1887

Chapter 19 : Recognition in the Glutamine tRNA System: from Structure to Function

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Recognition in the Glutamine tRNA System: from Structure to Function, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818333/9781555810733_Chap19-1.gif /docserver/preview/fulltext/10.1128/9781555818333/9781555810733_Chap19-2.gif

Abstract:

The ability of aminoacyl-tRNA synthetases (aaRS) to faithfully recognize both their amino acid and tRNA substrates is essential for accurate protein synthesis. This chapter focuses on the recognition of tRNA by glutaminyl-tRNA synthetase (GlnRS). This system is arguably the best characterized aaRS-tRNA interaction both functionally and structurally, as the first high-resolution crystal structure of a protein-RNA complex was solved for GlnRS:tRNA. The chapter summarizes the characteristics of the GlnRS:tRNA system that make GlnRS unique among aaRS, as well as those that make the glutamine system an ideal model for the study of protein-RNA interaction, specifically aaRS-tRNA interaction. Together the crystal structure, genetic, and biochemical studies have identified the most important specificity determinants from among the hundreds of contacts between GlnRS and tRNA. The chapter also describes several of the more interesting aspects of the GlnRS:tRNA system: (1) the close evolutionary relationship between GlnRS and glutamyl-tRNA synthetase (GluRS); (2) GlnRS's relaxed discrimination against noncognate tRNAs coupled with its "overdetermined," tight recognition of its cognate tRNA; and (3) the enzyme mechanism of GlnRS, specifically the structural and functional communication that permits this small monomeric aaRS to recognize tRNA identity elements that are more than 75Å apart in uncomplexed tRNA. The information obtained from biophysical techniques (crystallography, fluorescence, and x-ray/neutron scattering) and from genetic and biochemical approaches is combined to yield a coherent and detailed picture of the specific recognition of tRNA by GlnRS.

Citation: Sherman J, Rogers M, Söll D. 1995. Recognition in the Glutamine tRNA System: from Structure to Function, p 395-409. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch19

Key Concept Ranking

Amino Acids
0.6431849
Transfer RNA
0.50877196
Genetic Selection
0.4948705
Gene Duplication
0.48869178
0.6431849
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1.
Figure 1.

The relaxed tRNA specificity of GlnRS applies to amber (anticodon CUA), not opal (anticodon UCA) suppressor tRNAs. Shown are the acceptor stems of the various tRNAs. While many amber suppressors (top two rows) or their mutants (bottom row) insert glutamine (%Q) in vivo, the opal suppressors derived from these same tRNAs, which have been tested, insert little (*) or no (**) glutamine in vivo. (Adapted from references .)

Citation: Sherman J, Rogers M, Söll D. 1995. Recognition in the Glutamine tRNA System: from Structure to Function, p 395-409. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch19
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

Comparison of in vivo identity of amber (UAG) and opal (UGA) suppressors derived from tRNA. The amber suppressor , also known as (SuUAG), is overdetermined for glutamine identity, because even multiple mutations in this context do not severely impair the glutamine specificity of these mutant tRNAs. On the other hand, the opal suppressor op already inserts 88% tryptophan into dihydrofolate reductase. Additional mutations abolish GlnRS recognition. These mutant tRNAs are also probably not recognized well by other aaRS, as several of them are inactive suppressors. (Adapted from references , and .)

Citation: Sherman J, Rogers M, Söll D. 1995. Recognition in the Glutamine tRNA System: from Structure to Function, p 395-409. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch19
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.
Figure 3.

The effect of competition and tRNA context on the in vivo identity of amber suppressor tRNAs. In vitro, in its cognate tRNA context, GlnRS clearly prefers purine over pyrimidine discriminators ( ). However, in vivo, (SuUAG)-U73 inserts more glutamine into dihydrofolate reductase than the A/G73 variants, partially due to a lack of competition for (SuUAG)-U73 ( ). Similarly, of all the aaRS in , GlnRS, despite its tendency to favor purines in the discriminator position in tRNA, competes most effectively for the U73 mutants of the noncognate amber suppressors and (SuUAG). Even more surprisingly, the A73 mutant of is glutamate-specific, while , with its wild-type discriminator is not ( ). Clearly, the identity of in vivo is determined by competition, with GlnRS competing less effectively for - than for -G73.

