A. H. Mehier. 1975. Primary structure of tRNA Lys of E. coli B. Nucleic Acids Res. 2: 2069 2075.
10. Chheda, G. B.,, R. H. Hall,, D. I. Magrath,, J. Mozejko,, M. P. Schweizer,, L. Stasiuk,, and P. R. Taylor. 1969. Aminoacyl nucleosides. VI. Isolation and preliminary characterization of threonyladenine derivatives from transfer ribonucleic acid. Biochemistry 8: 3278 3282.
11. Crick, F. H. C. 1966. Codon-anticodon pairing: the wobble hypothesis. J. Mol. Biol. 19: 548 555.
12. Droogmans, L.,, and H. Grosjean. 1991. 2'-0-Methylation and inosine formation in the wobble position of anticodon-substituted tRNA Phe in a homologous in vitro system. Biochimie 73: 1021 1025.
13. Dube, S. K.,, K. A. Marcker,, B. F. C. Clark,, and S. Cory. 1968. Nucleotide sequence of N-formyl-methionyl-transfer RNA. Nature (London) 218: 232 233.
14. Dunn, D. B.,, and R. H. Hall,. 1975. Purines, pyrimidines, nucleosides, and nucleotides: physical constants and spectral properties, p. 65 215. In G. D. Fasman (ed.), Handbook of Biochemistry and Molecular Biology, vol. 1, 3rd ed. CRC Press, Cleveland.
15. Edmonds, C. G.,, P. F. Crain,, T. Hashizume,, R. Gupta,, K. O. Stetter,, and J. A. McCloskey. 1987. Structural characterization of four ribose-methylated nucleosides from the transfer RNA of extremely thermophilic Archaebacteria. J. Chem. Soc. Chem. Commun. 1987: 909 910.
16. Etcheverry, T.,, D. Colby,, and C. Guthrie. 1979. A precursor to a minor species of yeast tRNA contains an intervening sequence. Cell 18: 11 26.
17. Fasiolo, E.,, T. Glade,, G. Keith,, V. Biittcher,, F. Cramer,, and U. English. 1993. The codon and amino acid specificity of the yeast isoleucine transfer RNAs are dependent on two distinct modified wobble bases. Proceedings of the 15th International tRNA Workshop, Cap d'Agde, p. 76.
18. Garcia, G. M.,, P. K. Mar,, D. A. Mullin,, J. R. Walker,, and N. E. Prather. 1986. The E. coli dnaYgene encodes an arginine transfer RNA. Cell 45: 453 459.
19. Gefter, M. L.,, and R. L. Russell. 1969. Role of modifications in tyrosine transfer RNA: a modified base affecting ribosome binding. J. Mol. Biol. 39: 145 157.
20. Glasser, A. L.,, C. E. Adlouni,, G. Keith,, E. Sochacka,, A. Malkiewicz,, M. Santos,, M. F. Tuite,, and J. Desgres. 1992. Presence and coding properties of 2'-0-methyl-5-car-bamoylmethyluridine (ncm 5Um) in the wobble position of the anticodon of tRNA Leu(U*AA) from brewer's yeast. FEBS Lett. 314: 381 385.
21. Goldman, E.,, W. M. Holmes,, and G. W. Hatfield. 1979. Specificity of codon recognition by Escherichia coli tRNA Leu isoaccepting species determined by protein synthesis in vitro directed by phage RNA. J. Mol. Biol. 129: 567 585.
22. Grosjean, H. J.,, S. de Henau,, and D. M. Crothers. 1978. On the physical basis for ambiguity in genetic coding interaction. Proc. Natl. Acad. Set. USA 75: 610 614.
23. Gupta, R. 1984. Halobacterium volcanii tRNAs: identification of 41 tRNAs covering all amino acids, and the sequences of 33 class I tRNAs. J. Biol. Chem. 259: 9461 9471.
24. Hagervall, T. G.,, T. M. Tuohy,, J. F. Atkins,, and G. R. Björk. 1993. Deficiency of 1-methylguanosine in tRNA from Salmonella typhimurium induces frameshifting by quadruplet translocation. J. Mol. Biol. 232: 756 765.
