1887

Chapter 23 : Discontinuous Triplet Decoding with or without Re-Pairing by Peptidyl tRNA

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Discontinuous Triplet Decoding with or without Re-Pairing by Peptidyl tRNA, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818333/9781555810733_Chap23-1.gif /docserver/preview/fulltext/10.1128/9781555818333/9781555810733_Chap23-2.gif

Abstract:

Virtually all tRNAs are known or predicted from their DNA sequence to have seven-base anticodon loops. If natural, functional tRNAs with eight or nine-base anticodon loops exist, they may cause frameshifting, like their mutant counterparts, whether or not they also participate in triplet decoding. Recoding due to re-pairing has only recently been discovered, and it is certain that surprises lie ahead. Nevertheless, some tentative generalization of the available data on re-pairing at overlapping sites seems warranted. The +1 frameshifting uses a single shift site and offers the opportunity for regulation. In at least one case, regulation works through competition for the downstream codon, so as to sense some biochemical state. Even when the downstream codon is not used for this purpose, tandem shift codons are not used. In contrast, efficient —1 frameshifting uses tandem shift sites. Regulation is not seen, and both pre-slip A and P sites are occupied by tRNA generating the efficient double shift mechanism. Using this mechanism, weak pre-slip A site pairing seems to be important, although there is surprising latitude in repairing. An interesting issue is whether the absence to date of tandem +1 shifts is fortuitous and, if not, the reason for their absence. Several cases of programed frameshifting use more than one stimulatory signal. The +1 frameshifting often utilizes a 5' stimulator, whereas efficient —1 frameshifting often uses a stimulator 3' to the site.

Citation: Atkins J, Gesteland R. 1995. Discontinuous Triplet Decoding with or without Re-Pairing by Peptidyl tRNA, p 471-490. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch23

Key Concept Ranking

Red Clover Necrotic Mosaic Virus
0.43431133
Equine infectious anemia virus
0.43404698
Mouse mammary tumor virus
0.43404698
Equine infectious anemia virus
0.43404698
Mouse mammary tumor virus
0.43404698
Equine infectious anemia virus
0.43404698
0.43431133
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Doublet decoding. In panel A, the identities of the anticodon bases shown in bold are critical for the two-base interaction with the first two bases of a zero frame alanine codon ( ). Panel B shows the effect of addition of tRNASer3 alone or with tRNAAla to an E. colt in vitro protein-synthesizing system programmed with phage MS2 RNA ( ). — 1 frameshifting due to tRNASer3 reading GCA alanine codons just before the coat gene terminator yields elongated products (6 and 7), which terminate at the first — 1 frame terminator after the zero frame terminator. Termination at the previous — 1 frame terminator yields the subcoat protein 9. Addition of tRNAAla (left lane) competes with frameshifting caused by tRNASer3. Shifting to the +1 frame just before the coat gene terminator yields a coat-lysis fusion (protein 5), and synthesis is not enhanced by the addition of tRNASer3. Shifting to the —1 frame just before the 62-kDa synthetase terminator yields an elongated form of the synthetase (66 kDa). Its synthesis is greatly enhanced by addition of tRNAThr3, which causes doublet reading of CCG and CCA proline codons. The amount of tRNA added in micrograms per 12.5 µd of reaction mix is indicated below the lanes.

Citation: Atkins J, Gesteland R. 1995. Discontinuous Triplet Decoding with or without Re-Pairing by Peptidyl tRNA, p 471-490. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch23
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

+1 Frameshifting in decoding yeast Ty1 ( ). The rare tRNA that decodes the zero frame AGG codon is not shown.

Citation: Atkins J, Gesteland R. 1995. Discontinuous Triplet Decoding with or without Re-Pairing by Peptidyl tRNA, p 471-490. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch23
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

+1 Frameshifting in decoding release factor 2. (A) The interaction between the 16S rRNA of an elongating ribosome and the Shine-Dalgarno sequence 5′ of the CUU U shift site is depicted. (B) Comparison of shift site regions ( ).

Citation: Atkins J, Gesteland R. 1995. Discontinuous Triplet Decoding with or without Re-Pairing by Peptidyl tRNA, p 471-490. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch23
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Simultaneous-slippage models for frameshifting in the — 1 direction. (A) The Jacks et al. model ( ). (B) The Weiss et al. model ( ). (C) A model with E site anticodon pairing. In models B and C, the shift occurs after transpeptidation and perhaps during translocation (see text). Panels A and B were reproduced from Hatfield et al. ( ) with permission.

Citation: Atkins J, Gesteland R. 1995. Discontinuous Triplet Decoding with or without Re-Pairing by Peptidyl tRNA, p 471-490. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch23
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

The insertion sequences IS1 and IS911. The black boxes indicate the left (IRL) and right (IRR) terminal inverted repeats. The promoter is partially located in IRL. Open reading frame (ORF) B is in the -1 frame with respect to overlapping ORF A. ORF B is expressed as part of a fusion product AB, and in IS911 but not in IS1, it is expressed independently also. The shifty heptanucleotide in the overlap region of the mRNA is underlined, and one of the possible 3′ secondary structures is shown. The termination codon for the A frame is in bold and boxed. In IS911, the Shine-Dalgarno sequence for B is boxed, and the AUU initiator is marked with asterisks. Reproduced from Chandler and Fayet ( ) with permission.