Citation: Sherman J, Rogers M, Söll D. 1995. Recognition in the Glutamine tRNA System: from Structure to Function, p 395-409. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch19
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4.
Figure 4.

Pathway for evolutionary divergence of the glutamate and glutamine aminoacylation systems. This model ( ) is based on the preference of GluRS for U34-containing anticodons and on the fact that, in gram-positive eubacteria, archaebacteria, and organelles, GlnRS does not exist, and both glutamate and glutamine tRNAs have a U at position 34. GlxRS is an ancestral aaRS specific for both glutamate and glutamine. In gram-positive bacteria, duplication of the gene for GlxRS, coupled with divergence at position 36 of tRNA and tRNA, may have led to the evolution of the Glu-tRNAamidotransferase and GluRS, with their respective glutamine and glutamate tRNA and amino acid specificities. In gram-negative bacteria, the creation by gene duplication and mutation of tRNA and duplication of the GlxRS gene is proposed to have led to co- evolution of GlnRS, with its C34-G36 specificity, and of tRNA. Dashed lines connect cognate tRNAs and aaRS and the broken arrow represents the possible divergence of the amidotransferase from a primitive GlxRS.

Citation: Sherman J, Rogers M, Söll D. 1995. Recognition in the Glutamine tRNA System: from Structure to Function, p 395-409. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch19
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818333.chap19
1. Arnez, J. A. 1991. Structural studies of two RNA-protein complexes from Escherichia coli: glutaminyl-tRNA synthetase:tRNAGln and ribonuclease P. Ph.D. thesis, Yale University, New Haven, Conn..
2. Bhattacharyya, T.,, A. Bhattacharyya,, and S. Roy. 1991. A fluorescence spectroscopic study of glutaminyl-tRNA synthetase from Escherichia coli and its implications for the enzyme mechanism. Eur. J. Biochem. 200:739745.
3. Bhattacharyya, T.,, and S. Roy. 1993. A fluorescence spectroscopic study of substrate-induced conformational changes in glutaminyl-tRNA synthetase. Biochemistry 32:92689273.
4. Bjork, G. R., 1992. The role of modified nucleosides in tRNA interactions, p. 2385. In D. L. Hatfield,, B. J. Lee,, and R. M. Pirtle (ed.), Transfer RNA in Protein Synthesis. CRC Press, Boca Raton, Fla..
5. Breton, R.,, H. Sanfacon,, T. Papayannopoulos,, K. Biemann,, and J. Lapointe. 1986. Glutamyl-tRNA synthetase of Escherichia coli: isolation and primary structure of the gltX gene and homology with other aminoacyl-tRNA synthetases. J. Biol. Chem. 261:1061010617.
6. Breton, R.,, D. Watson,, M. Yaguchi,, and J. Lapointe. 1990. Glutamyl-tRNA synthetase of Bacillus sub tilts 168T and of Bacillus stearothermophilus: cloning and sequencing of the gltX genes and comparison with other aminoacyl-tRNA synthetases. J. Biol. Chem. 265:1824818255.
7. Carter, C. J., Jr. 1993. Cognition, mechanism and evolutionary relationships in aminoacyl-tRNA synthetases. Annu. Rev. Biochem. 62:715748.