25. Hall, R. H.,, M. J. Robins,, L. Stasiuk,, and R. Thedford. 1966. Isolation of N 6-(g,g-dimethylallyl)adenosine from soluble ribonucleic acid. J. Am. Chem. Soc. 88: 2614 2615.
26. Hanyu, N.,, Y. Kuchino,, S. Nishimura,, and H. Beier. 1986. Dramatic events in ciliate evolution: alteration of UAA and UAG termination codons to glutamine codons due to anticodon mutations in two Tetrahymena tRNAs Gln. EMBO J. 5: 1307 1311.
27. Harada, F.,, and S. Nishimura. 1972. Possible anticodon sequences of tRNA His, tRNA Asn, and tRNA Asp from Escherichia coli B. Universal presence of nucleoside Q in the first position of the anticodon of three transfer ribonucleic acids. Biochemistry 11: 301 308.
28. Harada, F.,, and S. Nishimura. 1974. Purification and characterization of AUA specific isoleucine transfer ribonucleic acid from Escherichia coli B. Biochemistry 13: 300 306.
29. Harada, F.,, H. J. Gross,, F. Kimura,, S. H. Chang,, S. Nishimura,, and U. L. RajBhandary. 1968. 2-Methylthio N 6-(A 2-isopentenyl) adenosine: a component of E. coli tyrosine transfer RNA. Biochem. Biophys. Res. Commun. 33: 299 306.
30. Heckman, J. E.,, J. Sarnoff,, B. Alzner-DeWeerd,, S. Yin,, and U. L. RajBhandary. 1980. Novel features in the genetic code and codon reading patterns in Neurospora crassa mitochondria based on sequences of six mitochondrial tRNAs. Proc. Natl. Acad. Sci. USA 77: 3159 3163.
31. Hedgcoth, C.,, K. Hayenga,, M. Harrison,, and B. J. Ortwerth. 1984. Lysine tRNAs from rat liver: lysine tRNA sequences are highly conserved. Nucleic Acids Res. 12: 2535 2541.
32. Hillen, W.,, E. Egert,, H. J. Lindner,, and H. G. Gassen. 1978. Crystal and molecular structure of 2-thio-5-carboxymethyl-uridine and its methyl ester: helix terminator nucleosides in the first position of some anticodons. Biochemistry 17: 5314 5320.
33. Hillen, W.,, E. Egert,, H. J. Lindner,, and H. G. Gassen. 1978. Restriction or amplification of wobble recognition: the structure of 2-thio-5-methylaminomethyluridine and the interaction of odd uridines with the anticodon loop backbone. FEBS Lett. 94: 361 364.
34. Ishikura, H.,, Y. Yamada,, and S. Nishimura. 1971. Structure of serine tRNA from Escherichia coli. I. Purification of serine tRNA's with different codon responses. Biochim. Biophys. Acta 228: 471 481.
35. Jukes, T. H. 1973. Possibility for the evolution of the genetic code from a preceding form. Nature (London) 246: 22 26.
36. Kawai, G.,, T. Hashizume,, M. Yasuda,, T. Miyazawa,, J. A. McCloskey,, and S. Yokoyama. 1992. Conformational rigidity of N 4-acetyl-2'- O-methyIcytidine in tRNA of extremely thermophilic archaebacteria (Archaea). Nucleosides Nucleotides 11: 759 771.
37. Kawai, G.,, Y. Yamamoto,, T. Kamimura,, T. Masegi,, M. Sekine,, T. Hata,, T. Iimori,, T. Watanabe,, T. Miyazawa,, and S. Yokoyama. 1992. Conformational rigidity of specific pyrimidine residues in tRNA arises from posttranscriptional modifications that enhance steric interaction between the base and the 2'-hydroxyl group. Biochemistry 31: 1040 1046.
38. Kawai, G.,, T. Yokogawa,, K. Nishikawa,, T. Ueda,, T. Hashizume,, J. A. McCloskey,, S. Yokoyama,, and K. Watanabe. Conformational properties of a novel modified nucleoside, 5-formylcytidine, found at the first position of the anticodon of bovine mitochondrial tRNA Met. Nucleosides Nucleotides, in press.
