1887

Chapter 21 : Recognition of Aminoacyl-tRNAs by Protein Elongation Factors

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Recognition of Aminoacyl-tRNAs by Protein Elongation Factors, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818333/9781555810733_Chap21-1.gif /docserver/preview/fulltext/10.1128/9781555818333/9781555810733_Chap21-2.gif

Abstract:

The interactive recognition of nucleic acids by proteins is a central process in the regulation of gene expression. To gain insight into such interactions requires a knowledge of appropriate three-dimensional structures and information on biochemical function. Only a few native biological supramacromolecular protein-nucleic acid complexes are currently accessible for such detailed investigations. One convenient object for such study is the ternary complex composed of aminoacyl-tRNA (aa-tRNA) and elongation factor (EF-Tu) bound to GTR. This chapter brings up to date two earlier reviews addressing the problem of aa-tRNA and EF-Tu:GTP interaction. It summarizes the most recent published studies that contribute to an understanding of the recognitory interactions between tRNA and the protein elongation factor, and the chapter puts these studies in perspective. Finally, it proposes a new model for the three-dimensional structure of the ternary complex (TC). This model accommodates all existing structural experimental data obtained during the studies of the TC.

Citation: Clark B, Kjeldgaard M, Barciszewski J, Sprinzl M. 1995. Recognition of Aminoacyl-tRNAs by Protein Elongation Factors, p 423-442. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch21

Key Concept Ranking

Nuclear Magnetic Resonance Spectroscopy
0.42562845
Basic Amino Acids
0.41258764
0.42562845
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1.
Figure 1.

Hydrogen bonding interactions between GDP and EF-Tu.

Citation: Clark B, Kjeldgaard M, Barciszewski J, Sprinzl M. 1995. Recognition of Aminoacyl-tRNAs by Protein Elongation Factors, p 423-442. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch21
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

Secondary structure model of tRNA ( ) with marked nucleotides whose reactivity is reduced in the presence of elongation factor Tu ( ) or cross-linked to the EF-Tu ( ). Large filled arrows mean protected nucleotides, large empty arrows mean exposed nucleotides, and small filled arrows mean neutral cuts.

Citation: Clark B, Kjeldgaard M, Barciszewski J, Sprinzl M. 1995. Recognition of Aminoacyl-tRNAs by Protein Elongation Factors, p 423-442. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch21
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.
Figure 3.

Cartoon model of conformational changes of elongation factor from GDP to GTP form. Domain 2 moves 35-40 Å to form a cleft with domain 1, which contains the amino acid binding site of aa-tRNA. The effector region comprises the amino acid residues 40–60 in the case of EF-Tu of .

Citation: Clark B, Kjeldgaard M, Barciszewski J, Sprinzl M. 1995. Recognition of Aminoacyl-tRNAs by Protein Elongation Factors, p 423-442. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch21
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4a.
Figure 4a.

Panels A and B show two views of a tertiary structural model of the ternary complex of EF-Tu:GTP-aa-tRNA. The stretched CCA end is assumed to be bent back to the EF-Tu with the amino acid attached (not shown) (compare with reference ).

Citation: Clark B, Kjeldgaard M, Barciszewski J, Sprinzl M. 1995. Recognition of Aminoacyl-tRNAs by Protein Elongation Factors, p 423-442. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch21
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4b.
Figure 4b.

Panels A and B show two views of a tertiary structural model of the ternary complex of EF-Tu:GTP-aa-tRNA. The stretched CCA end is assumed to be bent back to the EF-Tu with the amino acid attached (not shown) (compare with reference ).