8. Cavarelli, J.,, B. Rees,, M. Ruff,, J. C. Thierry,, and D. Moras. 1993. Yeast tRNAAsP recognition by its cognate class II aminoacyl-tRNA synthetase. Nature (London) 362:181184.
9. Celis, J. E.,, C. Coulondre,, and J. H. Miller. 1976. Suppressor su+7 inserts tryptophan in addition to glutamine. J. Mol. Biol. 104:729734.
10. Celis, J. E.,, and P. W. Piper. 1982. Compilation of mutant suppressor tRNA sequences. Nucleic Acids Res. 10:r83r91.
11. Conley, J. G. 1988. A mutational analysis of Escherichia coli glutaminyl-tRNA synthetase. Ph.D. thesis, Yale University, New Haven, Conn..
12. Conley J.,, J. Sherman,, H.-U. Thomann,, and D. Soli. 1994. Aomains of £. coli glutaminyl-tRNA synthetase disordered in the crystal structure are essential for function or stability. Nucleosides Nucleotides 13:15811595.
13. Cusack, S.,, C. Berthet-Colominas,, M. Hartlein,, N. Nassar,, and R. Leberman. 1990. A second class of synthetase structure revealed by X-ray analysis of Escherichia coli seryl-tRNA synthetase at 2.5 Å. Nature (London) 347:249255.
14. Ebel, J. P.,, R. Giege,, J. Bonnet,, D. Kern,, N. Befort,, C. Bollack,, F. Fasiolo,, J. Gangloff,, and G. Dirheimer. 1973. Factors determining the specificity of the tRNA aminoacylation reaction. Biochimie 55:547557.
15. Englisch-Peters, S.,, J. Conley,, J. Plumbridge,, C. Leptak,, D. Söll,, and M. J. Rogers. 1991. Mutant enzymes and tRNAs as probes of the glutaminyl-tRNA synthetase:tRNAGln interaction. Biochimie 73:15011508.
16. Eriani, G.,, M. Delarue,, O. Poch,, J. Gangloff,, and D. Moras. 1990. Partition of tRNA synthetases into two classes based on mutually exclusive sets of sequence motifs. Nature (London) 247:203206.
17. Folk, W. R. 1971. Molecular weight of Escherichia coli glutaminyl transfer ribonucleic acid synthetase, and isolation of its complex with glutamine transfer ribonucleic acid. Biochemistry 10:17281732.
18. Francklyn, C.,, J.-P. Shi,, and P. Schimmel. 1992. Overlapping nucleotide determinants for specific aminoacylation of RNA microhelices. Science 255:11211125.
19. Freist, W. 1989. Mechanisms of aminoacyl-tRNA synthetases: a critical consideration of recent results. Biochemistry 28:67876795.
20. Frugier, M.,, C. Florentz,, and R. Giege. 1992. Anticodon independent aminoacylation of an RNA minihelix with valine. Proc. Natl. Acad. Sci. USA 89:39903994.
21. Frugier, M.,, D. Söll,, R. Giege,, and C. Florentz. 1994. Identity switches between tRNAs acylated by class I and class II aminoacyl-tRNA synthetases. Biochemistry 33:99129921.
22. Giege, R.,, J. D. Puglisi,, and C. Florentz. 1993. tRNA structure and aminoacylation efficiency. Prog. Nucleic Acid Res. Mol. Biol. 45:129206.
23. Hayase, Y.,, M. Jahn,, M. J. Rogers,, L. Sylvers,, M. Koizumi,, H. Inoue,, E. Ohtsuka,, and D. Söll. 1992. Recognition of bases in Escherichia coli tRNAGln by glutaminyl-tRNA synthetase: a complete identity set. EMBO J. 11:41594165.
24. Hoben, P. J. 1984. Transfer RNA mischarging by a mutant Escherichia coli glutaminyl-tRNA synthetase. Ph.D. thesis, Yale University, New Haven, Conn..