38a. Kawai, G.,, and S. Yokoyama. Unpublished results.
39. Kawakami, M.,, N. Nishio,, S. Takemura,, T. Kondo,, and T. Goto. 1979. 5-(Carboxy-hydroxymethyl)uridine, a new modified nucleoside located in the anticodon of tRNA Gly2 for the posterior silk glands of Bombyx mori. Nucleic Acids Res. Special Publication 6: s53 s56.
40. Keith, G. 1984. The primary structure of two arginine tRNAs (anticodon C-C-U and mcm 5s2U-C-Y) and of glutamine tRNA (anticodon C-U-G) from bovine liver. Nucleic Acids Res. 2: 2543 2547.
41. Kiesewetter, S.,, W. Fischer,, and M. Sprinzl. 1987. Sequences of three minor tRNA Arg from E. coli. Nucleic Acids Res. 15: 3184.
42. Kim, S.-H.,, and J. L. Sussman. 1976. TT turn is a conformational pattern in RNA loops and bends. Nature (London) 260: 645 646.
43. Kimura, F.,, F. Harada,, and S. Nishimura. 1971. Primary sequence of tRNA Val1 from Escherichia coli B. II. Isolation of large fragments by limited digestion with RNases, and overlapping of fragments to deduce the total primary sequence. Biochemistry 10: 3277 3283.
44. Kimura-Harada, E.,, D. L. von Minden,, J. A. McCloskey,, and S. Nishimura. 1972. N-[(9-b-D-Ribofuranosylpurin-6-yl)- N-methylcarb amoyl]threonine, a modified nucleoside isolated from Escherichia coli threonine transfer ribonucleic acid. Biochemistry 11: 3910 3915.
45. Kobayashi, T.,, T. Irie,, M. Yoshida,, K. Takeishi,, and T. Ukita. 1974. The primary structure of yeast glutamic acid tRNA specific to GAA codon. Biochim. Biopbys. Acta 366: 168 181.
46. Komine, Y.,, T. Adachi,, H. Inokuchi,, and H. Ozeki. 1990. Organization and physical mapping of the transfer RNA genes in Escherichia coli K12. J. Mol. Biol. 212: 579 598.
47. Kuntzel, B.,, J. Weissenbach,, R. E. Wolff,, T. D. Tumaitis-Kenedy,, B. G. Lane,, and G. Dirheimer. 1975. Presence of the methylester of 5-carboxymethyl uridine in the wobble position of the anticodon of tRNA ArgIII from brewer's yeast. Biochimie 57: 61 70.
48. Ladner, J. E.,, A. Jack,, J. D. Robertus,, R. S. Brown,, D. Rhodes,, B. F. C. Clark,, and A. Klug. 1975. Structure of yeast phenylalanine transfer RNA at 2.5 A resolution. Proc. Natl. Acad. Sci. USA 72: 4414 4418.
49. Lagerkvist, U. 1978. "Two out of three": an alternative method for codon reading. Proc. Natl. Acad. Sci. USA 75: 1759 1762.
50. Lagerkvist, U. 1981. Unorthodox codon reading and the evolution of the genetic code. Cell 23: 305 306.
51. Lim, V. I.,, and C. Venclova. 1992. Codon-anticodon pairing: a model for interacting codon-anticodon duplexes located at the ribosomal A- and P-sites. FEBS Lett. 313: 133 137.
52. Lustig, F.,, T. Boren,, C. Claesson,, C. Simonsson,, M. Barciszewska,, and U. Lagerkvist. 1993. The nucleotide in position 32 of the tRNA anticodon loop determines ability of anticodon UCC to discriminate among glycine codons. Proc. Natl. Acad. Sci. USA 90: 3343 3347.
53. Lustig, F.,, P. Elias,, T. Axberg,, T. Samuelsson,, I. Tittawella,, and U. Lagerkvist. 1981. Codon reading and translational error. Reading of the glutamine and lysine codons during protein synthesis in vitro. J. Biol. Chem. 256: 2635 2643.