Citation: Clark B, Kjeldgaard M, Barciszewski J, Sprinzl M. 1995. Recognition of Aminoacyl-tRNAs by Protein Elongation Factors, p 423-442. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch21
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818333.chap21
1. Abrahams, J. P.,, B. Krai,, B. F. C. Clark,, and L. Bosch. 1991. Isolation and stability of ternary complexes of elongation factor Tu-GTP and aminoacyl-tRNA. Nucleic Acids Res. 19:553557.
2. Abrahams, J. P.,, M. J. van Raaij,, G. Ott,, B. Kraal,, and L. Bosh. 1991. Kirromycin drastically reduces the affinity of E. coli elongation factor for aminoacyl-tRNA. Biochemistry 30:67056710.
3. Antonsson, B.,, and R. Leberman. 1982. Stabilization of the ternary complex EF-Tu:GTP-Val-tRNA by ammonium salts. Biochimie 64:10351040.
4. Antonsson, B.,, R. Leberman,, B. Jacrot,, and G. Zaccai. 1986. Small-angle neutron-scattering study of the ternary complex formed between bacterial elongation factor Tu, guanosine-5'-triphosphate and valyl-tRNA. Biochemistry 25:36553659.
5. Barciszewska, M.,, V. A. Erdmann,, and J. Barciszewski. 1992. Dynamic structure of transfer RNA in solution monitored by reaction with hydroxyl radicals. Biochem. Int. 27:11271135.
6. Barciszewska, M.,, V. A. Erdmann,, and J. Barciszewski. 1992. Unfolding of the tertiary structure of specific tRNA and ribosomal 5S RNA from plants as studied with hydroxyl radicals. Int. J. Biol. Macromol. 14:4144.
7. Baron, C.,, and A. Bock. 1991. The length of the aminoacyl-acceptor stem of the selenocysteine-specific tRNASec of Escherichia coli is the dominant for binding to elongation factor SELB or Tu. J. Biol. Chem. 266:2037520379.
8. Basavappa, R.,, and P. B. Sigler. 1991. The 3 A crystal structure of yeast initiator tRNA: functional implications in initiator/elongator discrimination. EMBO J. 10:31053111.
9. Bench, K.,, U. Pieper,, G. Ott,, N. Schirmer,, M. Sprinzl,, and A. Pingould. 1991. How many EF-Tu molecules participate in arminoacyl-tRNA binding. Biochimie 73:10451050.
10. Berchold, H.,, L. Reshetnikova,, C. O. A. Reiser,, N. K. Schirmer,, M. Sprinzl,, and R. Hilgenfeld. 1993. Crystal structure of active elongation factor Tu reveals major domain rearrangements. Nature (London) 365:126132.
11. Bethlen, L. S.,, J. R. Sampson,, A. B. Direnzo,, and O. C. Uhlenbeck. 1990. Lead-catalyzed cleavage of yeast tRNA Phe mutants. Biochemistry 29:25152523.
12. Blechschmidt, B.,, H. W. Johan,, J. P. Heinfeld,, M. Sprinzl,, and M. Boublik. Visualization of a ternary complex of the E. coli Phe-tRNAThr and EF-Tu:GTP from T. thermophilus by scanning transmission election microscopy, J. Struct. Biol., in press.
13. Blumenthal, X.,, T. A. Landers,, and K. Weber. 1972. Bacteriophage Qb replicase contains the protein biosynthesis elongation factors EF-Tu and EF-Ts. Proc. Natl. Acad. Sci. USA 77:866886.
14. Bock, A.,, K. Forchhammer,, J. Heider,, and C. Baron. 1991. Selenoprotein synthesis: an expression of the genetic code. Trends Biochem. Sci. 16:463467.
15. Boutorin, A. S.,, B. F. C. Clark,, J. P. Ebel,, T. A. Kruse,, H. U. Petersen,, P. Remy,, and S. Vassüenko. 1981. A study of the interaction of Escherichia coli elongation factor-Tu with aminoacyl-tRNAs by partial digestion with cobra venom ribonuclease. J. Mol. Biol. 152:593608.
