1887

Chapter 21 : Recognition of Aminoacyl-tRNAs by Protein Elongation Factors

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Recognition of Aminoacyl-tRNAs by Protein Elongation Factors, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818333/9781555810733_Chap21-1.gif /docserver/preview/fulltext/10.1128/9781555818333/9781555810733_Chap21-2.gif

Abstract:

The interactive recognition of nucleic acids by proteins is a central process in the regulation of gene expression. To gain insight into such interactions requires a knowledge of appropriate three-dimensional structures and information on biochemical function. Only a few native biological supramacromolecular protein-nucleic acid complexes are currently accessible for such detailed investigations. One convenient object for such study is the ternary complex composed of aminoacyl-tRNA (aa-tRNA) and elongation factor (EF-Tu) bound to GTR. This chapter brings up to date two earlier reviews addressing the problem of aa-tRNA and EF-Tu:GTP interaction. It summarizes the most recent published studies that contribute to an understanding of the recognitory interactions between tRNA and the protein elongation factor, and the chapter puts these studies in perspective. Finally, it proposes a new model for the three-dimensional structure of the ternary complex (TC). This model accommodates all existing structural experimental data obtained during the studies of the TC.

Citation: Clark B, Kjeldgaard M, Barciszewski J, Sprinzl M. 1995. Recognition of Aminoacyl-tRNAs by Protein Elongation Factors, p 423-442. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch21

Key Concept Ranking

Nuclear Magnetic Resonance Spectroscopy
0.42562845
Basic Amino Acids
0.41258764
0.42562845
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1.
Figure 1.

Hydrogen bonding interactions between GDP and EF-Tu.

Citation: Clark B, Kjeldgaard M, Barciszewski J, Sprinzl M. 1995. Recognition of Aminoacyl-tRNAs by Protein Elongation Factors, p 423-442. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch21
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

Secondary structure model of tRNA ( ) with marked nucleotides whose reactivity is reduced in the presence of elongation factor Tu ( ) or cross-linked to the EF-Tu ( ). Large filled arrows mean protected nucleotides, large empty arrows mean exposed nucleotides, and small filled arrows mean neutral cuts.

Citation: Clark B, Kjeldgaard M, Barciszewski J, Sprinzl M. 1995. Recognition of Aminoacyl-tRNAs by Protein Elongation Factors, p 423-442. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch21
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.
Figure 3.

Cartoon model of conformational changes of elongation factor from GDP to GTP form. Domain 2 moves 35-40 Å to form a cleft with domain 1, which contains the amino acid binding site of aa-tRNA. The effector region comprises the amino acid residues 40–60 in the case of EF-Tu of .

Citation: Clark B, Kjeldgaard M, Barciszewski J, Sprinzl M. 1995. Recognition of Aminoacyl-tRNAs by Protein Elongation Factors, p 423-442. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch21
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4a.
Figure 4a.

Panels A and B show two views of a tertiary structural model of the ternary complex of EF-Tu:GTP-aa-tRNA. The stretched CCA end is assumed to be bent back to the EF-Tu with the amino acid attached (not shown) (compare with reference ).

Citation: Clark B, Kjeldgaard M, Barciszewski J, Sprinzl M. 1995. Recognition of Aminoacyl-tRNAs by Protein Elongation Factors, p 423-442. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch21
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4b.
Figure 4b.

Panels A and B show two views of a tertiary structural model of the ternary complex of EF-Tu:GTP-aa-tRNA. The stretched CCA end is assumed to be bent back to the EF-Tu with the amino acid attached (not shown) (compare with reference ).

