1887

Chapter 24 : Translational Suppression: When Two Wrongs DO Make a Right

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Translational Suppression: When Two Wrongs DO Make a Right, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818333/9781555810733_Chap24-1.gif /docserver/preview/fulltext/10.1128/9781555818333/9781555810733_Chap24-2.gif

Abstract:

This chapter talks about the genetic translational suppression, that is, suppression caused by a mutation in the gene for one of the translational macromolecules, particularly tRNAs. Such suppressor mutants usually generate a much stronger suppression signal, more easily allowing the analysis of the alteration in translational fidelity. Furthermore, they allow the study of structural determinants of that macromolecule's functions and of its functional interactions with other translational macromolecules. Translational suppression is a most effective way to examine the structure, function, and interactions of any translational macromolecule, as long as and to the extent that that molecule is involved in the specificity or accuracy of translation. The chapter is divided into four parts: (a) review of the requirements of any system to be used for the in vivo selection and study of suppressors, (b) examples of interesting suppressors of missense, nonsense, and frameshift mutations, (c) conclusions from and ramifications of some suppressor tRNA studies, and (d) discussion of some suppressors that are not altered tRNAs but that nevertheless lead, directly or indirectly, to altered functioning of some tRNA.

Citation: Murgola E. 1995. Translational Suppression: When Two Wrongs DO Make a Right, p 491-509. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch24

Key Concept Ranking

Frameshift Mutation
0.51366097
Elongation Factor Tu
0.4477863
Genetic Selection
0.4125843
0.51366097
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