25. Hoben, P.,, N. Royal,, A. Cheung,, F. Yamao,, K. Biemann,, and D. Söll. 1982. Escherichia coli glutaminyl-tRNA synthetase. II. Characterization of the glnS gene product. J. Biol. Chem. 257:1164411650.
26. Hoben, P.,, and D. Söll. 1985. Glutaminyl-tRNA synthetase of Escherichia coli. Methods Enzymol. 113:5559.
27. Holley, R. W.,, J. Apgar,, G. A. Everett,, J. T. Madison,, M. Marquisee,, S. H. Merrill,, J. R. Penwick,, and A. Zamir. 1965. Structure of a ribonucleic acid. Science 147:14621465.
28. Hooper, J. L.,, R. L. Russell,, and J. D. Smith. 1972. Mischarging in mutant tyrosine transfer RNAs. FEBS Lett. 22:149155.
29. Hou, Y. M.,, and P. Schimmel. 1989. Modeling with in vitro kinetic parameters for the elaboration of transfer RNA identity in vivo. Biochemistry 28:49424947.
30. Inokuchi, H.,, P. Hoben,, F. Yamao,, H. Ozeki,, and D. Söll. 1984. Transfer RNA mischarging mediated by a mutant Escherichia coli glutaminyl-tRNA synthetase. Proc. Natl. Acad. Sci. USA 81:50765080.
31. Inokuchi, H.,, M. Kodaira,, F. Yamao,, and H. Ozeki, 1979. Identification of transfer RNA suppressors in Escherichia coli. II. Duplicate genes for tRNAGln2. J. Mol. Biol. 132:663677.
32. Jahn, M.,, M. J. Rogers,, and D. Söll. 1991. Anticodon and acceptor stem nucleotides in tRNAGln are major recognition elements for Escherichia coli glutaminyl-tRNA synthetase. Nature (London) 352:258260.
33. Jakubowski, H.,, and E. Goldman. 1984. Quantities of individual aminoacyl-tRNA families and their turnover in Escherichia coli. J. Bacteriol. 158:769776.
34. Jakubowski, H.,, and E. Goldman. 1992. Editing of errors in selection of amino acids for protein synthesis. Microbiol. Rev. 56:412429.
35. Kern, D.,, and J. Lapointe. 1981. The catalytic mechanism of glutamyl-tRNA synthetase of Escherichia coli. Eur. J. Biochem. 115:2938.
36. Kern, D.,, S. Potier,, J. Lapointe,, and Y. Boulanger. 1980. The glutaminyl-tRNA synthetase from Escherichia coli: purification, structure and function relationship. Biochim. Biophys. Acta 607:6580.
37. Kim, S.-H.,, F. L. Suddath,, G. J. Quigley,, A. McPherson,, J. L. Sussman,, A. H. J. Wang,, N. C. Seeman,, and A. Rich. 1974. Three-dimensional tertiary structure of yeast phenylalanine transfer RNA. Science 185:435440.
38. Komatsoulis, G. A.,, and J. Abelson. 1993. Recognition of tRNACys by Escherichia coli cysteinyl-tRNA synthetase. Biochemistry 32:74357444.
39. Lapointe, J.,, L. Duplain,, and M. Proulx. 1986. A single glutamyl-tRNA synthetase aminoacylates tRNAGlu and tRNAGln in Bacillus subtilis and efficiently misacylates Escherichia coli tRNAGln1 in vitro. J. Bacteriol. 165:8893.
40. Lee, C. P.,, N. Mandal,, M. R. Dyson,, and U. L. RajBhandary. 1993. The discriminator base influences tRNA structure at the end of the acceptor stem and possibly its interactions with proteins. Proc. Natl. Acad. Sci. USA 90:71497152.
41. Limmer, S.,, H. P. Hofmann,, G. Ott,, and M. Sprinzl. 1993. The 3'-terminal end (NCCA) of tRNA determines the structure and stability of the aminoacyl acceptor stem. Proc. Natl. Acad. Sci. USA 90:61996202.