54. Martin, R. P.,, A. P. Sibler,, C. W. Gehrke,, K. Kuo,, C. G. Edmonds,, J. A. McCloskey,, and G. Dirheimer. 1990. 5-(Carboxymethyl)amino]methyl]uridine is found in the anticodon of yeast mitochondrial tRNAs recognizing two-codon families ending in a purine. Biochemistry 29: 956 959.
55. Mitra, S. K.,, F. Lustig,, B. Akesson,, T. Axberg,, P. Elias,, and U. Lagerkvist. 1979. Relative efficiency of anticodons in reading the valine codons during protein synthesis in vitro. J. Biol. Chem. 254: 6397 6401.
56. Mizuno, H.,, and M. Sundaralingam. 1978. Stacking of Crick Wobble pair and Watson-Crick pair: stability rules of G-U pairs at ends of helical stems in tRNAs and the relation to codon-anticodon Wobble interaction. Nucleic Acids Res. 5: 4451 4461.
57. Moras, D.,, M. B. Comarmond,, J. Fischer,, R. Weiss,, J. C. Thierry,, J. P. Ebel,, and R. Giege. 1980. Crystal structure of yeast tRNA Asp. Nature (London) 288: 669 674.
58. Morikawa, K.,, K. Torii,, Y. Iitaka,, M. Tsuboi,, and S. Nishimura. 1974. Crystal and molecular structure of the methyl ester of uridine-5-oxyacetic acid: a minor constituent of Escherichia coli tRNAs. FEBS Lett. 48: 279 282.
59. Moriya, J.,, T. Yokogawa,, K. Wakita,, T. Ueda,, K. Nishikawa,, P. F. Crain,, T. Hashizume,, S. C. Pomerantz,, J. A. McCloskey,, G. Kawai,, N. Hayashi,, S. Yokoyama,, and K. Watanabe. A novel modified nucleoside found at the first position of the anticodon of methionine tRNA from bovine liver mitochondria. Biochemistry, in press.
60. Munz, P.,, U. Leupold,, P. Agris,, and J. Kohli. 1981. In vivo decoding rules in Schizosaccharomyces pombe are at variance with in vitro data. Nature (London) 294: 187 188.
61. Muramatsu, T.,, T. Miyazawa,, and S. Yokoyama. 1992. Recognition of the nucleoside in the first position of the anticodon of isoleucine tRNA by isoleucyl-tRNA synthetase from Escherichia coli. Nucleosides Nucleotides 11: 719 730.
62. Muramatsu, T.,, K. Nishikawa,, F. Nemoto,, Y. Kuchino,, S. Nishimura,, T. Miyazawa,, and S. Yokoyama. 1988. Codon and amino-acid specificities of a transfer RNA are both converted by a single post-transcriptional modification. Nature (London) 336: 179 181.
63. Muramatsu, T.,, S. Yokoyama,, N. Horie,, A. Matsuda,, T. Ueda,, Z. Yamaizumi,, Y. Kuchino,, S. Nishimura,, and T. Miyazawa. 1988. A novel lysine-substituted nucleoside in the first position of the anticodon of minor isoleucine tRNA from Escherichia coli. J. Biol. Chem. 263: 9261 9267.
64. Muramatsu, T.,, S. Yokoyama,, and S. Nishimura. Unpublished data.
65. Murao, K.,, T. Hasegawa,and H.Ishikura. 1982. Nucleotide sequence of valine tRNAmo 5UAC from Bacillus subtilis. Nucleic Acids Res. 10: 715 718.
66. Murao, K.,, and H. Ishikura. 1978. A new uridine derivative located in the anticodon of tRNA Gly1 from Bacillus subtilis. Nucleic Acids Res. Special Publication 5: s333 s336.
67. Nakanishi, K.,, N. Furutachi,, M. Funamizu,, D. Grunberger,, and I. B. Weinstein. 1970. Structure of the fluorescent Y base from yeast phenylalanine transfer ribonucleic acid. J. Am. Chem. Soc. 92: 7617 7619.
68. Niimi, T.,, O. Nureki,, and T. Yokogawa. Unpublished data.
69. Niimi, T.,, O. Nureki,, T. Yokogawa,, N. Hayashi,, K. Nishikawa,, K. Watanabe,, and S. Yokoyama. Recognition of the anticodon loop of tRNA Ile1 by isoleucyl-tRNA synthetase from Escherichia coli. Nucleosides Nucleotides, in press.