References

/content/book/10.1128/9781555818333.chap24
1. Agris, P. F.,, D. Söll,, and T. Seno. 1973. Biological function of 2-thiouridine in Escherichia coli glutamic transfer ribonucleic acid. Biochemistry 12: 4331 4337.
2. An, G.,, and J. D. Friesen. 1980. The nucleotide sequence of tufB and four nearby tRNA structural genes of Escherichia coli. Gene 12: 33 39.
3. Atkins, J. F.,, R. B. Weiss,, and R. F. Gesteland. 1990. Ribosome gymnastics—degree of difficulty 9.5, style 10.0. Cell 62: 413 423.
4. Atkins, J. F.,, R. B. Weiss,, S. Thompson,, and R. F. Gesteland. 1991. Towards a genetic dissection of the basis of triplet decoding, and its natural subversion: programmed reading frame shifts and hops. Annu. Rev. Genet. 25: 201 228.
5. Benzer, S.,, and S. P. Champe. 1961. Ambivalent rII mutants of phage T4. Proc. Natl. Acad. Sci. USA 47: 1025 1039.
6. Benzer, S.,, and S. P. Champe. 1962. A change from nonsense to sense in the genetic code. Proc. Natl. Acad. Acad. USA 48: 1114 1121.
7. Berg, P. 1973. Suppression: a subversion of genetic decoding. Harvey Lectures 67: 247 272.
8. Björk, G. R.,, P. M. Wikström,, and A. S. Byström. 1989. Prevention of translational frameshifting by the modified nucleoside 1-methylguanosine. Science 244: 986 989.
9. Bossi, L.,, and J. R. Roth. 1981. Four-base codons ACCA, ACCU, and ACCC are recognized by frameshift suppressor sufJ. Cell 25: 489 496.
10. Brody, S.,, and C. Yanofsky. 1963. Suppressor gene alteration of protein primary structure. Proc. Natl. Acad. Sci. USA 50: 9 16.
11. Brown, C. M.,, K. K. McCaughan,, and W. P. Tate. 1993. Two regions of the Escherichia coli 16S ribosomal RNA are important for decoding stop signals in polypeptide chain termination. Nucleic Acids Res. 21: 2109 2115.
11a.. Buckingham, R. H.,, D. Brechemier-Baey,, P. Sorensen,, K. A. Hijazi,, and E. J. Murgola. Unpublished data.
12. Buckingham, R. H. 1990. Codon context. Experientia 46: 1126 1133.
13. Buckingham, R. H.,, E. J. Murgola,, P. Sorensen,, F. T. Pagel,, K. A. Hijazi,, B. H. Mims,, N. Figueroa,, D. Brechemier-Baey,, and E. Coppin-Raynal,. 1990. Effects of codon context on the suppression of nonsense and missense mutations in the trpA gene of Escherichia coli, p. 541 545. In W. E. Hill,, A. Dahlberg,, R. A. Garrett,, P. B. Moore,, D. Schlessinger,, and J. R. Warner (ed.), The Ribosome: Structure, Function, and Evolution. American Society for Microbiology, Washington, D.C..
14. Buckingham, R. H.,, P. Sörensen,, F. T. Pagel,, K. A. Hijazi,, B. H. Mims,, D. Brechemier-Baey,, and E. J. Murgola. 1990. Third position base changes in codons 5' and 3' adjacent UGA codons affect UGA suppression in vivo. Biochim. Biophys. Acta 1050: 259 262.
15. Capecchi, M. R.,, and G. N. Gussin. 1965. Suppression in vitro: identification of a serine-sRNA as a "nonsense" suppressor. Science 149: 417 422.
16. Carbon, J.,, P. Berg,, and C. Yanofsky. 1966. Studies of missense suppression of the tryptophan synthetase A-protein mutant A36. Proc. Natl. Acad. Set. USA 56: 764 771.
17. Carbon, J.,, and E. W. Fleck. 1974. Genetic alteration of structure and function in glycine transfer RNA of Escherichia coli: mechanism of suppression of the tryptophan synthetase A78 mutation. J. Mol. Biol. 85: 371 391.
18. Carbon, J.,, C. Squires,, and C. W. Hill. 1970. Glycine transfer RNA of Escherichia coli. II. Impaired GGA- recognition in strains containing a genetically altered transfer RNA; reversal by a secondary suppressor mutation. J. Mol. Biol. 52: 571 584.
19. Coleman, R. D.,, R. W. Dunst,, and C. W. Hill. 1980. A double base change in alternate base pairs induced by ultraviolet irradiation in a glycine transfer RNA gene. Mol. Gen. Genet. 177: 213 222.
20. Crawford, I. P.,, and G. V. Stauffer. 1980. Regulation of tryptophan biosynthesis. Annu. Rev. Biochem. 49: 163 195.
21. Crawford, I. P.,, and C. Yanofsky. 1959. The formation of a new enzymatically active protein as a result of suppression. Proc. Natl. Acad. Sci. USA 45: 1280 1287.
22. Crick, F. H. C. 1966. Codon-anticodon pairing: the wobble hypothesis. J. Mol. Biol. 19: 548 555.
23. Crick, F. H. C.,, L. Barnett,, S. Brenner,, and R. J. Watts-Tobin. 1961. Triplet nature of the genetic code. Nature (London) 192: 1227 1232.
24. Culbertson, M. R.,, P. Leeds,, M. G. Sandbaken,, and P. G. Wilson,. 1990. Frameshift suppression, p. 559 570. In W. E. Hill,, A. Dahlberg,, R. A. Garrett,, P. B. Moore,, D. Schlessinger,, and J. R. Warner (ed.), The Ribosome: Structure, Function, and Evolution. American Society for Microbiology, Washington, D.C..