16. Churchill, M. E. A.,, and A. A. Travers. 1991. Protein motifs that recognize structural features of DNA. Trends Biochem. Sci. 16:9297.
17. Clark, B. F. C.,, M. Kjeldgaard,, T. F. M. la Cour,, S. Thirup,, and J. Nyborg. 1990. Structural determination of the functional sites of E. coli elongation factor Tu. Biochim. Biophys. Acta 1050:203208.
18. Clark, B. F. C.,, T. F. M. la Cour,, K. M. Nielsen,, J. Nyborg,, H. U. Petersen,, G. E. Siboska,, and F. P. Wikman,. 1984. Structure of bacterial elongation factor EF-Tu and its interaction with aminoacyl-tRNA, p. 127148. In B. F. C. Clark, and H. U. Petersen (ed.), Gene Expression. Alfred Benzon Symposium 19, Munksgaard, Copenhagen.
19. Cremers, A. F. M.,, L. Bosch,, J. E. Mellema,, and A. P. Sam. 1981. Characterization of regular polymerization products of elongation factor Tu from Escherichia coli by electron microscopy and image processing. J. Mol. Biol. 153:477486.
20. Delaria, K.,, M. Guillen,, A. Lovie,, and F. Jurnak. 1991. Stabilization of the Escherichia coli elongation factor EF-Tu :GTP-aminoacyl-tRNA complex. Arch. Biochem. Biophys. 286:207211.
21. Dell, V. A.,, D. L. Miller,, and A. E. Johnson. 1990. Effects of nucleotide-and aurodox-induced changes in elongator factor Tu conformation upon its interactions with aminoacyl transfer RNA. A fluorescence study. Biochemistry 29:17571763.
22. Desgres, J.,, G. Keith,, K. Kuo,, and C. Gehrke. 1989. Presence of phosphorylated ribosyl-adenosine in T ΨC stem of yeast methionine initiator tRNA. Nucleic Acids Res. 17:865882.
23. Dock-Bregeon, A. C, E. Westhof, R. Giege, and D. Moras. 1989. Solution structure of tRNA with large variable region: yeast tRNAs. J. Mol. Biol. 206:707722.
24. Douthwaite, S.,, R. A. Garrett,, and R. Wagner. 1983. Comparison of Escherichia coli tRNAphe in the free state, in the ternary complex and in the ribosomal A and P sites by chemical probing. Eur. J. Biochem. 131:261269.
25. Duffy, L.,, L. Gerber,, A. E. Johnson,, and D. L. Miller. 1981. Identification of a histidine residue near the aminoacyl transfer ribonucleic acid binding site of elongation factor Tu. Biochemistry 20:46634666.
26. Ehrenberg, M.,, A. M. Rojas,, J. Weiser,, and C. G. Kurland.1990. How many EF-Tu molecules participate in aminoacyl-tRNA binding and peptide bond formation in Escherichia coli translation. J. Mol. Biol. 211:739749.
27. Faulhamer, H. G.,, and R. L. Joshi. 1987. Structural features in aminoacyl-tRNAs required for recognition by elongation factor Tu. FEBS Lett. 217:203211.
28. Forchhammer, K.,, W. Leinfelder,, and A. Bock. 1989. Identification of a novel translational factor necessary for the incorporation of selenocysteine into protein. Nature (London) 342:453456.
29. Forchhammer, K.,, K.-P. Rucknagel,, and A. Bock. 1990. Purification and biochemical characterisation of SELB, a translational factor involved in selenoprotein synthesis, J. Biol. Chem. 265:93469350.
30. Forster, C.,, G. Ott,, K. Forchhammer,, and M. Sprinzl. 1990. Interaction of selenocysteine-incorporating tRNA with elongator factor Tu from E. coli. Nucleic Acids Res. 18:487491.
31. Forster, C.,, S. Limmer,, and M. Sprinzl. Submitted for publication.