Citation: Atkins J, Gesteland R. 1995. Discontinuous Triplet Decoding with or without Re-Pairing by Peptidyl tRNA, p 471-490. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch23
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6
Figure 6

Elements important for the 50-nucleotide hop in t4 gene 60 decoding ( ).

Citation: Atkins J, Gesteland R. 1995. Discontinuous Triplet Decoding with or without Re-Pairing by Peptidyl tRNA, p 471-490. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch23
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818333.chap23
1. Adhin, M. R.,, and J. van Duin. 1990. Scanning model for translational reinitiation in eubacteria. J. Mol. Biol. 213:811818.
2. Atkins, J. F., 1980. Non-triplet tRNA-mRNA interactions, p. 439449. In D. Soli,, J. Abelson,, and P. Schimmel (ed.), Transfer RNA: Biological Aspects. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y..
3. Atkins, J. E.,, D. Elseviers,, and L. Gorini. 1972. Low activity of β-galactosidase in frameshift mutants of Escherichia coli. Proc. Natl. Acad. Sci. USA 69:11921195.
4. Atkins, J. E.,, R. F. Gesteland,, B. R. Reid,, and C. W. Anderson. 1979. Normal tRNAs promote ribosomal frameshifting. Cell 18:11191131.
5. Atkins, J. E.,, B. P. Nichols,, and S. Thompson. 1983. The nucleotide sequence of the first suppressive -1 frameshift mutant and of some nearby leaky frameshift mutants. EMBO J. 2:13451350.
6. Atkins, J. E.,, R. B. Weiss,, and R. F. Gesteland. 1990. Ribosome gymnastics—degree of difficulty 9.5, style 10.0. Cell 62:413423.
7. Atkins, J. E.,, R. B. Weiss,, S. Thompson,, and J. F. Atkins. 1991. Towards a genetic dissection of the basis of triplet decoding, and its natural subversion: programmed reading frame shifts and hops. Annu. Rev. Genet. 25:201228.
8. Bain, J. D.,, C. Switzer,, A. R. Chamberlin,, and S. A. Benner. 1992. Ribosome-mediated incorporation of a non-standard amino acid into a peptide through expansion of the genetic code. Nature (London) 356:537539.
9. Belcourt, M. E.,, and P. J. Farabaugh. 1990. Ribosomal frameshifting in the yeast retrotransposon Ty: tRNAs induce slippage on a 7 nucleotide minimal site. Cell 62:339352.
10. Benhar, L.,, and H. Engelberg-Kulka. 1993. Frameshifting in the expression of the Escherichia coli trpR gene occurs by the bypassing of a segment of its coding sequence. Cell 72:121130.
11. Beremand, M. N.,, and T. Blumenthal. 1979. An overlapping gene in RNA phage for a protein implicated in lysis. Cell 18:257266.
12. Bjork, G. R.,, P. M. Wikstrom,, and A. S. Bystrom. 1989. Prevention of translational frameshifting by the modified nucleoside 1-methylguanosine. Science 244:986989.
13. Brault, V.,, and W. A. Miller. 1992. Translational frameshifting mediated by a viral sequence in plant cells. Proc. Natl. Acad. Sci. VSA 89:22622266.
14. Bredenbeek, P. J.,, C. J. Pachuk,, A. F. H. Noten,, J. Charite,, W. Luytjes,, S. R. Weiss,, and W. J. M. Spaan. 1990. The primary structure and expression of the second open reading frame of the polymerase gene of the coronavirus MHV-A59: a highly conserved polymerase is expressed by an efficient ribosomal frameshifting mechanism. Nucleic Acids Res. 18:18251832.
15. Brierley, I.,, P. Digard,, and S. C. Inglis. 1989. Characterization of an efficient coronavirus ribosomal frameshifting signal: requirement for an RNA pseudoknot. Cell 57:537547.
16. Brierley, I.,, A. J. Jenner,, and S. C. Inglis. 1992. Mutational analysis of the “slippery-sequence” component of a coronavirus ribosomal frameshifting signal. J. Mol. Biol. 227:463479.
17. Bruce, A. G.,, J. F. Atkins,, and R. F. Gesteland. 1986. tRNA anticodon loop replacement experiments show that ribosomal frameshifting can be caused by doublet decoding. Proc. Natl. Acad. Sci. USA 83:50625066.
17a.. Cassan, M.,, N. Delaunay,, C. Vaquero,, and J.-R. Rousset. 1994. Translational frameshifting at the gag-pol junction of human immunodeficiency virus type 1 is not increased in infected T-lymphoid cells.J. Virol. 68:15011508.
18. Chamorro, M.,, N. Parkin,, and H. E. Varmus. 1992. An RNA pseudoknot and an optimal heptameric shift site are required for highly efficient ribosomal frameshifting on a retroviral messenger RNA. Proc. Natl. Acad. Sci. USA 89:713717.