25. Cuzin, F.,, N. Kretchmer,, R. F. Greenberg,, R. Hurwitz,, and F. Chapeville. 1967. Enzymatic hydrolysis of N-substituted aminoacyl-tRNA. Proc. Natl. Acad. Sci. USA 58: 2079 2086.
26. Dunst, R. W.,, R. D. Coleman,, B. W. Harnish,, and C. W. Hill. 1981. A system for measuring the frequencies of tandem and non-tandem double base substitutions induced by ultraviolet irradiation. Mol. Gen. Genet. 184: 445 449.
27. Eggertsson, G. 1982. Suppressors causing temperature sensitivity of growth in Escherichia coli. Genetics 60: 269 280.
28. Eggertsson, G., and Adelberg, E. A. 1965. Map positions and specificities of suppressdr mutations in Escherichia coli K-12. Genetics 52: 319 340.
29. Eggertsson, G.,, and D. Söll. 1988. Transfer-RNA mediated suppression of termination codons in Escherichia coli. Microbiol. Rev. 52: 354 374.
30. Etcheverry, T., ( D. Colby,, and C. Guthrie. 1979. A precursor to a minor species of yeast tRNA Ser contains an intervening sequence. Cell 18: 11 26.
31. Falahee, M. B.,, R. B. Weiss,, M. O'Connor,, S. Doonan,, R. F. Gesteland,, and J. F. Atkins. 1988. Mutants of translational components that alter reading frame by two steps forward or one step back. J. Biol. Chem. 263: 18099 18103.
32. Farabaugh, P. J. 1993. Alternative readings of the genetic code. Cell 74: 591 596.
33. Fleck, E. W.,, and J. Carbon. 1975. Multiple gene loci for a single species of glycine transfer ribonucleic acid. J. Bacteriol. 122: 492 501.
34. Francetic, O.,, M. P. Hanson,, and C. Kumamoto. 1993. prlA suppression of defective export of maltose-binding protein in secB mutants of Escherichia coli. J. Bacteriol. 175: 4036 4044.
34a.. Francetic, O.,, and C. Kumamoto. Unpublished data.
35. Garcia-Villegas, M. R.,, F. M. De La Vega,, J. M. Galindo,, M. Segura,, R. H. Buckingham,, and G. Guarneros. 1991. Peptidyl-tRNA hydrolase is involved in ? inhibition of host protein synthesis. EMBO J. 10: 3549 3555.
36. Goringer, H. U.,, K. A. Hijazi,, E. J. Murgola,, and A. E. Dahlberg. 1991. Mutations in 16S rRNA that affect UGA (stop codon) directed translation termination. Proc. Natl. Acad. Sci. USA 88: 6603 6607.
37. Grosjean, H.,, K. Nicoghosian,, E. Haumont,, D. Söll,, and R. Cedergren. 1985. Nucleotide sequences of two serine tRNAs with a GGA anticodon: the structure-function relationships in the serine family of E. coli tRNAs. Nucleic Acids Res. 13: 5697 5706.
38. Gupta, N. K.,, and H. G. Khorana. 1966. Missense suppression of the tryptophan synthetase A-protein mutant A78. Proc. Natl. Acad. Sci. USA 56: 772 779.
39. Guzman, P.,, and G. Guarneros. 1990. Phage genetic sites involved in X growth inhibition by the Escherichia coli rap mutant. Genetics 121: 401 410.
40. Guzman, P.,, B. E. Rivera Chavira,, D. L. Court,, M. E. Gottesman,, and G. Guarneros. 1990. Transcription of a bacteriophage ? DNA site blocks growth of Escherichia coli. J. Bacteriol. 172: 1030 1034.
41. Hadley, K. H.,, and E. J. Murgola. 1978. Isolation of lysine codon suppressors in Escherichia coli. Curr. Microbiol. 1: 99 103.
42. Hagervall, T. G.,, T. M. F. Tuohy,, J. F. Atkins,, and G. R. Björk. 1993. Deficiency of 1-methylguanosine in tRNA from Salmonella typhimurium induces frameshifting by quadruplet translocation. J. Mol. Biol. 232: 756 765.
43. Hatfield, D.,, B. J. Lee,, D. W. E. Smith,, and S. Oroszlan. 1990. Role of nonsense, frameshift, and missense suppressor tRNAs in mammalian cells. Prog. Mol. Subcell. Biol. 11: 115 146.
44. Hatfield, D. L.,, D. W. E. Smith,, B. J. Lee,, P. J. Worland,, and S. Orozlan. 1990. Structure and function of suppressor tRNAs in higher eukaryotes. Crit. Rev. Biochem. Mol. Biol. 25: 71 96.
45. Henderson, D.,, and J. Weil. 1976. A mutant of Escherichia coli that prevents growth of phage lambda and is bypassed by lambda mutants in a non-essential region of the genome. Virology 71: 546 559.
46. Hill, C. W. 1975. Informational suppression of missense mutations. Cell 6: 419 427.
47. Hill, C. W.,, G. Combriato,, and W. Dolph. 1974. Three different missense suppressor mutations affecting the tRNA GlyGGG species of Escherichia coli. J. Bacteriol. 117: 351 359.
48. Hill, C. W.,, C. Squires,, and J. Carbon. 1970. Glycine transfer RNA of Escherichia coli. I. Structural genes for two glycine tRNA species. J. Mol. Biol. 52: 557 569.