Citation: Clark B, Kjeldgaard M, Barciszewski J, Sprinzl M. 1995. Recognition of Aminoacyl-tRNAs by Protein Elongation Factors, p 423-442. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch21
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818333.chap21
1. Abrahams, J. P.,, B. Krai,, B. F. C. Clark,, and L. Bosch. 1991. Isolation and stability of ternary complexes of elongation factor Tu-GTP and aminoacyl-tRNA. Nucleic Acids Res. 19: 553 557.
2. Abrahams, J. P.,, M. J. van Raaij,, G. Ott,, B. Kraal,, and L. Bosh. 1991. Kirromycin drastically reduces the affinity of E. coli elongation factor for aminoacyl-tRNA. Biochemistry 30: 6705 6710.
3. Antonsson, B.,, and R. Leberman. 1982. Stabilization of the ternary complex EF-Tu:GTP-Val-tRNA by ammonium salts. Biochimie 64: 1035 1040.
4. Antonsson, B.,, R. Leberman,, B. Jacrot,, and G. Zaccai. 1986. Small-angle neutron-scattering study of the ternary complex formed between bacterial elongation factor Tu, guanosine-5'-triphosphate and valyl-tRNA. Biochemistry 25: 3655 3659.
5. Barciszewska, M.,, V. A. Erdmann,, and J. Barciszewski. 1992. Dynamic structure of transfer RNA in solution monitored by reaction with hydroxyl radicals. Biochem. Int. 27: 1127 1135.
6. Barciszewska, M.,, V. A. Erdmann,, and J. Barciszewski. 1992. Unfolding of the tertiary structure of specific tRNA and ribosomal 5S RNA from plants as studied with hydroxyl radicals. Int. J. Biol. Macromol. 14: 41 44.
7. Baron, C.,, and A. Bock. 1991. The length of the aminoacyl-acceptor stem of the selenocysteine-specific tRNA Sec of Escherichia coli is the dominant for binding to elongation factor SELB or Tu. J. Biol. Chem. 266: 20375 20379.
8. Basavappa, R.,, and P. B. Sigler. 1991. The 3 A crystal structure of yeast initiator tRNA: functional implications in initiator/elongator discrimination. EMBO J. 10: 3105 3111.
9. Bench, K.,, U. Pieper,, G. Ott,, N. Schirmer,, M. Sprinzl,, and A. Pingould. 1991. How many EF-Tu molecules participate in arminoacyl-tRNA binding. Biochimie 73: 1045 1050.
10. Berchold, H.,, L. Reshetnikova,, C. O. A. Reiser,, N. K. Schirmer,, M. Sprinzl,, and R. Hilgenfeld. 1993. Crystal structure of active elongation factor Tu reveals major domain rearrangements. Nature (London) 365: 126 132.
11. Bethlen, L. S.,, J. R. Sampson,, A. B. Direnzo,, and O. C. Uhlenbeck. 1990. Lead-catalyzed cleavage of yeast tRNA Phe mutants. Biochemistry 29: 2515 2523.
12. Blechschmidt, B.,, H. W. Johan,, J. P. Heinfeld,, M. Sprinzl,, and M. Boublik. Visualization of a ternary complex of the E. coli Phe-tRNA Thr and EF-Tu:GTP from T. thermophilus by scanning transmission election microscopy, J. Struct. Biol., in press.
13. Blumenthal, X.,, T. A. Landers,, and K. Weber. 1972. Bacteriophage Qb replicase contains the protein biosynthesis elongation factors EF-Tu and EF-Ts. Proc. Natl. Acad. Sci. USA 77: 866 886.
14. Bock, A.,, K. Forchhammer,, J. Heider,, and C. Baron. 1991. Selenoprotein synthesis: an expression of the genetic code. Trends Biochem. Sci. 16: 463 467.
15. Boutorin, A. S.,, B. F. C. Clark,, J. P. Ebel,, T. A. Kruse,, H. U. Petersen,, P. Remy,, and S. Vassüenko. 1981. A study of the interaction of Escherichia coli elongation factor-Tu with aminoacyl-tRNAs by partial digestion with cobra venom ribonuclease. J. Mol. Biol. 152: 593 608.