19. Chandler, M.,, and O. Fayet. 1992. Translational frameshifting in the control of transposition in bacteria. Mol. Microbiol. 7:497503.
20. Condron, B. G.,, J. F. Atkins,, and R. F. Gesteland. 1991. Frameshifting in gene 10 of bacteriophage T7. J. Bacteriol. 173:69987003.
21. Condron, B. G.,, R. F. Gesteland,, and J. F. Atkins. 1991. An analysis of sequences stimulating frameshifting in the decoding of gene 10 of bacteriophage T7. Nucleic Acids Res. 19:56075612.
22. Craigen, W. J.,, R. G. Cook,, W. P. Tate,, and C. T. Caskey. 1985. Bacterial chain release factors: conserved primary structure and possible frameshift regulation of release factor 2. Proc. Natl Acad. Sci. USA 82:36163620.
23. Craigen, W. J.,, and C. T. Caskey. 1986. Expression of peptide chain release factor 2 requires high efficiency frameshift. Nature (London) 322:273275.
24. Culbertson, M. R.,, P. Leeds,, M. G. Sandbaken,, and P. G. Wilson,. 1990. Frameshift suppression, p. 559570. In W. E. Hill,, A. Dahlberg,, R. A. Garrett,, P. B. Moore,, D. Schlessinger,, and J. R. Warner. The Ribosome: Structure, Function and Evolution. American Society for Microbiology, Washington, D.C..
25. Curran, J.,, and D. Kolakofsky. 1988. Scanning independent ribosomal initiation of sendai virus X protein. EMBO J. 7:28692874.
26. Curran, J. E.,, and M. Yarus. 1988. Use of tRNA suppressors to probe regulation of Escherichia coli release factor 2. J. Mol. Biol. 203:7583.
27. Curran, J. E.,, and M. Yarus. 1989. Rates of aminoacyl-tRNA selection at 29 sense codons in vivo. J. Mol. Biol. 209:6577.
28. Curran, J. F. 1993. Analysis of effects of tRNA: message stability on frameshift frequency at the Escherichia coli RF2 programmed frameshift site. Nucleic Acids Res. 21:18371843.
28a.. Curran, J. E.,, and B. L. Gross. 1994. Evidence that GHN phase bias does not constitute a framing code. J. Mol. Biol. 235:389395.
29. Dayhuff, T. J.,, J. F. Atkins,, and R. F. Gesteland. 1986. Characterization of ribosomal frameshift events by protein sequence analysis. J. Biol. Chem. 261:74917500.
30. den Boon, J. A.,, E. J. Snijder,, E. D. Chirnside,, A. A. F. de Vries,, M. C. Horzinek,, and W. J. M. Spaan. 1991. Equine arteritis virus is not a togavirus but belongs to the coronavirus-like superfamily. J. Virol. 65:29102920.
31. Dinman, J. D.,, T. Icho,, and R. B. Wickner. 1991. A -1 ribosomal frameshift in a double-stranded RNA virus of yeast forms a gag-pol fusion product. Proc. Natl. Acad. Sci. USA 88:174178.
32. Dinman, J. D.,, and R. B. Wickner. 1992. Ribosomal frame-shifting efficiency and gag/gag-pol ratio are critical for yeast M] double-stranded RNA virus propagation. J. Virol. 66:36693673.
33. Dinman, J. D.,, and R. B. Wickner. 1994. Translational maintenance of frame: mutants of Saccharomyces cerevisiae with altered -1 ribosomal frameshifting efficiencies. Genetics 136:7586.
34. Donly, B. C.,, C. D. Edgar,, F. M. Adamski,, and W. P. Tate.1992. Frameshift autoregulation in the gene for Escherichia coli release factor 2: partly functional mutants result in frameshift enhancement. Nucleic Acids Res. 18:65176522.
35. Donly, B. C.,, and W. P. Tate. 1991. Frameshifting by eukaryotic ribosomes during expression of Escherichia coli release factor 2. Proc. R. Soc. Land. B. 244:207210.
36. Escoubas, J. M.,, M. F. Prere,, O. Fayet,, I. Salvignol,, D. Galas,, D. Zerbib,, and M. Chandler. 1991. Translational control of transposition activity of the bacterial insertion sequence IS 1. EMBO J. 10:705712.
37. Farabaugh, P. J.,, H. Zhao,, and A. Vimaladithan. 1993. A novel programmed frameshift expresses the POL3 gene of retrotransposon Ty3 of yeast: frameshifting without tRNA slippage. Cell 74:93103.
37a.. Farabaugh, P. J.,, H. Zhao,, A. Vimaladithan,, and S. Pande. A novel programmed frameshift stimulated by a downstream unstructured RNA context. Submitted for publication. 1992.
38. Felsenstein, K. M.,, and S. P. Goff. 1992. Mutational analysis of the gag-pol junction of Moloney murine leukemia virus: requirements for expression of the gag-pol fusion protein.J. Virol. 66:66016608.