32. Francklyn, C.,, K. Musier-Forsyth,, and P. Schimmel. 1992. Small helices as substrates for aminoacylation and their relationship to charging of transfer RNAs. Eur. J. Biochem. 206:315321.
33. Giege, R.,, C. Florentz,, A. Garcia,, H. Grosjean,, V. Perret,, J. Puglisi,, A. Theobald-Dietrich,, and J. P. Ebel. 1990. Exploring the aminoacylation function of transfer RNA by macro-molecular engineering approaches. Involvement of conformational features in the charging process of yeast tRNAAsp. Biochimie 72:453461.
34. Gish, G.,, and F. Eckstein. 1988. DNA and RNA sequence determination based on phosphothioate chemistry. Science 240:15201522.
35. Haruki, M.,, R. Matsumoto,, M. Hara-Yokoyama,, T. Miyazawa,, and S. Yokoyama. 1990. Conformational changes of aminoacylated-tRNA and uncharged tRNA upon complex formation with polypeptide chain elongation factor Tu. FEBS Lett. 263:361364.
36. Hazlet, T. L.,, A. E. Johnson,, and D. M. Jameson. 1989. Time-resolved fluorescence studies on the ternary complex formed between bacterial elongation factor Tu, guanosine triphosphate and phenylalanyl-tRNA. Biochemistry 28:41094117.
37. Heerschap, A.,, A. L. I. Walters,, J. R. Mellema,, and C. W. Hilbers. 1986. Study of the interaction between uncharged yeast tRNAphe and elongation factor Tu from Bacillus stear-othermophilus. Biochemistry 25:27072713.
38. Hingerty, B.,, R. S. Brown,, and A. Jack. 1978. Further refinement of the structure of yeast tRNAphe. J. Mol. Biol. 124:523534.
39. Holbrook, S. R.,, J. L. Sussman,, R. W. Warrant,, and S. H. Kim. 1978. Crystal structure of yeast phenylalanine transfer RNA. II. Structural features and functional implications. J. Mol. Biol. 123:631660.
40. Hiittenhofer, A.,, and H. F. Noller. 1992. Hydroxyl radical cleavage of tRNAs in the ribosomal P site. Proc. Natl. Acad. Sci. USA 89:78517855.
41. Hwang, K.-W.,, F. Jurnak,, and D. L. Miller,. 1989. A mutation that hinders the GTP induced aminoacyl-tRNA binding of elongation factor Tu, p. 7785. In L. Bosch,, B. Kraal,, and A. Parmaggiani (ed.), Guanine-Nucleotide Binding Proteins. Plenum Press, New York.
42. Janiak, F.,, V. A. Dell,, J. K. Abrahamson,, B. S. Watson,, D. L. Miller,, and A. E. Johnson. 1990. Fluorescence characterisation of the interaction of various transfer RNA species with elongator factor Tu-GTP: evidence for functional role for elongation factor Tu in protein biosynthesis. Biochemistry 29:42684277.
43. Jonak, J.,, T. E. Petersen,, B. F. C. Clark,, and I. Rychlik. 1982. N-tosyl-L-phenylalanylchloromthane reacts with cysteine 81 in the molecule of elongation factor Tu from Escherichia coli. FEBS Lett. 150:485488.
44. Jonak, J.,, K. Pokorna,, B. Meloun,, and K. Karas. 1986. Structural homology between elongation factors EF-Tu from Bacillus stearothermophilus and Escherichia coli in the binding site for aminoacyl-tRNA. Eur. J. Biochem. 154:355362.
45. Joshi, R. L.,, H. Faulhammer,, F. Chapeville,, M. Sprinzl,, and A. L. Haenni. 1980. Aminoacyl-tRNA domain of turnip yellow mosaic virus interacting with elongation factor Tu. Nucleic Acids Res. 12:74677973.
46. Joshi, R. L.,, H. G. Faulhammer,, A. L. Haenni,, and M. Sprinzl. 1986. Fluorescence labeling of an aminoacyl-tRNA at 3'-end and its interaction with elongation factor Tu:GTP. FEBS Lett. 208:189192.