70. Nishimura, S., 1979. Modified nucleosides in tRNA, p. 59 79. In P. R. Schimmel,, D. Söll,, and J. N. Abelson (ed.), Transfer RNA: Structure, Properties, and Recognition. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
71. Nishimura, S. 1983. Structure, biosynthesis, and function of queuosine in transfer RNA. Prog. Nucleic Acids Res. Mol. Biol. 28: 49 73.
72. Nocera, P. P. D.,, F. Blasi,, R. D. Lauro,, R. Frunzio,, and C. B. Bruni. 1978. Nucleotide sequence of the attenuator region of the histidine operon of Escherichia coli K12. Proc. Natl. Acad. Sci. USA 75: 4276 4280.
73. Nureki, O.,, T. Niimi,, T. Muramatsu,, H. Kanno,, T. Kohno,, C. Florentz,, R. Giege,, and S. Yokoyama. Molecular recognition of the identity-determinant set of isoleucine transfer RNA from Escherichia coli. J. Mol. Biol., in press.
74. Oba, T.,, Y. Andachi,, A. Muto,, and S. Osawa. 1991. CGG, an unassigned or nonsense codon in Mycoplasma capricolum. Proc. Natl. Acad. Sci. USA 88: 921 925.
75. Ohashi, Z.,, F. Harada,, and S. Nishimura. 1972. Primary sequence of glutamic acid tRNA II from Escherichia coli. FEBS Lett. 20: 239 241.
76. Ohashi, Z.,, K. Murao,, T. Yahagi,, D. L. von Minden,, J. A. McCloskey,, and S. Nishimura. 1972. Characterization of C + located in the first position of the anticodon of Escherichia coli tRNA Met as N 4-acetylcytidine. Biochim. Biophys. Acta 262: 209 213.
77. Osawa, S.,, T. H. Jukes,, K. Watanabe,, and A. Muto. 1992. Recent evidence for evolution of the genetic code. Microbiol. Rev. 56: 229 264.
78. Pardi, A. Personal communication.
79. Parthasarathy, R.,, J. M. Ohrt,, and G. B. Chheda. 1974. Conformation of N-(purine-6-ylcarbamoyl)glycine, a hyper-modified base in tRNA. Biochim. Biophys. Res. Commun. 57: 649 653.
80. Parthasarathy, R.,, J. M. Ohrt,, and G. B. Chheda. 1974. Conformation and possible role of hypermodified nucleosides adjacent to 3'-end of anticodon in tRNA: N-(P urine-6-ylcarbamoyl)-L-threonine riboside. Biochim. Biophys. Res. Commun. 60: 211 218.
81. Parthasarathy, R.,, J. M. Ohrt,, and G. B. Chheda. 1977. Modified nucleosides and conformation of anticodon loops: crystal structure of t 6A and g 6A. Biochemistry 16: 4999 5008.
82. Perret, V.,, A. Garcia,, H. Grosjean,, J.-P. Ebel,, C. Florentz,, and R. Giege. 1990. Relaxation of a transfer RNA specificity by removal of modified nucleosides. Nature (London) 344: 787 789.
83. Petnillo, L. A.,, P. J. Gallagher,, and D. Elseviers. 1983. The role of 2-methylthio-N 6-isopentenyladenosine in read-through and suppression of nonsense codons in Escherichia coli. Mol. Gen. Genet. 190: 289 294.
83a. Putz, J.,, C. Florentz,, and R. Giege. Personal communication.
84. Quigley, G. J.,, and A. Rich. 1976. Structural domains of transfer RNA molecules: the ribose 2' hydroxyl which distinguishes RNA from DNA plays a key role in stabilizing tRNA structure. Science 194: 796 806.
85. Romby, P.,, R. Giege,, C. Houssier,, and H. Grosjean. 1985. Anticodon-anticodon interaction in solution. Studies of the self-association of yeast or Escherichia coli tRNA Asp and of their interaction with Escherichia coli tRNA Val. J. Mol. Biol. 184: 107 118.