49. Hinnebusch, A. G.,, and Liebman, S. W. 1991. Pr otein synthesis and translational control in Saccharomyces cerevisiae, p. 627 735. In The Molecular and Cellular Biology of the Yeast Saccharomyces: Genome Dynamics, Protein Synthesis, and Energetics, vol. 1. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y..
50. Hirsh, D. 1971. Tryptophan transfer RNA as the UGA suppressor. J. Mol. Biol. 58: 439 458.
51. Hodgkin, J.,, K. Kondo,, and R. H. Waterston. 1987. Suppression in the nematode Caenorhabditis elegans. Trends Genet. 3: 325 329.
52. Hughes, D.,, J. F. Atkins,, and S. Thompson. 1987. Mutants of elongation factor Tu promote ribosomal frameshifting and nonsense readthrough. EMBO J. 6: 4235 4239.
53. Ilgen, C.,, L. L. Kirk,, and J. Carbon. 1976. Isolation and characterization of large transfer ribonucleic acid precursors from Escherichia coli. J. Biol. Chem. 251: 922 929.
54. Jemiolo, D. K.,, F. T. Pagel,, and E. J. Murgola. Submitted for publication.
55. Kawakami, K.,, T. Inada,, and Y. Nakamura. 1988. Conditionally lethal and recessive UGA-suppressor mutations in the prfB gene encoding peptide chain release factor 2 of Escherichia coli. J. Bacteriol. 170: 5378 5381.
56. Kleina, L. G.,, J.-M. Masson,, J. Normanly,, J. Abelson,, and J. H. Miller. 1990. Construction of Escherichia coli amber suppressor tRNA genes. II. Synthesis of additional tRNA genes and improvement of suppressor efficiency. J. Mol. Biol. 213: 704 717.
57. Kohli, J.,, F. Altruda,, T. Kwong,, A. Rafalski,, R. Wetzel,, and D. Soli,. 1980. Nonsense suppressor tRNA in Schizosaccharomyces pombe, p. 407 419. In D. Söll,, J. N. Abelson,, and P. R. Schimmel (ed.), Transfer RNA: Biological Aspects. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y..
58. Komine, Y.,, T. Adachi,, H. Inokuchi,, and H. Ozeki. 1990. Genomic organization and physical mapping of the transfer RNA genes in Escherichia coli K12. J. Mol. Biol. 212: 579 598.
59. Kossel, H.,, and U. L. RajBhandary. 1968. Studies on polynucleotides. LXXXVI. Enzymic hydrolysis of N-acylaminoacyl-transfer RNA. J. Mol. Biol. 35: 539 560.
60. Kubli, E. 1986. Molecular mechanism of suppression in Drosophila. Trends Genet. 2: 204 209.
61. Kurland, C. G., 1979. Reading frame errors on ribosomes, p. 97 108. In J. E. Celis, and J. D. Smith (ed.), Nonsense Mutations and tRNA Suppressors. Academic Press, London.
62. Kurland, C. G.,, and M. Ehrenberg. 1984. Optimization of translation accuracy. Prog. Nucleic Acid Res. Mol. Biol. 31: 191 219.
63. Kurland, C. G.,, and J. A. Gallant,. 1986. The secret life of the ribosome, p. 127 157. In T. B. L. Kirkwood,, R. F. Rosenberger,, and D. J. Galas (ed.), Accuracy in Molecular Processes. Chapman & Hall, New York.
64. Lagerkvist, U. 1978. "Two out of three": an alternative method for codon reading. Proc. Natl. Acad. Sci. USA 75: 1759 1762.
65. Li, M.,, and A. Tzagoloff. 1979. Assembly of the mitochondrial membrane system: sequences of yeast mitochondrial valine and an unusual threonine tRNA gene. Cell 18: 47 53.
66. Munz, P.,, U. Leupold,, P. Agris,, and J. Kohli. 1981. In vivo decoding rules in Schizosaccharomyces pombe are at variance with in vitro data. Nature (London) 294: 187 188.
67. Murgola, E. J. 1981. Restricted wobble in UGA codon recognition by glycine tRNA suppressors of UGG. J. Mol. Biol. 149: 1 13.
68. Murgola, E. J. 1985. tRNA, suppression and the code. Annu. Rev. Genet. 19: 57 80.
69. Murgola, E. J., 1990. Mutant glycine tRNAs and other wonders of translational suppression, p. 83 101. In J. Cherayil (ed.), Transfer RNAs and Other Soluble RNAs. CRC Press, Boca Raton, Fla..
70. Murgola, E. J. 1990. Suppression and the code: beyond codons and anticodons. Experientia 46: 1134 1141.
71. Murgola, E. J., Ribosomal RNA in peptide chain termination: all's well that ends well. In R. A. Zimmermann, and A. E. Dahlberg (ed.), Ribosomal RNA: Structure, Evolution, Processing and Function in Protein Synthesis, in press. CRC Press, Boca Raton, Fla.
72. Murgola, E. J.,, and J. E. Bryant. 1980. Glutamic acid codon suppressors derived from a unique species of glycine transfer ribonucleic acid. J. Bacteriol. 142: 131 137.
73. Murgola, E. J.,, and J. R. Childress. 1980. Suppressors of a UGG missense mutation in Escherichia coli. J. Bacteriol. 143: 285 292.
74. Murgola, E. J.,, and G. Guarneros. 1991. Ribosomal RNA and peptidyl-tRNA hydrolase: a peptide chain termination model for lambda Bar RNA inhibition. Biochimie 73: 1573 1578.