39. Feng, Y.-X.,, H. Yuan,, A. Rein,, and J. G. Levin. 1992. Bipartite signal for read-through suppression in murine leukemia virus mRNA: an eight-nucleotide purine-rich sequence immediately downstream of the gag termination codon followed by an RNA pseudoknot. J. Virol. 66:51275132.
40. Fox, T. D.,, and B. Weiss-Brummer. 1980. Leaky +1 and -1 frameshift mutations at the same site in a yeast mitochondrial gene. Nature (London) 288:6063.
40a.. Fu, C.,, and J. Parker. 1994. A ribosomal frameshifting error during translation of the ARGI mRNA of Escherichia coli. Mol. Gen. Genet. 243:434441.
41. Fujimura, T.,, J. C. Ribas,, A. M. Makhov,, and R. B. Wickner. 1992. Pol of gag-pol fusion protein required for encapsidation of viral RNA of yeast L-A virus. Nature (London) 359:746749.
42. Futterer, J.,, Z. Kiss-Laszl6,, and T. Hohn. 1993. Nonlinear ribosome migration on cauliflower mosaic virus 35S RNA. Cell 73:789802.
43. Gallant, J. A.,, and D. Lindsley. 1992. Leftward ribosome frameshifting at a hungry codon. J. Mol. Biol. 223:3140.
44. Garcia, A.,, J. van Duin,, and C. W. A. Pleij. 1993. Differential response to frameshift signals in eukaryotic and pro-karyotic translational systems. Nucleic Acids Res. 21:401406.
45. Geigenmuller, U.,, and K. H. Nierhaus. 1990. Significance of the third tRNA binding site, the E site, on E. coli ribosomes for the accuracy of translation: an occupied E site prevents the binding of non-cognate aminoacyl-tRNA to the A site. EMBO J. 9:45274533.
46. Gesteland, R. E.,, R. B. Weiss,, and J. F. Atkins. 1992. Recoding: reprogrammed genetic decoding by special sequences in mRNAs. Science 257:16401641.
47. Gold, L.,, G. Stormo,, and R. Sanders. 1984. Escherichia coli translational initiation factor 3: a unique case of translational regulation. Proc. Natl. Acad. Sci. USA 81:7061Æ7065.
48. Hagervall, T. G.,, T. M. F. Tuohy,, J. F. Atkins,, and G. R. Bjdrk. 1993. Deficiency of 1-methylguanosine in tRNA from Salmonella typhimurium induces frameshifting by quadruplet translocation. J. Mol. Biol. 232:756765.
49. Hatfield, D.,, Y.-X. Feng,, B. J. Lee,, A. Rein,, J. G. Levin,, and S. Oroszlan. 1989. Chromatographic analysis of the amino-acyl-tRNAs which are required for translation of codons at and around the ribosomal frameshift sites of HIV, HTLV-1, and BLV. Virology 173:736742.
50. Hatfield, D. L.,, J. G. Levin,, A. Rein,, and S. Oroszlan. 1992. Translational suppression in retroviral gene expression. Adv. Virus Res. 41:193239.
50a.. Herbst, K. L.,, L. M. Nichols,, R. F. Gesteland,, and R. B. Weiss. A mutation in ribosomal protein L9 affects ribosomal hopping during translation of gene 60 from bacteriophage T4. Proc. Natl. Acad. Sci. USA, in press.
50b.. Herold, J.,, and S. G. Siddell. 1993. An "elaborated" pseudo-knot is required for high frequency frameshifting during translation of HCV 229E polymerase mRNA. Nucleic Acids Res. 21:58385842.
51. Hizi, A.,, L. E. Henderson,, T. D. Copeland,, R. C. Sowder,, C. V. Hixson,, and S. Oroszlan. 1987. Characterization of mouse mammary tumor virus gag-pro gene products and the ribosomal frameshift site by protein sequencing. Proc. Natl. Acad. Sci. USA 84:70417045.
52. Honigman, A.,, D. Wolf,, S. Yaish,, H. Falk,, and A. Panet. 1991. cis-acting RNA sequences control the gag-pol translation read-through in murine leukemia virus. Virology 183:313319.
53. Huang, W. M.,, S.-Z. Ao,, S. Casjens,, R. Orlandi,, R. Zeikus,, R. Weiss,, D. Winge,, and M. Fang. 1988. A persistent untranslated sequence within bacteriophage T4 DNA topoisomerase gene 60. Science 239:10051012.
53a.. Hwang, C. B.,, B. C. Horsburgh,, E. Pelosi,, S. Roberts,, P. Digard,, and D. M. Coen. 1994. A net +1 frameshift permits synthesis of thymidine kinase from a drug-resistant herpes simplex virus mutant. Proc. Natl. Acad. Sci. USA 91:54615465.
54. Jacks, X.,, H. D. Madhani,, F. R. Masiarz,, and H. E. Varmus. 1988. Signals for ribosomal frameshifting in the Rous sarcoma virus gag-pol region. Cell 55:447458.
55. Jacks, T., M. D. Power,, F. P. Masiarz,, P. Luciw,, P. J. Barr,, and H. E. Varmus. 1988. Characterization of ribosomal frame-shifting in HIV gag-pol expression. Nature (London) 331:280283.