86. Sakamoto, K.,, G. Kawai,, T. Niimi,, T. Satoh,, M. Sekine,, Z. Yamaizumi,, S. Nishimura,, T. Miyazawa,, and S. Yokoyama. 1993. A modified uridine in the first position of the anticodon of a minor species of arginine tRNA, the argU gene product, from Escherichia coli. Eur. J. Biochem. 216: 369 375.
87. Samuelsson, T.,, T. Axberg,, T. Boren,, and U. Lagerkvist. 1983. Unconventional reading of the glycine codons. J. Biol. Chem. 258: 13178 13184.
88. Samuelsson, T.,, P. Elias,, F. Lustig,, T. Axberg,, G. Folsch,, B. Akesson,, and U. Lagerkvist. 1980. Aberrations of the classic codon reading scheme during protein synthesis in vitro. J. Biol. Chem. 255: 4583 4588.
89. Schejfer, E.,, S. Roy,, V. Sanchez,, and A. G. Redfield. 1982. Nuclear Overhauser effect study of yeast tRNA Val1: evidence for uridine-pseudouridine pairing. Nucleic Acids Res. 10: 8297 8305.
90. Schweizer, M. P.,, G. B. Chheda,, L. Barczynskyj,, and R. H. Hall. 1969. Aminoacyl nucleosides. VII. N-(Purin-6-ylcar-bamoyl)threonine: a new component of transfer ribonucleic acid. Biochemistry 8: 3283 3289.
91. Sekine, M.,, L. S. Peshakova,, T. Hata,, S. Yokoyama,, and T. Miyazawa. 1987. A novel method for the regioselective 2'-0-methylation and its application to the synthesis of 2'-0-methyl-5-(carboxymethyl)amino]methyl]uridine. J. Org. Chem. 52: 5060 5061.
92. Sekiya, T.,, K. Takeishi,, and T. Ukita. 1969. Specificity of yeast glutamic acid transfer RNA for codon recognition. Biochim. Biophys. Acta 182: 11 426.
93. Sibler, A.-P.,, G. Dirheimer,, and R. P. Martin. 1986. Codon reading patterns in Saccharomyces cerevisiae mitochondria based on sequences of mitochondrial tRNA. FEBS Lett. 194: 131 138.
94. Singer, C. E.,, G. R. Smith,, R. Cortese,, and B. N. Ames. 1972. Mutant tRNA His ineffective in repression and lacking two pseudouridine modifications. Nature New Biol. 238: 72 74.
95. Söll, D.,, J. D. Cherayil,, and R. M. Bock. 1967. Studies on polynucleotides. LT.T.V. Specificity of tRNA for codon recognition as studied by the ribosomal binding technique. J. Mot. Biol. 29: 97 112.
96. Söll, D.,, D. S. Jones,, E. Ohtsuka,, R. D. Faulkner,, R. Lohrmann,, H. Hayatsu,, H. G. Khorana,, J. D. Cherayil,, A. Hampel,, and R. M. Bock. 1966. Specificity of sRNA for recognition of codons as studied by the ribosomal binding technique. J. Mol. Biol. 19: 556 573.
97. Söll, D.,, and U. L. RajBhandary. 1967. Studies on polynucleotides. LXXVI. Specificity of transfer RNA for codon recognition as studied by amino acid incorporation. J. Mol. Biol. 29: 113 124.
98. Spanjaard, R. A.,, K. Chen,, J. R. Walker,, and J. van Duin. 1990. Frameshift suppression at tandem AGA and AGG codons by cloned tRNA genes: assigning a codon to argU tRNA and T4 tRNA Arg. Nucleic Acids Res. 18: 5031 5035.
99. Sprinzl, M.,, N. Dank,, S. Nock,, and A. Schon. 1991. Compilation of tRNA and tRNA gene sequences. 1991 edition, Laboratorium fur Biochemie, Universitat Bayreuth.
100. Stadtman, T. C. 1990. Selenium biochemistry. Annu. Rev. Biochem. 59: 111 127.
101. Stern, L.,, and L. H. Schulman. 1978. The role of the minor base N 4-acetylcytidine in the function of the Esherichia coli noninitiator methionine transfer RNA. J. Biol. Chem. 253: 6132 6139.