42. Liu, J. H.,, S. X. Lin,, J. E. Blochet,, M. Pezolet,, and J. Lapointe. 1993. The glutamyl-transfer RNA synthetase of Escherichia coli contains one atom of zinc essential for its native conformation and catalytic activity. Biochemistry 32:1139011396.
43. Ludmerer, S. W.,, and P. Schimmel. 1987. Gene for yeast glutamine tRNA synthetase encodes a large amino-terminal extension and provides a strong confirmation of the signature sequence for a group of aminoacyl-tRNA synthetases. J. Biol. Chem. 262:1080110806.
44. Ludmerer, S. W.,, and P. Schimmel. (1987). Construction and analysis of deletions in the amino-terminal extension of glutamine-tRNA synthetase of Saccharomyces cerevisiae. J. Biol. Chem. 262:1080710813.
45. Ludmerer, S. W.,, D. J. Wright,, and P. Schimmel. 1993. Purification of glutamine-tRNA synthetase from Saccharomyces cerevisiae: a monomeric aminoacyl-tRNA synthetase with a large and dispensable NH2-terminal domain. J. Biol. Chem. 89:6569.
46. McClain, W. H. 1993. Identity of Escherichia coli tRNACys determined by nucleotides in three regions of tRNA tertiary structure. J. Biol. Chem. 268:1939819402.
47. McClain, W. H. 1993. Transfer RNA identity. FASEB J. 7:7278.
48. McClain, W. H.,, Y. M. Chen,, K. Foss,, and J. Schneider. 1988. Association of transfer RNA acceptor identity with a helical irregularity. Science 240:16811684.
49. McClain, W. H.,, and K. Foss. 1988. Nucleotides that contribute to the identity of Escherichia coli tRNAPhe. J. Mol. Biol. 202:697709.
50. McClain, W. H.,, and K. Foss. 1988. Changing the identity of a tRNA by introducing a G-U wobble pair near the 3' acceptor end. Science 240:793796.
51. McClain, W.,, K. Foss,, R. A. Jenkins,, and J. Schneider. 1990. Nucleotides that determine E. coli tRNAArg and tRNALys acceptor identities revealed by analyses of mutant opal and amber suppressor tRNAs. Proc. Natl. Acad. Sci. USA 87:92609264.
52. McClain, W. H.,, K. Foss,, R. A. Jenkins,, and J. Schneider. 1991. Rapid determination of nucleotides that define tRNAGly acceptor identity. Proc. Natl. Acad. Sci. USA 88:61476151.
53. McClain, W. H.,, K. Foss,, R. A. Jenkins,, and J. Schneider. 1991. Four sites in the acceptor helix and one site in the variable pocket of tRNAAla determine the molecule's acceptor identity. Proc. Natl. Acad. Sci. USA 88:92729276.
53a.. McClain, W. H.,, J. Schneider,, and K. Gabriel. 1993. Association of tRNAGln acceptor identity with phosphate-sugar backbone interactions observed in the crystal structure of the Escherichia coli glutaminyl-tRNA synthetase-tRNAGln. Biochimie 75:11251136.
54. Moras, D. 1992. Structural and functional relationships between aminoacyl-tRNA synthetases. Trends Biochem. Sci. 17:159161.
54a.. Nalaskowska, M. Unpublished data.
55. Normanly, J.,, and J. Abelson. 1989. Transfer RNA identity. Annu. Rev. Biochem. 58:10291049.
56. Normanly, J.,, L. G. Kleina,, J.-M. Masson,, J. Abelson,, and J. H. Miller. 1990. Construction of Escherichia coli amber suppressor tRNA genes. III. Determination of tRNA specificity. J. Mol. Biol. 231:719726.
57. Normanly, J.,, T. Ollick,, and J. Abelson. 1992. Eight base changes are sufficient to convert a leucine-inserting tRNA into a serine-inserting tRNA. Proc. Natl. Acad. Sci. USA 89:56805684.