47. Kabsch, W.,, W. H. Gast,, G. E. Schultz,, and R. Leberman. 1977. Low resolution structure of partially trypsin-degraded polypeptide elongation factor, EF-Tu, from Escherichia coli. J. Mol. Biol. 117:9991012.
48. Kenan, D. J.,, C. C. Query,, and J. D. Keene. 1991. RNA recognition: toward identifying determinants of specificity. Trends Biochem. Sci. 16:214219.
49. Kiesewetter, S.,, G. Ott,, and M. Sprinzl. 1990. The role of modified purine 64 in initiator /elongator discrimination of tRNAM from yeast and wheat germ. Nucleic Acids Res. 18:46774682.
50. Kinzy, T. G.,, J. P. Freeman,, A. Johnson,, and W. C. Merrick. 1992. A model for the aminoacyl-tRNA binding site of eukaryotic elongation factor la. J. Biol. Chem. 267:16231632.
51. Kjeldgaard, M.,, P. Nissen,, S. Thirup,, and J. Nyborg. 1993. The crystal structure of elongation factor EF-Tu from Thermits aquaticus in the GTP conformation. Structure 1:3550.
52. Kjeldgaard, M.,, and J. Nyborg. 1992. Refined structure of elongation factor EF-Tu from Escherichia coli. J. Mol. Biol. 223:721742.
53. Kraulis, P. 1991. Molscript: a program to produce both detailed and schematic plots of protein structures. J. Appl. Cryst. 24:946950.
54. Kruse, T. A.,, B. F. C. Clark,, B. Appel,, and V. A. Erdmann. 1980. The structure of the CCA end, aminoacyl-tRNA and aminoacyl-tRNA in the ternary complex. FEBS Lett. 117:315318.
55. Lapointe, J.,, and R. Giege,. 1992. Transfer RNAs and aminoacyl-tRNA synthetases, p. 135169. In H. Trachsel (ed.), Translation in Eukaryotes. CRC Press, Boca Raton, Fla..
56. Latham, J. A.,, and T. R. Cech. 1989. Defining the inside and outside of a catalytic RNA molecule. Science 245:276282.
57. Leinfelder, W.,, E. Zehelein,, M.-A. Mandrand-Berthelot,, and A. Bock. 1988. Gene for a novel tRNA species that accepts L-serine and cotranslationally inserts selenocysteine. Nature (London) 331:723725.
58. Lim, V.,, C. Venclovas,, A. Spirin,, R. Brimacombe,, P. Mitchell,, and F. Muller. 1992. How are tRNAs and mRNA arranged in the ribosome? An attempt to correlate the stereochemistry of the tRNA-mRNA interaction with constraints imposed by the ribosomal topography. Nucleic Acids Res. 20:26272637.
59. Lorber, B.,, and R. Giege,. 1992. Preparation and handling of biological macromolecules for crystallization, p. 1945. In A. Ducruix, and R. Giege (ed.), Crystallization of Nucleic Acids and Proteins. A Practical Approach. Oxford University Press, Oxford, United Kingdom.
60. Louie, A.,, and F. Jurnak. 1985. Kinetic studies of Escherichia coli elongation factor Tu-guanosine 5'-triphos-phate-aminoacyl-tRNA complexes. Biochemistry 24:64336439.
61. Metz-Boutique, N.-H.,, J. Reinbolt,, J. P. Ebel,, C. Ehresmann,, and B. Ehresmann. 1989. Crosslinking of elongation factor Tu to tRNA ph,! by trans-diamminedichlo-roplatinium II. FEBS Lett. 245:194200.
62. Mizuno, H.,, and M. Sundaralingham. 1978. Stacking of Crick wobble pair and Watson-Crick pair: stability rules of G-U pairs at ends of helical stems in tRNAs and relation to codon-anticodon wobble interaction. Nucleic Acids Res. 5:44514461.
63. Moazed, D.,, and H. F. Noller. 1989. Intermediate states in the movement of transfer RNA in the ribosome. Nature (London) 342:142148.
64. Moazed, D.,, and H. F. Noller. 1990. Binding of tRNA to the ribosomal A and P sites protects two distinct sets of nucleotides in 16S rRNA. ]. Mol. Biol. 211:135145.