102. Sylvers, L. A.,, K. C. Rogers,, M. Shimizu,, E. Ohtsuka,, and D. Söll. 1993. A 2-thiouridine derivative in tRNA Glu is a positive determinant for aminoacylation by Escherichia coli glutamyl-tRNA synthetase. Biochemistry 32: 3836 3841.
103. Takai, K.,, and S. Yokoyama. Unpublished data.
104. Tanaka, R.,, Y. Andachi,, and A. Muto. 1991. Evolution of tRNAs and tRNA genes in Acholeplasma laidlawii. Nucleic Acids Res. 19: 6787 6792.
105. Topal, M. D.,, and J. R. Fresco. 1976. Base-pairing and fidelity in codon-anticodon interaction. Nature (London) 263: 289 293.
106. Topal, M. D.,, and J. R. Fresco. 1976. Complementary base pairing and the origin of substitution mutations. Nature (London) 263: 285 289.
107. Uhl, W.,, J. Reiner,, and H. G. Gassen. 1983. On the conformation of 5-substituted uridines as studied by proton magnetic resonance. Nucleic Acids Res. 11: 1167 1180.
108. Vacher, J.,, H. Grosjean,, C. Houssier,, and R. H. Buckingham. 1984. The effect of point mutations affecting Escherichia coli tryptophan tRNA on anticodon-anticodon interactions and on UGA suppression. J. Mol. Biol. 177: 329 342.
109. Void, B. S.,, D. E. Keith, Jr.,, M. Buck,, J. A. McCloskey,, H. Pang. 1982. Lysine tRNAs from Bacillus subtilis 168: structural analysis. Nucleic Acids Res. 10: 3125 3132.
110. Watanabe, K.,, S. Yokoyama,, F. Hansske,, H. Kasai,, and T. Miyazawa. 1979. CD and NMR studies on the conformational thermostability of 2-thioribothymidine found in the T'ΨC loop of thermophile tRNA. Biochim. Biophys. Res. Commun. 91: 671 677.
111. Weber, F.,, A. Dietrich,, J. Weil., and L. Marechal-Drouard. 1990. A potato mitochondrial isoleucine tRNA is coded for by a mitochondrial gene possessing a methionine anticodon. Nucleic Acids Res. 18: 5027 5030.
112. Weissenbach, J.,, and G. Dirheimer. 1978. Pairing properties of the methylester of 5-carboxymethyl uridine in the wobble position of yeast tRNA Arg3. Biochim. Biophys. Acta 518: 530 534.
113. Weissenbach, J.,, and H. Grosjean. 1981. Effect of threon-ylcarbamoyl modification (t 6A) in yeast tRNA ArgIII on codon-anticodon and anticodon-anticodon interactions. A thermodynamic and kinetic evaluation. Eur. J. Biochem. 116: 207 213.
114. Westhof, E.,, P. Dumas,, and D. Moras. 1985. Crystallographic refinement of yeast aspartic acid transfer RNA. J. Mol. Biol. 184: 119 145.
115. Williams, R. J.,, W. Nagel,, B. Roe,, and B. Dudock. 1974. Primary structure of E. coli alanine transfer RNA: relation to the yeast phenylalanine tRNA synthetase recognition site. Biochem. Biophys. Res. Commun. 60: 1215 1221.
116. Wilson, R. K.,, and B. A. Roe. 1989. Presence of the hy-permodified nucleotide N 6-(D 2-isopentenyl)-2-methylthio-adenosine prevents codon misreading by Escherichia coli phenylalanyl-transfer RNA. Proc. Natl. Acad. Sci. USA 86: 409 413.
117. Yamada, Y.,, and H. Ishikura. 1981. Presence of N-[(9- β-D - ribofuranosy 1 - 2 -methylthiopurine- 6 -yl) cabamoy 1] threonine in lysine tRNA 1 from Bacillus subtilis. J. Biochem. (Tokyo) 89: 1589 1591.
118. Yamaizumi, Z.,, Y. Kuchino,, F. Harada,, S. Nishimura,, and J. A. McCloskey. 1980. Primary structure of Escherichia coli tRNA LeuUUR . J. Biol. Chem. 255: 2220 2225.