16. Churchill, M. E. A.,, and A. A. Travers. 1991. Protein motifs that recognize structural features of DNA. Trends Biochem. Sci. 16: 92 97.
17. Clark, B. F. C.,, M. Kjeldgaard,, T. F. M. la Cour,, S. Thirup,, and J. Nyborg. 1990. Structural determination of the functional sites of E. coli elongation factor Tu. Biochim. Biophys. Acta 1050: 203 208.
18. Clark, B. F. C.,, T. F. M. la Cour,, K. M. Nielsen,, J. Nyborg,, H. U. Petersen,, G. E. Siboska,, and F. P. Wikman,. 1984. Structure of bacterial elongation factor EF-Tu and its interaction with aminoacyl-tRNA, p. 127 148. In B. F. C. Clark, and H. U. Petersen (ed.), Gene Expression. Alfred Benzon Symposium 19, Munksgaard, Copenhagen.
19. Cremers, A. F. M.,, L. Bosch,, J. E. Mellema,, and A. P. Sam. 1981. Characterization of regular polymerization products of elongation factor Tu from Escherichia coli by electron microscopy and image processing. J. Mol. Biol. 153: 477 486.
20. Delaria, K.,, M. Guillen,, A. Lovie,, and F. Jurnak. 1991. Stabilization of the Escherichia coli elongation factor EF-Tu :GTP-aminoacyl-tRNA complex. Arch. Biochem. Biophys. 286: 207 211.
21. Dell, V. A.,, D. L. Miller,, and A. E. Johnson. 1990. Effects of nucleotide-and aurodox-induced changes in elongator factor Tu conformation upon its interactions with aminoacyl transfer RNA. A fluorescence study. Biochemistry 29: 1757 1763.
22. Desgres, J.,, G. Keith,, K. Kuo,, and C. Gehrke. 1989. Presence of phosphorylated ribosyl-adenosine in T ΨC stem of yeast methionine initiator tRNA. Nucleic Acids Res. 17: 865 882.
23. Dock-Bregeon, A. C, E. Westhof, R. Giege, and D. Moras. 1989. Solution structure of tRNA with large variable region: yeast tRNA s. J. Mol. Biol. 206: 707 722.
24. Douthwaite, S.,, R. A. Garrett,, and R. Wagner. 1983. Comparison of Escherichia coli tRNA phe in the free state, in the ternary complex and in the ribosomal A and P sites by chemical probing. Eur. J. Biochem. 131: 261 269.
25. Duffy, L.,, L. Gerber,, A. E. Johnson,, and D. L. Miller. 1981. Identification of a histidine residue near the aminoacyl transfer ribonucleic acid binding site of elongation factor Tu. Biochemistry 20: 4663 4666.
26. Ehrenberg, M.,, A. M. Rojas,, J. Weiser,, and C. G. Kurland. 1990. How many EF-Tu molecules participate in aminoacyl-tRNA binding and peptide bond formation in Escherichia coli translation. J. Mol. Biol. 211: 739 749.
27. Faulhamer, H. G.,, and R. L. Joshi. 1987. Structural features in aminoacyl-tRNAs required for recognition by elongation factor Tu. FEBS Lett. 217: 203 211.
28. Forchhammer, K.,, W. Leinfelder,, and A. Bock. 1989. Identification of a novel translational factor necessary for the incorporation of selenocysteine into protein. Nature (London) 342: 453 456.
29. Forchhammer, K.,, K.-P. Rucknagel,, and A. Bock. 1990. Purification and biochemical characterisation of SELB, a translational factor involved in selenoprotein synthesis, J. Biol. Chem. 265: 9346 9350.
30. Forster, C.,, G. Ott,, K. Forchhammer,, and M. Sprinzl. 1990. Interaction of selenocysteine-incorporating tRNA with elongator factor Tu from E. coli. Nucleic Acids Res. 18: 487 491.
31. Forster, C.,, S. Limmer,, and M. Sprinzl. Submitted for publication.
32. Francklyn, C.,, K. Musier-Forsyth,, and P. Schimmel. 1992. Small helices as substrates for aminoacylation and their relationship to charging of transfer RNAs. Eur. J. Biochem. 206: 315 321.