75. Murgola, E. J.,, and K. A. Hijazi. 1983. Selection for new codons corresponding to position 234 of the tryptophan synthetase alpha chain of Escherichia coli. Mol. Gen. Genet. 191: 132 137.
76. Murgola, E. J.,, K. A. Hijazi,, H. U. Goringer,, and A. E. Dahlberg. 1988. Mutant 16S ribosomal RNA: a codon-specific translational suppressor. Proc. Natl. Acad. Sci. USA 85: 4162 4165.
77. Murgola, E. J.,, D. K. Jemiolo,, and J. L. Ebaugh. 1992. A tale of two suppressors: both 16S and 23S ribosomal RNAs of E. coli are involved in UGA-specific peptide chain termination. Abstracts of the Cold Spring Harbor Laboratory Meeting on Molecular Genetics of Bacteria and Phages.
78. Murgola, E. J.,, and C. I. Jones. 1978. A novel method for detection and characterization of ochre suppressors in Escherichia coli. Mol. Gen. Genet. 159: 179 184.
79. Murgola, E. J.,, B. H. Mims,, and N. E. Prather. 1978. Characterization of missense suppressors of a double mutant of the tryptophan synthetase alpha chain of Escherichia coli. Mol. Gen. Genet. 165: 225 230.
80. Murgola, E. J.,, and E. T. Pagel. 1980. Codon recognition by glycine transfer RNAs of Escherichia coli in vivo. J. Mol. Biol. 138: 833 844.
81. Murgola, E. J.,, F. T. Pagel,, and K. A. Hijazi. 1984. Codon context effects in missense suppression. J. Mol. Biol. 175: 19 27.
82. Murgola, E. J.,, N. E. Prather,, and K. H. Hadley. 1978. Variations among glyV-derived glycine tRNA suppressors of glutamic acid codons. J. Bacteriol. 134: 801 807.
83. Murgola, E. J.,, N. E. Prather,, B. H. Mims,, F. T. Pagel,, and K. A. Hijazi. 1983. Anticodon shift in tRNA: a novel mechanism in missense and nonsense suppression. Proc. Natl. Acad. Sci. USA 80: 4936 4939.
84. Murgola, E. J.,, N. E. Prather,, F. T. Pagel,, B. H. Mims,, and K. A. Hijazi. 1984. Missense and nonsense suppressors derived from a glycine tRNA by nucleotide insertion and deletion in vivo. Mol. Gen. Genet. 193: 76 81.
85. Murgola, E. J.,, and C. Yanofslcy. 1974. Selection for new amino acids at position 211 of the tryptophan synthetase a chain of Escherichia coli. J. Mol. Biol. 86: 775 784.
86. Murgola, E. J.,, and C. Yanofsky. 1974. Suppression of glutamic acid codons by mutant glycine transfer ribonucleic acid. J. Bacteriol. 117: 439 443.
87. Murgola, E. J.,, and C. Yanofsky. 1974. Structural interactions between amino acid residues at positions 22 and 211 in the tryptophan synthetase alpha chain of Escherichia coli. J. Bacteriol. 117: 444 448.
88. Noller, H. F.,, V. Hoffarth,, and L. Zimniak. 1992. Unusual resistance of peptidyl transferase to protein extraction procedures. Science 256: 1416 1419.
89. Normanly, J.,, L. G. Kleina,, J.-M. Masson,, J. Abelson,, and J. H. Miller. 1990. Construction of Escherichia coli amber suppressor tRNA genes. III. Determination of tRNA specificity. J. Mol. Biol. 213: 719 726.
90. O'Connor, M.,, and A. E. Dablberg. 1993. Mutations at U2555, a tRNA-protected base in 23S rRNA, affect translational fidelity. Proc. Natl. Acad. Sci. USA 90: 9214 9218.
91. O'Connor, M.,, R. F. Gesteland,, and J. F. Atkins. 1989. tRNA hopping: enhancement by an expanded anticodon. EMBO J. 8: 4315 4323.
92. O'Connor, M.,, N. M. Wills,, L. Bossi,, R. F. Gesteland,, and J. F. Atkins. 1993. Functional tRNAs with altered 3' ends. EMBO J. 12: 2559 2566.
93. Oeschger, M. P.,, N. S. Oeschger,, G. T. Wiprud,, and S. L. Woods. 1980. High efficiency temperature-sensitive amber suppressor strains of Escherichia coli K12: isolation of strains with suppressor-enhancing mutations. Mol. Gen. Genet. 177: 545 552.
94. O'Mahony, D. J.,, D. Hughes,, S. Thompson,, and J. F. Atkins. 1989. Suppression of a -1 frameshift mutation by a recessive tRNA suppressor which causes doublet decoding. J. Bacteriol. 171: 3824 3830.
95. O'Mahony, D. J.,, B. H. Mims,, S. Thompson,, E. J. Murgola,, and J. F. Atkins. 1989. Glycine tRNA mutants with normal anticodon loop size cause -1 frameshifting. Proc. Natl. Acad. Sci. USA 86: 7979 7983.
96. Ozeki, H.,, H. Inokuchi,, F. Yamao,, M. Kodaira,, H. Sakano,, T. Ikemura,, and Y. Shimura,. 1980. Genetics of nonsense suppressor tRNAs in Escherichia coli, p. 341 362. In D. Soll,, J. N. Abelson,, and P. R. Schimmel (ed.), Transfer RNA: Biological Aspects. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y..
96a.. Pagel, F. T.,, and E. J. Murgola. Unpublished data.
97. Pagel, F. T.,, and E. J. Murgola. 1994. Submitted for publication.