58. Ozeki, H.,, H. Inokuchi,, F. Yamao,, M. Kodaira,, H. Sakano,, T. Ikemura,, and Y. Shimura,. 1980. Genetics of nonsense suppressor tRNAs in Escherichia coli, p. 341362. In D. Söll,, J. N. Abelson,, and P. R. Schimmel (ed.), Transfer RNA: Biological Aspects. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y..
59. Pak, M.,, L. Pallanck,, and L. H. Schulman. 1992. Conversion of a methionine initiator tRNA into a tryptophan-inserting elongator tRNA in vivo. Biochemistry 31:33033309.
60. Pallanck, L., and Schulman, L. H. 1991. Anticodon-dependent aminoacylation of a noncognate tRNA with isoleucine, valine and phenylalanine. Proc. Natl. Acad. Sci. USA 88:38723876.
61. Perona, J. J. 1990. Crystal structure of the E. coli glutaminyl-tRNA synthetase:tRNAGln complex. Ph.D. thesis, Yale University, New Haven, Conn. .
62. Perona, J. J.,, M. A. Rould,, and T. A. Steitz. 1993. Structural basis for transfer RNA aminoacylation by E. coli glutaminyl-tRNA synthetase. Biochemistry 32:87588771.
63. Perona, J. J.,, M. A. Rould,, T. A. Steitz,, J.-L. Risler,, C. Zelwer,, and S. Brunie. 1991. Structural similarities in glutaminyl- and methionyl-tRNA synthetases suggest a common overall orientation of tRNA binding Proc. Natl. Acad. Sci. USA 88:29032907.
64. Perona, J. J.,, R. N. Swanson,, M. A. Rould,, T. A. Steitz,, and D. Soli. 1989. Structural basis for misaminoacylation by mutant E. coli glutaminyl-tRNA synthetase enzymes. Science 246:11521154.
65. Perona, J. J.,, R. N. Swanson,, T. A. Steitz,, and D. Söll. 1988. Overproduction and purification of Escherichia coli tRNAGln2 and its use in crystallization of the glutaminyl-tRNA synthetase:tRNAGI complex. J. Mol. Biol. 202:121126.
66. Rich, A.,, and P. R. Schimmel. 1977. Structural organization of complexes of transfer RNAs with aminoacyl-tRNA synthetases. Nucleic Acids Res. 4:16491665.
67. Robertus, J. D.,, J. E. Ladner,, J. T. Finch,, D. Rhodes,, R. S. Brown,, B. F. C. Clark,, and A. Klug. 1974. Structure of yeast phenylalanyl-tRNA at 3 A resolution. Nature (London) 250:546551.
68. Rogers, K. C, and D. Soli. 1993. Discrimination among tRNAs intermediate in glutamate and glutamine acceptor identities. Biochemistry 32:1421014219.
69. Rogers, M. J.,, T. Adachi,, H. Inokuchi,, and D. Söll. 1992. Switching tRNAGln identity from glutamine to tryptophan. Proc. Natl. Acad. Sci. USA 89:34633467.
70. Rogers, M. J.,, T. Adachi,, H. Inokuchi,, and D. Söll. 1994. Functional communication in the recognition of tRNA by Escherichia coli glutaminyl-tRNA synthetase. Proc. Natl. Acad. Sci. USA 91:291295.
70a.. Rogers, M. J.,, and J. M. Sherman. Unpublished data.
71. Rogers, M. J.,, and D. Soli. 1988. Discrimination between glutaminyl-tRNA synthetase and seryl-tRNA synthetase involves nucleotides in the acceptor helix of tRNA. Proc. Natl. Acad. Sci. USA 85:66276631.
72. Rogers, M. J.,, and D. Söll. 1990. Inaccuracy and the recognition of tRNA. Prog. Nucleic Acid Res. Mol. Biol. 39:185208.