55a.. Jiang, B.,, S. S. Monroe,, E. V. Koonin,, S. E. Stine,, and R. I. Glass. 1993. RNA sequence of astrovirus: distinctive genomic organization and a putative retrovirus-like ribosomal frameshifting signal that directs the viral replicase synthesis. Proc. Natl. Acad. Sci. USA 90:1053910543.
56. Kane, J. E.,, B. N. Violand,, D. F. Curran,, N. R. Staten,, K. L. Duffin,, and G. Bogosian. 1992. Two codon translational hop during synthesis of bovine placental lactogen in a recombinant strain of Escherichia coli. Nucleic Acids Res. 20:67076712.
57. Kawakami, K.,, and Y. Nakamura. 1990. Autogenous suppression of an opal mutation in the gene encoding peptide chain release factor 2. Proc. Natl. Acad. Sci. USA 87:84328436.
58. Kawakami, K.,, S. Pande,, B. Faiola,, D. P. Moore,, J. D. Boeke,, P. J. Farabaugh,, J. N. Strathern,, Y. Nakamura,, and D. J. Garfinkel. 1993. A rare tRNA-Arg(CCU) that regulates Tyl element ribosomal frameshifting is essential for Tyl retrotransposon in Saccharomyces cerevisiae. Genetics 135:309320.
58a.. Kim, A.,, C. Terzian,, P. Santamaria,, A. Pelisson,, N. Prud'homme,, and A. Bucheton. 1994. Retroviruses in invertebrates: the gypsy retrotransposon is apparently an infectious retrovirus of Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 91:12851289.
59. Kolor, K.,, D. Lindsley,, and J. A. Gallant. 1993. On the role of the P-site in leftward ribosomal frameshifting at a hungry codon.J. Mol. Biol. 230:15.
60. Kujawa, A. B.,, G. Drugeon,, D. Hulanicka,, and A.-L. Haenni. 1993. Structural requirements for efficient translational frameshifting in the synthesis of the putative viral RNA- dependent RNA polymerase of potato leafroll virus. Nucleic Acids Res. 21:21652171.
60a.. Larsen, B.,, N. M. Wills,, R. F. Gesteland,, and J. F. Atkins. Ribosomal RNA-messenger RNA base pairing stimulates a programmed —1 ribosomal frameshift. Submitted for publication.
61. Le, S.-Y.,, J.-H. Chen,, and J. V. Maizel. 1993. Identification of unusual RNA folding patterns encoded by bacteriophage T4 gene 60. Gene 124:2128.
61a.. Levin, M. E.,, R. W. Hendrix,, and S. R. Casjens. 1993. A programmed translational frameshift is required for the synthesis of a bacteriophage X tail assembly protein. J. Mol. Biol. 234:124139.
62. Li, M.,, and A. Tzagoloff. 1979. Assembly of the mitochondrial membrane system: sequences of yeast mitochondrial valine and an unusual threonine tRNA gene. Cell 18:4753.
63. Lindsley, D.,, and J. A. Gallant. 1993. On the directional specificity of ribosome frameshifting at a hungry codon. Proc. Natl. Acad. Sci. USA 90:54695473.
64. Lustig, E.,, T. Boren,, C. Claesson,, C. Samonsson,, M. Barciszewska,, and U. Lagerkvist. 1993. The nucleotide in position 32 of the tRNA anticodon loop determines ability of anticodon UCC to discriminate among glycine codons. Proc. Natl. Acad. Sci. USA 90:33433347.
65. Lustig, F.,, P. Elias,, T. Axberg,, T. Samuelsson,, I. Tittawella,, and U. Lagerkvist. 1981. Codon reading and translational error: reading of the glutamic acid and lysine codons during protein synthesis in vitro. J. Biol. Cbem. 256:26352643.
66. Luthi, K.,, M. Moser,, J. Ryser,, and H. Weber. 1990. Evidence for a role of translational frameshifting in the expression of transposition activity of the bacterial insertion element IS 1. Gene 88:1520.
66a.. Manch-Citron, J. N.,, and J. London. 1994. Expression of the Prevotella loescheii adhesin gene (plaA) is mediated by a programmed frameshifting hop. J. Bacteriol. 176:19441948.
66b.. Matsufuji, S.,, A. Hines,, S. K. Aoki,, T. Matsufuji,, J. F. Atkins,, and R. F. Gesteland. Unpublished data.
66c.. Matsufuji, S.,, Y. Miyazaki,, Y. Murakami,, and S. Hayashi. Personal communication.
67. Meier, F.,, B. Suter,, H. Grosjean,, G. Keith,, and E. Kubli. 1985. Queuosine modification of the wobble base in tRNAHis influences "in vivo" decoding properties. EMBO J. 4:823827.
68. Menninger, J. R.,, A. B. Caplan,, P. K. E. Gingrich,, and A. G. Atherly. 1983. Tests of the ribosome editor hypothesis. II. Relaxed {relA) and stringent (relA + ) E. coli differ in rates of dissociation of peptidyl-tRNA from ribosomes. Mol. Gen. Genet. 190:215221.
68a.. Miller, W. A.,, S. P. esur,, and C. P. Paul. Luteovirus gene expression. Crit. Rev. Plant Sci., in press.