65. Morales, J.,, O. Mulner-Lorillou,, H. Denis,, and R. Belle. 1991. Purification and characterization of a germ cell-specific form of elongator from la (EF-la) from Xenopus laevis. Biochimie 73:12491253.
66. Morikawa, K.,, T. F. M. la Cour,, J. Nyborg,, K. M. Rasmussen,, D. L. Miller,, and B. F. C. Clark. 1978. High resolution X-ray crystallographic analysis of a modified form of the elongation factor Tu:guanosine diphosphate complex. J. Mol. Biol. 125:325338.
66a.. Nazarenko, I.,, and O. Uhlenbeck. Personal communication.
67. Österberg, R.,, B. Sjöberg,, R. Ligaarden,, and P. Elias. 1981. A small-angle X-ray scattering study of the complex formation between elongation factor Tu-GTP and valyl-tRNA Val from Escherichia coli. Eur. J. Biochem. 117:155159.
68. Ott, G.,, H. G. Faulhammer,, and M. Sprinzl. 1989. Interaction of elongation factor Tu from Escherichia coli with aminoacyl-tRNA carrying a fluorescent reporter group on the 3' terminus. Eur. J. Biochem. 184:345352.
69. Ott, G.,, J. Jonak,, J. P. Abrahams,, and M. Sprinzl. 1990. The influence of different modifications of elongation factor Tu from Escherichia coli on ternary complex formation investigated by fluorescence spectroscopy. Nucleic Acids Res. 18:437441.
70. Ott, G.,, and M. Sprinzl. 1992. Ternary complexes of bacterial aminoacyl-tRNAs with elongation factor Tu and GTP, p. 323342. In Structural Tools for the Analysis of Protein-Nucleic Acid Complexes: Advances in Life Sciences. Bi-rkhauser Verlag, Basel.
71. Otzen, D.,, J. Barciszewski,, and B. F. C. Clark. 1993. Altered lead(II)-cleavage pattern of free Phe-tRNAphe and Phe-tRNAphe in ternary complex with EF-Tu:GTP. Biochem. Mol. Biol. Int. 31:95103.
72. Pai, E.,, U. Krengel,, G. A. Petsko,, R. S. Goody,, W. Kabsch,, and A. Wittinghofer. 1990. Refined crystal structure of the triphosphate conformation of H-ras p21 at 1.35 A resolution: implications for the mechanism of GTP hydrolysis. EMBO ]. 9:23512884.
73. Parmeggiani, A.,, G. W. M. Swart,, K. K. Mortensen,, M. Jensen,, B. F. C. Clark,, I. Dente,, and R. Cortese. 1987. Properties of a genetically engineered G domain of elongation factor Tu. Proc. Natl. Acad. Sci. USA 84:31413145.
74. Peter, M. E.,, C. D. A. Reiser,, N. Schirmer,, T. Kiefhober,, G. Ott,, N. Grillenbeck,, and M. Sprinzl. 1990. Interaction of the isolated domain II/III of T. thermophilus elongation factor Tu with the nucleotide exchanging factor EF-Ts. Nucleic Acids Res 18:68896893.
75. Peter, M. E.,, N. K. Schirmer,, C. O. A. Reiser,, and M. Sprinzl. 1990. Mapping the effector region in Thermus thermophilus elongator factor Tu. Biochemistry 29:28762884.
76. Pingould, A.,, F. U. Gast,, and F. Peters. 1990. The influence of the concentrations of elongation factors and tRNAs on the dynamics and accuracy of protein biosynthesis. Biochim. Biophys. Acta 1050:252258.
77. Powers, X.,, and H. F. Noller. 1991. A functional pseudoknot in 16S ribosomal RNA. EMBO J. 10:22032214.
78. Powers, X.,, and H. F. Noller. 1993. Evidence for functional interaction between elongation factor Tu and 16S ribosomal RNA. Proc. Natl. Acad. Sci. USA 90:13641368.
79. Rasmussen, N. J.,, F. P. Wikman,, and B. F. C. Clark. 1990. Crosslinking of tRNA containing a long extra arm to elongation factor Tu by transdiamminedichloroplatinum II. Nucleic Acids Res. 18:48834890.