73. Rogers, M. J.,, I. Weygand-Durasevic,, E. Schwob,, J. M. Sherman,, K. C. Rogers,, T. Adachi,, H. Inokuchi,, and D. Söll. 1993. Selectivity and specificity in the recognition of tRNA by E. coli glutaminyl-tRNA synthetase. Biochimie 75:10831090.
74. Rould, M. A.,, J. J. Perona,, D. Soli,, and T. A. Steitz. 1989. Structure of E. coli glutaminyl-tRNA synthetase complexed with tRNAGln and ATP at 2.8 Å resolution. Science 246:11351142.
75. Rould, M. A.,, J. J. Perona,, and T. A. Steitz. 1991. Structural basis of anticodon loop recognition by glutaminyl-tRNA synthetase. Nature (London) 352:213218.
76. Rould, M. A.,, and T. A. Steitz. 1992. Structure of the glutaminyl-tRNA synthetase-tRNAGln-ATP complex. Nucleic Acids Mol. Biol. 6:225245.
77. Ruff, M.,, S. Krishnaswamy,, M. Boeglin,, A. Poterszman,, A. Mitschler,, A. Podjarny,, B. Rees,, J. C. Thierry,, and D. Moras. 1991. Class II aminoacyl transfer RNA synthetases: crystal structure of yeast aspartyl-tRNA synthetase complexed with tRNAAsp. Science 252:16821689.
78. Schimmel, P. 1989. Parameters for the molecular recognition of transfer RNAs. Biochemistry 28:27472759.
79. Schimmel, P. R.,, and D. Söll. 1979. Aminoacyl-tRNA synthetases: general features and recognition of transfer RNAs. Annu. Rev. Biochem. 48:601648.
80. Schon, A.,, C. G. Kannangara,, S. Gough,, and D. Söll. 1988. Protein biosynthesis in organelles requires misaminoacylation of tRNA. Nature (London) 331:187190.
81. Schulman, L. H. 1991. Recognition of tRNAs by aminoacyl-tRNA synthetases. Prog. Nucleic Acid Res. Mol. Biol. 41:2387.
82. Schwob, E.,, and D. Söll. 1993. Selection of a minimal glutaminyl-tRNA synthetase and the evolution of class I synthetases. EMBO J. 12:52015208.
83. Seong, B. L.,, C. P. Lee,, and U. L. RajBhandary. 1989. Suppression of amber codons in vivo as evidence that mutants derived from E. coli initiator tRNA can act at the step of elongation in protein synthesis. J. Biol. Chem. 246:65046508.
83a.. Sherman, J. M. Unpublished data.
84. Sherman, J. M. 1994. Specific recognition of tRNAs by aminoacyl-tRNA synthetases. Ph.D. thesis, Yale University, New Haven, Conn..
85. Sherman, J. M.,, K. Rogers,, M. J. Rogers,, and D. Söll. 1992. Synthetase competition and tRNA context determine the in vivo identity of tRNA discriminator mutants. J. Mol. Biol. 228:10551062.
86. Sherman, J. M.,, M. J. Rogers,, and D. Söll. 1992. Competition of aminoacyl-tRNA synthetases for tRNA ensures the accuracy of aminoacylation. Nucleic Acids Res. 20:28472852.
86a.. Sherman, J. M.,, and U. Thomann. Unpublished data.
87. Shimura, Y.,, H. Aono,, H. Ozeki,, A. Sarabhai,, H. Lamfrom,, and J. Abelson. 1972. Mutant tyrosine tRNA of altered amino acid specificity. FEBS Lett. 22:144148.
88. Sprinzl, M.,, and F. Cramer. 1975. Site of aminoacylation of tRNAs from Escherichia coli with respect to the 2'-or 3'-hydroxyl group of the terminal adenosine. Proc. Natl. Acad. Sci. USA 72:30493053.
89. Swanson, R. N. 1988. Specificity in the aminoacylation of transfer RNA. Ph.D. thesis, Yale University, New Haven, Conn..