98. Pagel, F. T.,, T. M. F. Tuohy,, J. F. Atkins,, and E. J. Murgola. 1992. Doublet translocation at GGA is mediated directly by mutant tRNA 2 Gly. J. Bacteriol. 174: 4179 4182.
99. Pages, D.,, K. Hijazi,, E. J. Murgola,, J. Finelli,, and R. H. Buckingham. 1991. Suppression of a double missense mutation by a mutant tRNA phe in Escherichia coli. Nucleic Acids Res. 19: 867 869.
100. Parker, J., 1992. Variations in reading the genetic code, p. 191 267. In D. L. Hatfield,, B. J. Lee,, and R. M. Pirde (ed.), Transfer RNA in Protein Synthesis. CRC Press, Boca Raton, Fla..
101. Perez-Morga, D.,, and G. Guarneros. 1990. A short DNA sequence from ? phage inhibits protein synthesis in Escherichia coli rap. J. Mol. Biol. 216: 243 250.
102. Piccirilli, J. A.,, T. S. McConnell,, A. J. Zaug,, H. F. Noller,, and T. R. Cech. 1992. Aminoacyl esterase activity of the Tetrahymena ribozyme. Science 256: 1420 1424.
103. Piper, P. W. 1978. A correlation between a recessive lethal amber suppressor mutation in S. cerevisiae and an anticodon change in minor serine tRNA. J. Mol. Biol. 122: 217 235.
104. Platt, T., 1978. Regulation of gene expression in the tryptophan operon of Escherichia coli, p. 263 302. In J. H. Miller, and W. S. Reznikoff (ed.), The Operon. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y..
104a.. Prather, N. E.,, and E. J. Murgola. Unpublished data.
104b.. Prather, N. E.,, B. H. Mims,, and E. J. Murgola. Unpublished data.
105. Prather, N. E.,, E. J. Murgola,, and B. H. Mims. 1981. Nucleotide insertion in the anticodon loop of a glycine transfer RNA causes missense suppression. Proc. Natl. Acad. Sci. USA 78: 7408 7411.
106. Prather, N. E.,, E. J. Murgola,, and B. H. Mims. 1981. Primary structure of an unusual glycine tRNA UGA suppressor. Nucleic Acids Res. 9: 6421 6428.
107. Prather, N. E.,, E. J. Murgola,, and B. H. Mims. 1983. supG and supL in Escherichia coli code for mutant lysine tRNAs. Nucleic Acids Res. 11: 8283 8286.
108. Prather, N. E.,, E. J. Murgola,, and A H. Mims. 1984. Nucleotide substitution in the amino acid acceptor stem of tRNA Lys causes missense suppression. J. Mol. Biol. 172: 177 184.
109. Raftery, L. A.,, and M. Yarus. 1985. Site-specific mutagenesis of Escherichia coli gltT yields a weak, glutamic acid-inserting ochre suppressor. J. Mol. Biol. 184: 343 345.
110. Riddle, D. L.,, and J. Carbon. 1973. Frameshift suppression: a nucleotide addition in the anticodon of a glycine transfer RNA. Nature New Biol. 242: 230 234.
111. Riddle, D. L.,, and J. R. Roth. 1970. Suppressors of frame-shift mutations in Salmonella typhimurium. J. Mol. Biol. 54: 131 144.
112. Riyasaty, S.,, and J. F. Atkins. 1968. External suppression of a frameshift mutant in Salmonella. J. Mol. Biol. 34: 541 557.
113. Roberts, J. W.,, and J. Carbon. 1975. Nucleotide sequence studies of normal and genetically altered glycine transfer ribonucleic acids from Escherichia coli. J. Biol. Chem. 250: 5530 5541.
114. Ryden, M.,, and L. A. Isaksson. 1984. A temperature sensitive mutant of Escherichia coli that shows enhanced misreading of UAG/A and increased efficiency for some tRNA nonsense suppressors. Mol. Gen. Genet. 193: 38 45.
115. Sherman, J. M.,, K. Rogers,, M. J. Rogers,, and D. Söll. 1992. Synthetase competition and tRNA context determine the in vivo identity of tRNA discriminator mutants. J. Mol. Biol. 228: 1055 1062.
116. Smith, D.,, and M. Yarus. 1989. tRNA-tRNA interactions within cellular ribosomes. Proc. Natl. Acad. Sci. USA 86: 4397 4401.
117. Söll, D.,, D. S. Jones,, E. Ohtsuka,, R. D. Faulkner,, R. Lohrmann,, H. Hayatsu,, H. G. Khorana,, J. D. Cherayil,, A. Hampel,, and R. M. Bock. 1966. Specificity of sRNA for recognition of codons as studied by the ribosomal binding technique. J. Mol. Biol. 19: 556 573.
118. Sorensen, P. M.,, K. A. Hijazi,, E. J. Murgola,, and R. H. Buckingham. 1990. A radioactive assay for the physiological activity of the tryptophan synthetase a- subunit in crude extracts of Escherichia coli. Biochimie 72: 873 879.
119. Sprinzl, M.,, T. Hartmann,, J. Weber,, J. Blank,, and R. Zeidler. 1989. Compilation of tRNA sequences and sequences of tRNA genes. Nucleic Acids Res. 17( Suppl.): rl rl72.
120. Squires, C.,, and J. Carbon. 1971. Normal and mutant glycine transfer RNAs. Nature New Biol. 223: 274 277.
121. Sroga, G. E.,, F. Nemoto,, Y. Kuchino,, and G. R. Björk. 1992. Insertion ( sufB) in the anticodon loop or base substitution ( sufC) in the anticodon stem of tRNA Pro2 from Salmonella typhimurium induces suppression of frameshift mutations. Nucleic Acids Res. 20: 3463 3469.