119. Yamamoto, N.,, Z. Yamaizumi,, S. Yokoyama,, T. Miyazawa,, and S. Nishimura. 1985. Modified nucleoside, 5-carbamoylmethyluridine, located in the first position of the anticodon of yeast valine tRNA. J. Biochem. 97: 361 364.
120. Yamamoto, Y.,, S. Yokoyama,, T. Miyazawa,, K. Watanabe,, and S. Higuchi. 1983. NMR analyses on the molecular mechanisms of the conformational rigidity of 2-thioribothy-midine, a modified nucleoside in extreme thermophile tRNAs. FEBS Lett. 157: 5 99.
121. Yaniv, M.,, and W. R. Folk. 1975. The nucleotide sequences of the two glutamine transfer ribonucleic acids from Escherichia coli. J. Biol. Chem. 250: 3243 3253.
122. Yanofsky, C.,, and D. Söll. 1977. Mutations affecting tRNA TT and its charging and their effect on regulation of transcription termination at the attenuator of the tryptophan operon. J. Mol. Biol. 113: 663 677.
123. Yarus, M. 1982. Translational efficiency of transfer RNA's:uses of an extended anticodon. Science 218: 646 652.
123a. Yokoyama, S.,, N. Horie,, Z. Yamaizumi,, T. Miyazawa,, and S. Nishimura. Unpublished results.
124. Yokoyama, S.,, F. Inagaki,, and T. Miyazawa. 1981. Advanced nuclear magnetic resonance lanthanide probe analysis of short-range conformational interrelations controlling ribonucleic acid structures. Biochemistry 20: 2981 2988.
125. Yokoyama, S.,, and T. Miyazawa. 1985. Conformational aspects and biological function of biomolecules. J. Mol. Struc. 126: 563 572.
126. Yokoyama, S.,, and T. Miyazawa,. 1990. Modified uridines in the first positions of anticodons of tRNAs and mechanisms of codon recognition, p. 303 326. In C. W. Gehrke, and K. C. T. Kuo (ed.), Chromatography and Modification of Nucleosides. Part B. Biological Roles and Function of Modification. Elsevier, Amsterdam.
127. Yokoyama, S.,, T. Miyazawa,, Y. Itaya,, Z. Yamaizumi,, H. Kasai,, and S. Nishimura. 1979. Three-dimensional structure of hyper-modified nucleoside Q located in the wobbling position of tRNA. Nature (London) 282: 107 109.
128. Yokoyama, S.,, T. Muramatsu,, G. Kawai,, and T. Miyazawa. 1990. NMR analyses of structures and functions of modified nucleosides in transfer ribonucleic acids. Nucleosides Nucleotides 9: 303 310.
129. Yokoyama, S.,, T. Watanabe,, K. Murao,, H. Ishikura,, Z. Yamaizumi,, S. Nishimura,, and T. Miyazawa. 1985. Molecular mechanism of codon recognition by tRNA species with modified uridine in the first position of the anticodon. Proc. Natl. Acad. Sci. USA 82: 4905 4909.
130. Yokoyama, S.,, Z. Yamaizumi,, S. Nishimura,, and T. Miyazawa. 1979. 1H NMR studies on the conformational characteristics of 2-thiopyrimidine nucleotides found in transfer RNAs. Nucleic Acids Res. 6: 2611 2626.

Tables

Generic image for table
Table 1.

“Wobble” base pairing of first nucleotide of anticodon with third letter of codon

xoU denotes a 5-hydroxyuridine derivative such as 5-methoxyuridine (moU) and 5-carboxymethoxyuridine (cmoU). xmsU, xmUm, and xmU denote 5-methyl-2-thiouridine, 5-methyl-2′-O-methyluridine, and 5-methyluridine derivatives, respectively, where “xm” denotes, e.g., methylaminomethyl (mum), carboxymethylaminomethyl (cmnm), or methoxycarbonylmethyl (mem) (see appendix 1).

Citation: Yokoyama S, Nishimura S. 1995. Modified Nucleosides and Codon Recognition , p 207-223. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch12

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error