90. Swanson, R.,, P. Hoben,, M. Sumner-Smith,, H. Uemura,, L. Watson,, and D. Söll. 1988. Accuracy of in vivo aminoacylation requires the proper balance of tRNA and aminoacyl-tRNA synthetase. Science 242:15481551.
91. Sylvers, L. A.,, K. C. Rogers,, M. Shimizu,, E. Ohtsuka,, and D. Söll. 1993. A 2-thiouridine derivative in tRNAGlu is a positive determinant for aminoacylation by Escherichia coli glutamyl-tRNA synthetase. Biochemistry 32:38363841.
92. Tamura, K.,, H. Himeno,, and H. Asahara. 1992. In vitro study of E. coli tRNAArg and tRNALys identity elements. Nucleic Acids Res. 20:23352339.
93. Varshney, U.,, C. P. Lee,, and U. L. RajBhandary. 1991. Direct analysis of aminoacylation levels of tRNAs in vivo. J. Biol. Chem. 266:2471224718.
94. Varshney, U.,, and U. L. RajBhandary. 1990. Initiation of protein synthesis from a termination codon. Proc. Natl. Acad. Sci. USA 87:15861590.
94a.. Weygand-Durasevic, I.,, and M. J. Rogers. Personal communication.
95. Weygand-Durasevic, I.,, M. J. Rogers,, and D. Söll. Connecting anticodon recognition with the active site of Escherichia coli glutaminyl-tRNA synthetase. J. Mol. Biol. 240:111118.
96. Weygand-Durasevic, I.,, E. Schwob,, and D. Söll. 1993. Acceptor binding domain interactions ensure correct aminoacylation of transfer RNA. Proc. Natl. Acad. Sci. USA 90:20102014.
97. Wilcox, M.,, and M. Nirenberg. 1968. Transfer RNA as a cofactor coupling amino acid synthesis with that of protein. Proc. Natl. Acad. Sci. USA 61:229236.
98. Wright, D. J.,, S. A. Martinis,, M. Jahn,, D. Soli,, and P. Schimmel. 1993. Acceptor stem and anticodon RNA hairpin helix interaction with glutamine-tRNA synthetase. Biochimie 75:10411049.
99. Yamao, E.,, H. Inokuchi,, A. Cheung,, H. Ozeki,, and D. Söll. 1982. Escherichia coli glutaminyl-tRNA synthetase. I. Isolation and DNA sequence of the glnS gene. J. Biol. Chem. 257:1163911643.
100. Yamao, E.,, H. Inokuchi,, J. Normanly,, J. Abelson,, and H. Ozeki. 1988. Mischarging mutants of su+2 glutamine tRNA in E. coli. I. Amino acid specificities of the mutant tRNAs. Jpn. J. Genet. 63:251258.
101. Yamao, E.,, H. Inokuchi,, and H. Ozeki. 1988. Mischarging mutants of su+2 glutamine tRNA in E. coli. I. Mutations near the anticodon cause mischarging. Jpn. J. Genet. 63:237249.
102. Yaniv, M.,, W. R. Folk,, P. Berg,, and L. Söll. 1974. A single mutational modification of a tryptophan-specific transfer RNA permits aminoacylation by glutamine and translation of the codon UAG. J. Mol. Biol. 86:245260.
103. Yarus, M. 1972. Intrinsic precision of aminoacyl-tRNA synthesis enhanced through parallel systems of ligands. Nature New Biol. 239:106108.
104. Yarus, M.,, R. Knowlton,, and D. Söll,. 1977. Aminoacylation of the ambivalent su+7 amber suppressor tRNA, p. 391407. In H. J. Vogel (ed.), Nucleic Acid-Protein Recognition. Academic Press, Inc., New York..
105. Yokoyama, M. H.,, S. Yokoyama,, and T. Miyazawa. 1986. Conformational change of tRNAG,u in the complex with glutamyl-tRNA synthetase is required for the specific binding of L-glutamate. Biochemistry 25:70317036.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error