33. Giege, R.,, C. Florentz,, A. Garcia,, H. Grosjean,, V. Perret,, J. Puglisi,, A. Theobald-Dietrich,, and J. P. Ebel. 1990. Exploring the aminoacylation function of transfer RNA by macro-molecular engineering approaches. Involvement of conformational features in the charging process of yeast tRNA Asp. Biochimie 72: 453 461.
34. Gish, G.,, and F. Eckstein. 1988. DNA and RNA sequence determination based on phosphothioate chemistry. Science 240: 1520 1522.
35. Haruki, M.,, R. Matsumoto,, M. Hara-Yokoyama,, T. Miyazawa,, and S. Yokoyama. 1990. Conformational changes of aminoacylated-tRNA and uncharged tRNA upon complex formation with polypeptide chain elongation factor Tu. FEBS Lett. 263: 361 364.
36. Hazlet, T. L.,, A. E. Johnson,, and D. M. Jameson. 1989. Time-resolved fluorescence studies on the ternary complex formed between bacterial elongation factor Tu, guanosine triphosphate and phenylalanyl-tRNA. Biochemistry 28: 4109 4117.
37. Heerschap, A.,, A. L. I. Walters,, J. R. Mellema,, and C. W. Hilbers. 1986. Study of the interaction between uncharged yeast tRNA phe and elongation factor Tu from Bacillus stear-othermophilus. Biochemistry 25: 2707 2713.
38. Hingerty, B.,, R. S. Brown,, and A. Jack. 1978. Further refinement of the structure of yeast tRNA phe. J. Mol. Biol. 124: 523 534.
39. Holbrook, S. R.,, J. L. Sussman,, R. W. Warrant,, and S. H. Kim. 1978. Crystal structure of yeast phenylalanine transfer RNA. II. Structural features and functional implications. J. Mol. Biol. 123: 631 660.
40. Hiittenhofer, A.,, and H. F. Noller. 1992. Hydroxyl radical cleavage of tRNAs in the ribosomal P site. Proc. Natl. Acad. Sci. USA 89: 7851 7855.
41. Hwang, K.-W.,, F. Jurnak,, and D. L. Miller,. 1989. A mutation that hinders the GTP induced aminoacyl-tRNA binding of elongation factor Tu, p. 77 85. In L. Bosch,, B. Kraal,, and A. Parmaggiani (ed.), Guanine-Nucleotide Binding Proteins. Plenum Press, New York.
42. Janiak, F.,, V. A. Dell,, J. K. Abrahamson,, B. S. Watson,, D. L. Miller,, and A. E. Johnson. 1990. Fluorescence characterisation of the interaction of various transfer RNA species with elongator factor Tu-GTP: evidence for functional role for elongation factor Tu in protein biosynthesis. Biochemistry 29: 4268 4277.
43. Jonak, J.,, T. E. Petersen,, B. F. C. Clark,, and I. Rychlik. 1982. N-tosyl-L-phenylalanylchloromthane reacts with cysteine 81 in the molecule of elongation factor Tu from Escherichia coli. FEBS Lett. 150: 485 488.
44. Jonak, J.,, K. Pokorna,, B. Meloun,, and K. Karas. 1986. Structural homology between elongation factors EF-Tu from Bacillus stearothermophilus and Escherichia coli in the binding site for aminoacyl-tRNA. Eur. J. Biochem. 154: 355 362.
45. Joshi, R. L.,, H. Faulhammer,, F. Chapeville,, M. Sprinzl,, and A. L. Haenni. 1980. Aminoacyl-tRNA domain of turnip yellow mosaic virus interacting with elongation factor Tu. Nucleic Acids Res. 12: 7467 7973.
46. Joshi, R. L.,, H. G. Faulhammer,, A. L. Haenni,, and M. Sprinzl. 1986. Fluorescence labeling of an aminoacyl-tRNA at 3'-end and its interaction with elongation factor Tu:GTP. FEBS Lett. 208: 189 192.