79a.. Reinbout, J. Personal communication.
80. Reshetnikova, L. S.,, C. O. A. Reiser,, N. K. Shirmer,, H. Berchtold,, R. Strorm,, R. Hilgengeld,, and M. Sprinzl. 1991. Crystals of intact elongation factor Tu from T. thermophilus diffracting to high resolution, J. Mol. Biol. 221:375377.
81. Reshetnikova, L. S.,, N. K. Schirmer,, C. O. A. Reiser,, H. Berchtold,, R. Storm,, R. Hilgenfeld,, and M. Sprinzl. 1992. Crystals of intact elongation factor Tu from T. thermophilus diffracting to 1.45 A resolution. J. Crystal Growth 122:360365.
82. Riis, B.,, S. I. S. Rattan,, B. F. C. Clark,, and W. C. Merrick. 1990. Eukaryotic protein elongation factors. Trends Biochem. Sci. 15:420424.
83. Rould, M. A.,, J. J. Perona,, D. Soli, and X Steitz. 1989. Structure of E. coli glutaminyl-tRNA synthetase complexed with tRNAGln and ATP at 2.8 A resolution. Science 246:11351142.
84. Rudinger, J.,, J. D. Puglisi,, J. Putz,, D. Schatz,, F. Eckstein,, C. Florentz,, and R. Giege. 1992. Determinant nucleotides of yeast tRNAAsP interact directly with aspartyl-tRNA synthetase. Proc. Natl. Acad. Sci. USA 89:58825886.
85. Ruff, M.,, S. Krishnaswamy,, M. Boeglin,, A. Poterszman,, A. Mitschler,, A. Podjarny,, B. Rees,, J. C. Thierry,, and D. Moras. 1991. Class II aminoacyl-transfer RNA synthetases: crystal structure of yeast aspartyl-tRNA synthetases complexed with tRNAAsP. Science 252:16821689.
86. Sampson, J. R.,, A. B. DiRenzo,, L. S. Behlem,, and O. C. Uhlenbeck. 1990. Role of the tertiary nucleotides in the interaction of yeast phenylalanine tRNA with its cognate synthetase. Biochemistry 29:25232532.
87. Schatz, D.,, R. Lebermann, and R Eckstein. 1991. Interaction of Escherichia coli tRNASer with its cognate aminoacyl-tRNA synthetase as determined by footprinting with phos-phorothioate-containing tRNA transcripts. Proc. Natl. Acad. Sci. USA 88:61326136.
88. Schimmel, P. 1993. GTP hydrolysis in protein synthesis: two for Tu. Science 259:12641265.
89. Schimmel, P. R. 1987. Aminoacyl-tRNA synthetases: general scheme of structure function relationships in the polypeptides and recognition of transfer RNAs. Annu. Rev. Biochem. 56:125158.
90. Schwabe, J. W. R.,, and D. Rhodes. 1991. Beyond zinc fingers: steroid hormone receptors have a novel structural motif for DNA recognition. Trends Biochem. Sci. 16:291296.
91. Seong, B. L.,, and U. L. RajBhandary. 1987. Escherichia coli formylmethionine tRNA: mutations in the GGG-CCC sequence conserved in anticodon stem of initiator tRNAs affect initiation of protein biosynthesis and conformation of anticodon loop. Proc. Natl. Acad. Sci. USA 84:334338.
92. Seong, B. L.,, and U. L. RajBhandary. 1987. Mutants of Escherichia coli formylmethionine tRNA: a single base change enables initiator tRNA to act as an elongator in vitro. Proc. Natl. Acad. Sci. USA 84:88598863.
93.. Sprinzl, M.,, and R. Hilgenfeld,. Elongation factor Tu from Thermus thermophilus, structure, domain and interactions. In K. Nierhaus,, A. Subramanian,, V. A. Erdmann,, E. Francesci,, and B. Witmann-Liebold (ed.), Translation Apparatus. Submitted for publication.
94. Sprinzl, M.,, J. Moll,, F. Meissner,, and T. Hartmann. 1985. Compilation of tRNA sequences. Nucleic Acids Res. 13:rlr49.