69. Moazed, D.,, and H. F. Noller. 1989. Intermediate states in the movement of transfer RNA in the ribosome. Nature (London) 342:142148.
70. Moosmayer, D.,, H. Reil,, M. Ausmeier,, J.-G. Scharf,, H. Hauser,, K. D. Jentsch,, and G. Hunsmann. 1991. Expression and frameshifting but extremely inefficient proteolytic processing of the HIV-1 gag and pol gene products in stably transfected rodent cell lines. Virology 183:215224.
71. Morikawa, S.,, and D. H. L. Bishop. 1992. Identification and analysis of the gag-pol ribosomal frameshift site of feline immunodeficiency virus. Virology 186:389397.
71a.. Naas, T.,, M. Blot,, W. M. Fitch,, and W. Arber. 1994. Insertion sequence-related genetic variation in resting Escherichia coliK.12. Genetics 136:721730.
72. Nam, S. H.,, T. D. Copeland,, M. Hatanaka,, and S. Oroszlan. 1993. Characterization of ribosomal frameshifting for the expression of pol gene products of human T-cell leukemia virus type 1 (HTLV-1).J. Virol. 67:196203.
73. Newmark, R. A.,, and C. R. Cantor. 1968. Nuclear magnetic resonance study of the interactions of guanosine and cytidine in dimethyl sulfoxide. J. Am. Chem. Soc. 90:50105017.
74. O'Connor, M.,, R. F. Gesteland,, and J. F. Atkins. 1989. tRNA hopping: enhancement by an expanded anticodon. EMBO J. 8:43154323.
75. Odom, O. M.,, W. D. Picking,, and B. Hardesty. 1990. Movement of tRNA but not the nascent peptide during peptide bond formation on ribosomes. Biochemistry 29:1073410744.
76. Okimoto, R.,, and D. R. Wolstenholme. 1990. A set of tRNAs that lack either the TFC arm or the dihydrouridine arm: towards a minimal tRNA adaptor. EMBO J. 9:34053411.
77. O'Mahony, D. J.,, D. Hughes,, S. Thompson,, and J. F. Atkins. 1989. Suppression of a —1 frameshift mutation by a recessive tRNA suppressor which causes doublet decoding. J. Bacteriol. 171:38243830.
78. O'Mahony, D. J.,, B. H. Mims,, S. Thompson,, E. J. Murgola,, and J. F. Atkins. 1989. Glycine tRNA mutants with normal anticodon loop size cause —1 frameshifting. Proc. Natl. Acad. Sci. USA 86:79797983.
79. Pagel, F. T.,, T. M. F. Tuohy,, J. F. Atkins,, and E. J. Murgola. 1992. Doublet translocation at GGA is mediated directly by mutant tRNAfiy.J. Bacteriol. 174:41794182.
79a.. Pande, S.,, A. Vimaladithan,, H. Zhao,, and P. J. Farabaugh. Pulling the ribosome out of frame +1 at a programmed frameshift site by cognate binding of aminoacyl-tRNA. Submitted for publication.
80. Parker, J., 1992. Variations in reading the genetic code, p. 191267. In D. L. Hatfield,, B. J. Lee,, and R. M. Pirtle (ed.), Transfer RNA in Protein Synthesis. CRC Press, Boca Raton, Fla.
81. Parkin, N. X.,, M. Chamorro,, and H. E. Varmus. 1992. Human immunodeficiency virus type 1 gag-pol frameshifting is dependent on downstream mRNA secondary structure: demonstration by expression in vivo. J. Virol. 66:51475151.
82. Pedersen, W. X.,, and J. F. Curran. 1991. Effects of the nucleotide 3' to an amber codon on ribosomal selection rates of suppressor tRNA and release factor-1. J. Mol. Biol. 219:231241.
83. Pel, H. J.,, M. Rep,, and L. A. Grivell. 1992. Sequence comparison of new prokaryotic and mitochondrial members of the polypeptide chain release factor family predicts a five-domain model for release factor structure. Nucleic Acids Res. 20:44234428.
83a.. Peng L.,, and J. A. Gallant. Unpublished data.
84. Peter, K.,, D. Lindsley,, L. Peng,, and J. A. Gallant. 1992. Context rules of rightward overlapping reading. New Biologist 4:17.
85. Pieczenik, G. 1980. Predicting coding function from nucleotide sequence or survival of "fitness" of tRNA. Proc. Natl. Acad. Sci. USA 77:35393543.
86. Polard, P.,, M.-F. Prere,, M. Chandler,, and O. Fayet. 1991. Programmed translational frameshifting and initiation at an AUU codon in gene expression of bacterial insertion sequence IS 911.J. Mol. Biol. 222:465477.
86a.. Prere, M. F., et al. Unpublished data.
87. Priifer, D.,, E. Tackle,, J. Schmitz,, B. Kull,, A. Kaufmann,, and W. Rohde. 1992. Ribosomal frameshifting in plants: a novel signal directs the -1 frameshift in the synthesis of the putative viral replicase of potato leafroll luteovirus. EMBO J. 11:11111117.