47. Kabsch, W.,, W. H. Gast,, G. E. Schultz,, and R. Leberman. 1977. Low resolution structure of partially trypsin-degraded polypeptide elongation factor, EF-Tu, from Escherichia coli. J. Mol. Biol. 117: 999 1012.
48. Kenan, D. J.,, C. C. Query,, and J. D. Keene. 1991. RNA recognition: toward identifying determinants of specificity. Trends Biochem. Sci. 16: 214 219.
49. Kiesewetter, S.,, G. Ott,, and M. Sprinzl. 1990. The role of modified purine 64 in initiator /elongator discrimination of tRNAM from yeast and wheat germ. Nucleic Acids Res. 18: 4677 4682.
50. Kinzy, T. G.,, J. P. Freeman,, A. Johnson,, and W. C. Merrick. 1992. A model for the aminoacyl-tRNA binding site of eukaryotic elongation factor la. J. Biol. Chem. 267: 1623 1632.
51. Kjeldgaard, M.,, P. Nissen,, S. Thirup,, and J. Nyborg. 1993. The crystal structure of elongation factor EF-Tu from Thermits aquaticus in the GTP conformation. Structure 1: 35 50.
52. Kjeldgaard, M.,, and J. Nyborg. 1992. Refined structure of elongation factor EF-Tu from Escherichia coli. J. Mol. Biol. 223: 721 742.
53. Kraulis, P. 1991. Molscript: a program to produce both detailed and schematic plots of protein structures. J. Appl. Cryst. 24: 946 950.
54. Kruse, T. A.,, B. F. C. Clark,, B. Appel,, and V. A. Erdmann. 1980. The structure of the CCA end, aminoacyl-tRNA and aminoacyl-tRNA in the ternary complex. FEBS Lett. 117: 315 318.
55. Lapointe, J.,, and R. Giege,. 1992. Transfer RNAs and aminoacyl-tRNA synthetases, p. 135 169. In H. Trachsel (ed.), Translation in Eukaryotes. CRC Press, Boca Raton, Fla..
56. Latham, J. A.,, and T. R. Cech. 1989. Defining the inside and outside of a catalytic RNA molecule. Science 245: 276 282.
57. Leinfelder, W.,, E. Zehelein,, M.-A. Mandrand-Berthelot,, and A. Bock. 1988. Gene for a novel tRNA species that accepts L-serine and cotranslationally inserts selenocysteine. Nature (London) 331: 723 725.
58. Lim, V.,, C. Venclovas,, A. Spirin,, R. Brimacombe,, P. Mitchell,, and F. Muller. 1992. How are tRNAs and mRNA arranged in the ribosome? An attempt to correlate the stereochemistry of the tRNA-mRNA interaction with constraints imposed by the ribosomal topography. Nucleic Acids Res. 20: 2627 2637.
59. Lorber, B.,, and R. Giege,. 1992. Preparation and handling of biological macromolecules for crystallization, p. 19 45. In A. Ducruix, and R. Giege (ed.), Crystallization of Nucleic Acids and Proteins. A Practical Approach. Oxford University Press, Oxford, United Kingdom.
60. Louie, A.,, and F. Jurnak. 1985. Kinetic studies of Escherichia coli elongation factor Tu-guanosine 5'-triphos-phate-aminoacyl-tRNA complexes. Biochemistry 24: 6433 6439.
61. Metz-Boutique, N.-H.,, J. Reinbolt,, J. P. Ebel,, C. Ehresmann,, and B. Ehresmann. 1989. Crosslinking of elongation factor Tu to tRNA ph,! by trans-diamminedichlo-roplatinium II. FEBS Lett. 245: 194 200.
62. Mizuno, H.,, and M. Sundaralingham. 1978. Stacking of Crick wobble pair and Watson-Crick pair: stability rules of G-U pairs at ends of helical stems in tRNAs and relation to codon-anticodon wobble interaction. Nucleic Acids Res. 5: 4451 4461.
63. Moazed, D.,, and H. F. Noller. 1989. Intermediate states in the movement of transfer RNA in the ribosome. Nature (London) 342: 142 148.
64. Moazed, D.,, and H. F. Noller. 1990. Binding of tRNA to the ribosomal A and P sites protects two distinct sets of nucleotides in 16S rRNA. ]. Mol. Biol. 211: 135 145.