95. Sturchler, C.,, E. Westhof,, P. Carbon,, and A. Krol. 1993. Unique secondary and tertiary structural features of the eu-karyotic selenocysteine tRNASer. Nucleic Acids Res. 21:10731079.
96. Sussman, J. L.,, S. R. Holbrook,, R. W. Warrant,, G. M. Church,, and S. H. Kim. 1978. Crystal structure of yeast phenylalanine transfer RNA. I. Crystallographic refinement. J. Mol. Biol. 123:607630.
97. Swart, G. W. M.,, and A. Parmaggiani. 1989. tRNA and the guanosine triphosphatase activity of elongation factor Tu. Biochemistry 28:327337.
98. Tukalo, M. A.,, M. D. Kubler,, D. Kern,, M. Mongel,, C. Ehresmann,, J. P. Ebel,, B. Ehresmann,, and R. Giege. 1987. Tnjrts-diamminedichloroplatinum II, a reversible RNA-pro-tein crosslinking agent. Application to the ribosome and to a aminoacyl-tRNA synthetase/tRNA complex. Biochemistry 26:52005208.
99. Usman, N.,, and R. Cedergren. 1992. Exploiting of the chemical synthesis of RNA. Trends Biochem. Sci. 17:334339.
100. Valencia, A.,, M. Kjeldgaard,, and C. Sander. 1991. G-do-mains of ras p21 oncogene and elongation factor Tu: analysis of three-dimensional structures, sequence families and functional sites. Proc. Natl. Acad. Sci. USA 88: 54435447.
101. Van Damme, H. T. E.,, R. Amons,, and W. Moller. 1992. Identification of the sites in the eukaryotic elongation factor la involved in the binding of elongation factor IB and aminoacyl-tRNA. Eur. J. Biochem. 207:10251034.
102. Wagner, X.,, C. Rundquist,, M. Gross,, and P. R. Sigler. 1989. Structural features that underline the use of bacterial Met-tRNAM primarily as an elongator in eukaryotic protein biosynthesis. J. Biol. Chem. 264:1850618511.
103. Wang, X.,, and R. A. Pagett. 1989. Hydroxyl radical foot-printing of RNA: application to pre-mRNA splicing complexes. Proc. Natl. Acad. Sci. USA 86:77957799.
104. Weiland, A.,, and A. Parmeggiani. 1993. Toward a model for the interaction between elongation factor Tu and the ribosome. Science 259:13111314.
105. Westhof, E. 1987. Water: an integral part of nucleic acid structure. Annu. Rev. Biophys. Chem. 17:125144.
106. Westhof, E.,, P. Dumas,, and D. Moras. 1985. Crystal-lographic refinement of yeast aspartic acid transfer RNA. J. Mol. Biol. 184:119145.
107.. Weygand-Durasevic, I.,, T. A. Kruse,, and B. F. C. Clark. 1981. The influence of elongation factor EF-Tu:GTP and anticodon-anticodon interactions on the anticodon loop conformation of yeast tRNATy. Eur. J. Biochem. 116:5965.
108. White, S. A.,, M. Nilges,, A. Huang,, A. T. Brunger,, and P. B. Moore. 1992. NMR analysis of helix I from the 5S rRNA of Escherichia coli. Biochemistry 31:16101621.
109. Wikman F. P.,, P. Romby,, M. H. Metz,, J. Reinbolt,, B. F. C. Clark,, J. P. Ebel,, C. Ehresmann,, and B. Ehresmann. 1987. Crosslinking of elongation factor Tu to tRNAphe by trans-diamminedichloroplatinum II. Characterization of two crosslinking sites in the tRNA. Nucleic Acids Res. 15:57875801.
110. Wikman, F. P.,, G. E. Siboska,, H. U. Petersen,, and B. F. C. Clark. 1982. The sites of interaction of aminoacyl-tRNA with elongation factor Tu. EMBO J. 1:10951100.
111. WooUey, P.,, and B. F. C. Clark. 1989. Homologies in the structures of G-binding proteins. Bio/Technology 7:913920.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error