87a.. Reil, H.,, H. Kollmus,, U. H. Weidle,, and H. Hauser. 1993. A heptanucleotide sequence mediates ribosomal frameshifting in mammalian cells.J. Virol. 67:55795584.
88. Rodnina, M. V.,, and W. Wintermeyer. 1992. Two tRNA-binding sites in addition to A and P sites on eukaryotic ribosomes.J. Mol. Biol. 228:450459.
89. Rosenberg, A. H.,, E. Goldman,, J. J. Dunn,, F. W. Studier,, and G. Zubay. 1992. Effects of consecutive AGG codons on translation in Escherichia coli demonstrated with a versatile codon test system. J. Bacteriol. 175:716722.
90. Sekine, Y.,, and E. Ohtsubo. 1989. Frameshifting is required for production of the transposase encoded by insertion sequence 1. Proc. Natl. Acad. Sci. USA 86:46094613.
90a.. Sekine, Y.,, N. Eisaki,, and E. Ohtsubo. 1994. Translational control in production of transposase and in transposition of insertion sequence 3. J. Mol. Biol. 235:14061420.
91. Siemeister, G.,, C. Buchholz,, and W. Hachtel. 1990. Genes that plastid elongation factor Tu and ribosomal protein S7 and six tRNA genes on the 73kb DNA from Astasia longa that resembles the chloroplast DNA of Euglena. Mol. Gen. Genet. 220:425432.
92. Sipley, J.,, D. Stassi,, J. Dunn,, and E. Goldman. 1991. Analysis of bacteriophage T7 gene 10A and frameshifted 10B proteins. Gene Expression 1:127136.
93. Sipley, J.,, and E. Goldman. 1992. Increased ribosomal accuracy increases a programmed translational frameshift in Escherichia coli. Proc. Natl. Acad. Sci. USA 90:23152319.
94. Smith, D.,, and M. Yarus. 1989. tRNA-tRNA interactions within cellular ribosomes. Proc. Natl. Acad. Sci. USA 86:43974401.
95. Snijder, E. J.,, J. A. den Boon,, P. J. Bredenbeek,, M. C. Horzinek,, R. Rijnbrand,, and W. J. M. Spaan. 1990. The carboxy-terminal part of the putative Berne virus polymerase is expressed by ribosomal frameshifting and contains sequence motifs which indicate that toro- and coronaviruses are evolutionary related. Nucleic Acids Res. 18:45354542.
96. Spanjaard, R. A.,, and J. van Duin. 1988. Translation of the sequence AGG-AGG yields 50% ribosomal frameshift. Proc. Natl. Acad. Sci. USA 85:79677971.
97. Spanjaard, R. A.,, K. Chen,, J. R. Walker,, and J. van Duin. 1990. Frameshift suppression at tandem AGA and AGG codons by cloned tRNA genes: assigning a codon to argU tRNA and T4 tRNAArg. Nucleic Acids Res. 18:50315036.
98. Stuart, K. D.,, R. Weeks,, L. Guilbride,, and P. J. Myler. 1992. Molecular organization of the Leishmania RNA virus LRV-1. Proc. Natl. Acad. Sci. USA 89:85968600.
99. Sumner-Smith, M.,, H. Hottinger,, I. Willis,, T. L. Koch,, R. Arentzen,, and D. Soli. 1984. The sup8 tRNALeu gene of Schizosaccharomyces pombe has an unusual intervening sequence and reduced pairing in the anticodon stem. Mol. Gen. Genet. 197:447452.
99a.. ten Dam, E.,, I. Brierley,, S. Inglis,, and C. Pleij. 1994. Identification and analysis of the pseudoknot-containing gag-pro ribosomal frameshift signal of simian retrovirus 1. Nucleic Acids Res. 22:23042310.
100.. ten Dam, E.,, C. W. A. Pleij,, and L. Bosch. 1990. RNA pseudoknots: translational frameshifting and read-through on viral RNAs. Virus Genes 4:121136.
101. Tsuchihashi, Z. 1991. Translational frameshifting in the Escherichia coli dnaX gene in vitro. Nucleic Acids Res. 19:24572462.
102. Tsuchihashi, Z.,, and P. O. Brown. 1992. Sequence requirements for efficient translational frameshifting in the Escherichia coli dnaX gene and the role of an unstable interaction between tRNAL>'s and an AAG lysine codon. Genes Dev. 6:511519.
103a.. Tuohy, T. Unpublished data.
103. Tu, C.,, T.-H. Tzeng,, and J. Bruenn. 1992. Ribosomal movement impeded at a pseudoknot required for frameshifting. Proc. Natl. Acad. Sci. USA 89:86368640.
104. Tuohy, T. M. F.,, S. Thompson,, R. F. Gesteland,, and J. F. Atkins. 1992. 7-, 8- and 9-membered anticodon loop mutant tRNAs*1* which cause +1 frameshifting: tolerance of DHU-arm and other secondary mutations. J. Mol. Biol. 228:10421054.
105. Tzeng, T.-H.,, C.-L. Tu,, and J. Bruenn. 1992. Ribosomal frameshifting requires a pseudoknot in the Saccharomyces cerevisiae double-stranded RNA virus. J. Virol. 66:9991006.
105a.. Vimaladithan, A.,, and P. J. Farabaugh. Special peptidyl-tRNA molecules can promote translational frameshifting without slippage. Submitted for publication.