65. Morales, J.,, O. Mulner-Lorillou,, H. Denis,, and R. Belle. 1991. Purification and characterization of a germ cell-specific form of elongator from la (EF-la) from Xenopus laevis. Biochimie 73: 1249 1253.
66. Morikawa, K.,, T. F. M. la Cour,, J. Nyborg,, K. M. Rasmussen,, D. L. Miller,, and B. F. C. Clark. 1978. High resolution X-ray crystallographic analysis of a modified form of the elongation factor Tu:guanosine diphosphate complex. J. Mol. Biol. 125: 325 338.
66a.. Nazarenko, I.,, and O. Uhlenbeck. Personal communication.
67. Österberg, R.,, B. Sjöberg,, R. Ligaarden,, and P. Elias. 1981. A small-angle X-ray scattering study of the complex formation between elongation factor Tu-GTP and valyl-tRNA Val from Escherichia coli. Eur. J. Biochem. 117: 155 159.
68. Ott, G.,, H. G. Faulhammer,, and M. Sprinzl. 1989. Interaction of elongation factor Tu from Escherichia coli with aminoacyl-tRNA carrying a fluorescent reporter group on the 3' terminus. Eur. J. Biochem. 184: 345 352.
69. Ott, G.,, J. Jonak,, J. P. Abrahams,, and M. Sprinzl. 1990. The influence of different modifications of elongation factor Tu from Escherichia coli on ternary complex formation investigated by fluorescence spectroscopy. Nucleic Acids Res. 18: 437 441.
70. Ott, G.,, and M. Sprinzl. 1992. Ternary complexes of bacterial aminoacyl-tRNAs with elongation factor Tu and GTP, p. 323 342. In Structural Tools for the Analysis of Protein-Nucleic Acid Complexes: Advances in Life Sciences. Bi-rkhauser Verlag, Basel.
71. Otzen, D.,, J. Barciszewski,, and B. F. C. Clark. 1993. Altered lead(II)-cleavage pattern of free Phe-tRNA phe and Phe-tRNA phe in ternary complex with EF-Tu:GTP. Biochem. Mol. Biol. Int. 31: 95 103.
72. Pai, E.,, U. Krengel,, G. A. Petsko,, R. S. Goody,, W. Kabsch,, and A. Wittinghofer. 1990. Refined crystal structure of the triphosphate conformation of H-ras p21 at 1.35 A resolution: implications for the mechanism of GTP hydrolysis. EMBO ]. 9: 2351 2884.
73. Parmeggiani, A.,, G. W. M. Swart,, K. K. Mortensen,, M. Jensen,, B. F. C. Clark,, I. Dente,, and R. Cortese. 1987. Properties of a genetically engineered G domain of elongation factor Tu. Proc. Natl. Acad. Sci. USA 84: 3141 3145.
74. Peter, M. E.,, C. D. A. Reiser,, N. Schirmer,, T. Kiefhober,, G. Ott,, N. Grillenbeck,, and M. Sprinzl. 1990. Interaction of the isolated domain II/III of T. thermophilus elongation factor Tu with the nucleotide exchanging factor EF-Ts. Nucleic Acids Res 18: 6889 6893.
75. Peter, M. E.,, N. K. Schirmer,, C. O. A. Reiser,, and M. Sprinzl. 1990. Mapping the effector region in Thermus thermophilus elongator factor Tu. Biochemistry 29: 2876 2884.
76. Pingould, A.,, F. U. Gast,, and F. Peters. 1990. The influence of the concentrations of elongation factors and tRNAs on the dynamics and accuracy of protein biosynthesis. Biochim. Biophys. Acta 1050: 252 258.
77. Powers, X.,, and H. F. Noller. 1991. A functional pseudoknot in 16S ribosomal RNA. EMBO J. 10: 2203 2214.
78. Powers, X.,, and H. F. Noller. 1993. Evidence for functional interaction between elongation factor Tu and 16S ribosomal RNA. Proc. Natl. Acad. Sci. USA 90: 1364 1368.
79. Rasmussen, N. J.,, F. P. Wikman,, and B. F. C. Clark. 1990. Crosslinking of tRNA containing a long extra arm to elongation factor Tu by transdiamminedichloroplatinum II. Nucleic Acids Res. 18: 4883 4890.