122. Strigini, P.,, and E. Brickman. 1973. Analysis of specific misreading in Escherichia coli. J. Mol. Biol. 75: 659 672.
123. Su, J.-Y.,, L. Belmont,, and R. A. Sclafani. 1990. Genetic and molecular analysis of the SOE1 gene: a tRNA Glu3 missense suppressor of yeast cdc8 mutations. Genetics 124: 523 531.
123a.. Tiedeman, A. A.,, and E. J. Murgola. Unpublished data.
124. Thorbjarnardóttir, S.,, H. Uemura,, T. Dingermann,, T. Rafnar,, S. Thorsteinsdóttir,, D. Söll,, and G. Eggertsson. 1985. Escherichia coli supH suppressor: temperature-sensitive missense suppression caused by an anticodon change in tRNA Ser2. J. Bacteriol. 161: 207 211.
125. Tsang, T. H.,, M. Buck,, and R N. Ames. 1983. Sequence specificity of tRNA-modifying enzymes: an analysis of 258 tRNA sequences. Biochim. Biophys. Acta 741: 180 196.
126. Tucker, S. D.,, and E. J. Murgola. 1985. Sequence analysis of the glyW region in Escherichia coli. Biochimie 67: 1053 1057.
127. Tucker, S. D.,, and E. J. Murgola. 1986. Sequence verification of mutant codon assignments in trpA of Escherichia coli. DNA 5: 123 128.
128. Tucker, S. D.,, E. J. Murgola,, and F. T. Pagel. 1989. Missense and nonsense suppressors can correct frameshift mutations. Biochimie 71: 729 739.
129. Tuohy, T. M. F.,, S. Thompson,, R. F. Gesteland,, and J. F. Atkins. 1992. Seven, eight and nine-membered anticodon loop mutants of tRNA Arg2 which cause +1 frameshifting. Tolerance of DHU arm and other secondary mutations. J. Mol. Biol. 228: 1042 1054.
130. Weiss, R. B.,, D. M. Dunn,, J. F. Atkins,, and R. F. Gesteland. 1990. Ribosomal frameshifting from -2 to +50 nucleotides. Prog. Nucleic Acid Res. Mol. Biol. 39: 159 183.
130a.. Xu, W.,, K. A. Hijazi,, G. Guarneros,, and E. J. Murgola. Unpublished data.
131. Yanofsky, C., 1956. Gene interactions in enzyme synthesis, p. 147 160. In O. H. Gaebler (ed.), Enzymes: Units of Biological Structure and Function. Academic Press, New York.
132. Yanofsky, C., 1969. Protein structure and evolution, p. 191 206. In M. Marois (ed.), Proceedings of the 2nd International Conference on Theoretical Physiology and Biology. Centre Natl. Rech. Sci., Paris.
133. Yanofsky, C. 1969. In vivo studies on the genetic code. Proceedings of the 12th International Congress on Genetics. 3: 155 165.
134. Yanofsky, C. 1971. Tryptophan biosynthesis. JAMA 218: 1026 1035.
135. Yanofsky, C. 1976. The search for the structural relationship between gene and enzymes, p. 263 271. In Reflections on Biochemistry. Pergamon Press, New York.
136. Yanofsky, C. 1987. Tryptophan synthetase: its charmed history. BioEssays 6: 133 137.
137. Yanofsky, C.,, and D. M. Bonner. 1955. Gene interaction in tryptophan synthetase formation. Genetics 40: 761 769.
138. Yanofsky, C.,, and I. P. Crawford. 1972. Tryptophan synthetase. Enzymes 7: 1 31.
139. Yanofsky, C.,, D. R. Helinski,, and B. D. Maling. 1961. The effects of mutation on the composition and properties of the A protein of Escherichia coli tryptophan synthetase. Cold Spring Harbor Symp. Quant. Biol. 26: 11 24.
140. Yanofsky, C.,, and V. Horn. 1972. Tryptophan synthetase ? chain positions affected by mutations near the ends of the genetic map of trpA of Escherichia coli. J. Biol. Chem. 247: 4494 4498.
141. Yanofsky, C.,, J. Ito,, and V. Horn. 1966. Amino acid replacements and the genetic code. Cold Spring Harbor Symp. Quant. Biol. 31: 151 162.
142. Yanofsky, C.,, T. Platt,, I. P. Crawford,, B. P. Nichols,, G. E. Christie,, H. Horowitz,, M. Van Cleemput,, and A. M. Wu. 1981. The complete nucleotide sequence of the tryptophan operon of Escherichia coli. Nucleic Acids Res. 9: 6647 6668.
143. Yanofsky, C.,, and P. St. Lawrence. 1960. Gene action. Annu. Rev. Microbiol. 14: 311 340.
144. Yarus, M.,, and J. Curran,. 1992. The translational context effect, p. 319 365. In D. L. Hatfield,, B. J. Lee,, and R. M. Pirtle (ed.), Transfer RNA in Protein Synthesis. CRC Press, Boca Raton, Fla..
145. Yourno, J.,, and S. Tanemura. 1970. Restoration of in-phase translation by an unlinked suppressor of a frameshift mutation in Salmonella typhimurium. Nature (London) 225: 422 426.
146. Yutani, K.,, K. Ogasahara,, T. Tsujita,, K. Kanemoto,, M. Matsumoto,, S. Tanaka,, T. Miyoshita,, A. Matsushiro,, Y. Sugino,, and E. W. Miles. 1987. Tryptophan synthase ? subunit glutamic acid 49 is essential for activity. Studies with 19 mutants at position 49. J. Biol. Chem. 262: 13429 13433.