106. Vogele, K.,, E. Schwartz,, C. Welz,, E. Schiltz,, and B. Rak. 1991>. High-level ribosomal frameshifting directs the synthesis of IS 150 gene products. Nucleic Acids Res. 19:43774385.
106a.. Wang, A. L.,, H.-M. Yang,, K. A. Shen,, and C. C. Wang. 1993. Giardiavirus double-stranded RNA genome encodes a capsid polypeptide and a gag-pol-like fusion protein by a translation frameshift. Proc. Natl. Acad. Sci. USA 90:85958599.
106b.. Watanabe, K.,, N. Hayashi,, A. Oyama,, K. Nishikawa,, T. Ueda,, and K. Miura. 1994. Unusual anticodon loop structure found in E. coli lysine tRNA. Nucleic Acids Res. 22:7987.
107. Weiss, R.,, and J. Gallant. 1983. Mechanism of ribosome frameshifting during translation of the genetic code. Nature (London) 302:389393.
108. Weiss, R. B.,, D. M. Dunn,, J. F. Atkins,, and R. F. Gesteland. 1987. Slippery runs, shifty stops, backward steps, and forward hops: -2,-l,+l,+2, +5, and +6 ribosomal frame-shifting. CoW Spring Harbor Symp. Quant. Biol. 52:687693.
109. Weiss, R. B.,, D. M. Dunn,, A. E. Dahlberg,, J. F. Atkins,, and R. F. Gesteland. 1988. Reading frame switch caused by basepair formation between the 3' end of 16S rRNA and the mRNA during elongation of protein synthesis in Escherichia coli. EMBO J. 7:15031507.
110. Weiss, R. B.,, D. Lindsley,, B. Falahee,, and J. Gallant. 1988. On the mechanism of ribosomal frameshifting at hungry codons.J. Mol. Biol. 203:403410.
111. Weiss, R. B.,, D. M. Dunn,, M. Shuh,, J. F. Atkins,, and R. F. Gesteland. 1989. E. coli ribosomes re-phase on retroviral frameshift signals at rates ranging from 2 to 50 percent. New Biologist 1:159169.
112. Weiss, R. B.,, D. M. Dunn,, J. F. Atkins,, and R. F. Gesteland. 1990. Ribosomal frameshifting from -2 to +50 nucleotides. Prog. Nucleic Acids Res. Mol. Biol. 39:159183.
113. Weiss, R. B.,, W. M. Huang,, and D. M. Dunn. 1990. A nascent peptide is required for ribosomal bypass of the coding gap in bacteriophage gene 60. Cell 62:117126.
114. Wickner, R. B. 1989. Yeast virology. FASEB J. 3:22572265.
115. Wills, N. M.,, R. F. Gesteland,, and J. F. Atkins. 1991. Evidence that a downstream pseudoknot is required for translational read-through of the Moloney murine leukemia virus gag stop codon. Proc. Natl. Acad. Sci. USA 88:69916995.
115a.. Wills, N. M.,, R. F. Gesteland,, and J. F. Atkins. Pseudoknot-dependent read-through of retroviral gag termination codons: importance of sequences in the spacer and loop 2. EMBO J., in press.
116. Xiong, Z.,, K. H. Kim,, T. L. Kendall,, and S. A. Lommel. 1993. Synthesis of the putative red clover necrotic mosaic virus RNA polymerase by ribosomal frameshifting in vitro. Virology 193:213221.
117. Xu, H.,, and J. D. Boeke. 1990. Host genes that influence transposition in yeast: the abundance of a rare tRNA regulates Tyl transposition frequency. Proc. Natl. Acad. Sci. USA 87:83608364.
118. Yams, M.,, and J. Curran,. 1992. The translational context effect, p. 319365. In D. L. Hatfield,, B. J. Lee,, and R. M. Pirtle (ed.), Transfer RNA in Protein Synthesis. CRC Press, Boca Raton, Fla..
118a.. Yelverton, E.,, D. Lidsley,, P. Yamauchi,, and J. A. Gallant. 1993. The function of a ribosomal frameshifting signal from human immunodeficiency virus-1 in Escherichia coli. Mol. Microbiol. 11:303313.
119. Yokoyama, S.,, T. Watanabe,, K. Murao,, H. Ishikura,, Z. Yamaizumi,, S. Nishimura,, and T. Miyazawa. 1985. Molecular mechanism of codon recognition by tRNA species with modified uridine in the first position of the anticodon. Proc. Natl. Acad. Sci. USA 82:49054909.

Tables

Generic image for table
Table 1

Natural frameshifting in wild-type genes

Comparison of related viruses (SO, ), including the insect retrovirus gypsy ( ), with other insertion sequences ( ) suggests numerous additional likely occurrences. Several other putative examples are being investigated (e.g., see reference ). PS = pseudoknot.

Citation: Atkins J, Gesteland R. 1995. Discontinuous Triplet Decoding with or without Re-Pairing by Peptidyl tRNA, p 471-490. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch23

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error