79a.. Reinbout, J. Personal communication.
80. Reshetnikova, L. S.,, C. O. A. Reiser,, N. K. Shirmer,, H. Berchtold,, R. Strorm,, R. Hilgengeld,, and M. Sprinzl. 1991. Crystals of intact elongation factor Tu from T. thermophilus diffracting to high resolution, J. Mol. Biol. 221: 375 377.
81. Reshetnikova, L. S.,, N. K. Schirmer,, C. O. A. Reiser,, H. Berchtold,, R. Storm,, R. Hilgenfeld,, and M. Sprinzl. 1992. Crystals of intact elongation factor Tu from T. thermophilus diffracting to 1.45 A resolution. J. Crystal Growth 122: 360 365.
82. Riis, B.,, S. I. S. Rattan,, B. F. C. Clark,, and W. C. Merrick. 1990. Eukaryotic protein elongation factors. Trends Biochem. Sci. 15: 420 424.
83. Rould, M. A.,, J. J. Perona,, D. Soli, and X Steitz. 1989. Structure of E. coli glutaminyl-tRNA synthetase complexed with tRNA Gln and ATP at 2.8 A resolution. Science 246: 1135 1142.
84. Rudinger, J.,, J. D. Puglisi,, J. Putz,, D. Schatz,, F. Eckstein,, C. Florentz,, and R. Giege. 1992. Determinant nucleotides of yeast tRNA AsP interact directly with aspartyl-tRNA synthetase. Proc. Natl. Acad. Sci. USA 89: 5882 5886.
85. Ruff, M.,, S. Krishnaswamy,, M. Boeglin,, A. Poterszman,, A. Mitschler,, A. Podjarny,, B. Rees,, J. C. Thierry,, and D. Moras. 1991. Class II aminoacyl-transfer RNA synthetases: crystal structure of yeast aspartyl-tRNA synthetases complexed with tRNA AsP. Science 252: 1682 1689.
86. Sampson, J. R.,, A. B. DiRenzo,, L. S. Behlem,, and O. C. Uhlenbeck. 1990. Role of the tertiary nucleotides in the interaction of yeast phenylalanine tRNA with its cognate synthetase. Biochemistry 29: 2523 2532.
87. Schatz, D.,, R. Lebermann, and R Eckstein. 1991. Interaction of Escherichia coli tRNA Ser with its cognate aminoacyl-tRNA synthetase as determined by footprinting with phos-phorothioate-containing tRNA transcripts. Proc. Natl. Acad. Sci. USA 88: 6132 6136.
88. Schimmel, P. 1993. GTP hydrolysis in protein synthesis: two for Tu. Science 259: 1264 1265.
89. Schimmel, P. R. 1987. Aminoacyl-tRNA synthetases: general scheme of structure function relationships in the polypeptides and recognition of transfer RNAs. Annu. Rev. Biochem. 56: 125 158.
90. Schwabe, J. W. R.,, and D. Rhodes. 1991. Beyond zinc fingers: steroid hormone receptors have a novel structural motif for DNA recognition. Trends Biochem. Sci. 16: 291 296.
91. Seong, B. L.,, and U. L. RajBhandary. 1987. Escherichia coli formylmethionine tRNA: mutations in the GGG-CCC sequence conserved in anticodon stem of initiator tRNAs affect initiation of protein biosynthesis and conformation of anticodon loop. Proc. Natl. Acad. Sci. USA 84: 334 338.
92. Seong, B. L.,, and U. L. RajBhandary. 1987. Mutants of Escherichia coli formylmethionine tRNA: a single base change enables initiator tRNA to act as an elongator in vitro. Proc. Natl. Acad. Sci. USA 84: 8859 8863.
93.. Sprinzl, M.,, and R. Hilgenfeld,. Elongation factor Tu from Thermus thermophilus, structure, domain and interactions. In K. Nierhaus,, A. Subramanian,, V. A. Erdmann,, E. Francesci,, and B. Witmann-Liebold (ed.), Translation Apparatus. Submitted for publication.
94. Sprinzl, M.,, J. Moll,, F. Meissner,, and T. Hartmann. 1985. Compilation of tRNA sequences. Nucleic Acids Res. 13: rl r49.
95. Sturchler, C.,, E. Westhof,, P. Carbon,, and A. Krol. 1993. Unique secondary and tertiary structural features of the eu-karyotic selenocysteine tRNA Ser. Nucleic Acids Res. 21: 1073 1079.
96. Sussman, J. L.,, S. R. Holbrook,, R. W. Warrant,, G. M. Church,, and S. H. Kim. 1978. Crystal structure of yeast phenylalanine transfer RNA. I. Crystallographic refinement. J. Mol. Biol. 123: 607 630.
97. Swart, G. W. M.,, and A. Parmaggiani. 1989. tRNA and the guanosine triphosphatase activity of elongation factor Tu. Biochemistry 28: 327 337.
98. Tukalo, M. A.,, M. D. Kubler,, D. Kern,, M. Mongel,, C. Ehresmann,, J. P. Ebel,, B. Ehresmann,, and R. Giege. 1987. Tnjrts-diamminedichloroplatinum II, a reversible RNA-pro-tein crosslinking agent. Application to the ribosome and to a aminoacyl-tRNA synthetase/tRNA complex. Biochemistry 26: 5200 5208.
99. Usman, N.,, and R. Cedergren. 1992. Exploiting of the chemical synthesis of RNA. Trends Biochem. Sci. 17: 334 339.
100. Valencia, A.,, M. Kjeldgaard,, and C. Sander. 1991. G-do-mains of ras p21 oncogene and elongation factor Tu: analysis of three-dimensional structures, sequence families and functional sites. Proc. Natl. Acad. Sci. USA 88: 5443 5447.
101. Van Damme, H. T. E.,, R. Amons,, and W. Moller. 1992. Identification of the sites in the eukaryotic elongation factor la involved in the binding of elongation factor IB and aminoacyl-tRNA. Eur. J. Biochem. 207: 1025 1034.
102. Wagner, X.,, C. Rundquist,, M. Gross,, and P. R. Sigler. 1989. Structural features that underline the use of bacterial Met-tRNAM primarily as an elongator in eukaryotic protein biosynthesis. J. Biol. Chem. 264: 18506 18511.
103. Wang, X.,, and R. A. Pagett. 1989. Hydroxyl radical foot-printing of RNA: application to pre-mRNA splicing complexes. Proc. Natl. Acad. Sci. USA 86: 7795 7799.
104. Weiland, A.,, and A. Parmeggiani. 1993. Toward a model for the interaction between elongation factor Tu and the ribosome. Science 259: 1311 1314.
105. Westhof, E. 1987. Water: an integral part of nucleic acid structure. Annu. Rev. Biophys. Chem. 17: 125 144.
106. Westhof, E.,, P. Dumas,, and D. Moras. 1985. Crystal-lographic refinement of yeast aspartic acid transfer RNA. J. Mol. Biol. 184: 119 145.
107.. Weygand-Durasevic, I.,, T. A. Kruse,, and B. F. C. Clark. 1981. The influence of elongation factor EF-Tu:GTP and anticodon-anticodon interactions on the anticodon loop conformation of yeast tRNATy. Eur. J. Biochem. 116: 59 65.
108. White, S. A.,, M. Nilges,, A. Huang,, A. T. Brunger,, and P. B. Moore. 1992. NMR analysis of helix I from the 5S rRNA of Escherichia coli. Biochemistry 31: 1610 1621.
109. Wikman F. P.,, P. Romby,, M. H. Metz,, J. Reinbolt,, B. F. C. Clark,, J. P. Ebel,, C. Ehresmann,, and B. Ehresmann. 1987. Crosslinking of elongation factor Tu to tRNA phe by trans-diamminedichloroplatinum II. Characterization of two crosslinking sites in the tRNA. Nucleic Acids Res. 15: 5787 5801.
110. Wikman, F. P.,, G. E. Siboska,, H. U. Petersen,, and B. F. C. Clark. 1982. The sites of interaction of aminoacyl-tRNA with elongation factor Tu. EMBO J. 1: 1095 1100.
111. WooUey, P.,, and B. F. C. Clark. 1989. Homologies in the structures of G-binding proteins. Bio/Technology 7: 913 920.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error