Tables

Generic image for table
Table 1

Missense suppressors derived from tRNA isoacceptors in

Anticodon consists of nucleotides 34, 35, and 36. Anticodon loop is nucleotides 32 to 38. For entire wild type sequences, see reference . U* is a modified form of U that is unidentified but related to S-methylaminomethyl-2-thiouridine (mamsU). U, Uand U, however, are unidentified modified U's that are different from U*. tA, N-[(9-β-D-ribofuranosylpurin-6-yl) carbamoyl] threonine. msiA, 2-methylthio-N-isopentenyladenosine.

Each suppressor tRNA is specific for the codons listed, failing to suppress other missense as well as nonsense mutations.

Absence of references in this column is meant to indicate results obtained in my laboratory. Suppressor isolations and conversions were by F. T. Pagel, K. A. Hijazi, and myself; tRNA sequence analyses were by N. E. Prather, B. H. Mims, and myself.

Deduced from sequencing of (SuUAG) and (SuUG A/G) tRNAs, each of which was obtained from it in one step (see Table 3 ).

These tRNAs have eight nucleotides in the anticodon loop. As a result, the anticodon has been shifted from nucleotides 34, 35, and 36 to nucleotides 35, 36, and 37 ( ).

Citation: Murgola E. 1995. Translational Suppression: When Two Wrongs DO Make a Right, p 491-509. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch24
Generic image for table
Table 2

Missense suppressors derived from tRNAs other than tRNA

The glu3 suppressor is from . All others are from .

Anticodon consists of nucleotides 34, 35, and 36. For entire wild-type sequences, see reference .

In tRNA from , U9 is mcmsU, i.e., 5-methoxycarbonylmethyl-2-thiouridine. In tRNA, U is mamsU, i.e., 5-meth-ylaminomethyl-2-thiourdine. In the elongator tRNA of , C is acC, i.e., N-acetylcytidine.

Citation: Murgola E. 1995. Translational Suppression: When Two Wrongs DO Make a Right, p 491-509. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch24
Generic image for table
Table 3

Termination codon suppressors of amber (UAG), ochre (UAA), and opal (UGA) mutations in

Anticodon consists of nucleotides 34, 35, and 36. Anticodon loop is nucleotides 32 to 38. For entire wild-type sequences, see reference . In tRNA2, U* represents an unidentified modified U; in tRNA , U and U are unidentified modifications of U that differ from U*; in tRNA and tRNA , U is 5-methylaminomethyl-2-thiouridine (mamsU). msiA, 2-methylthio-N-isopentenyladenosine.

Each suppressor is specific for the codons listed, failing to suppress other nonsense as well as missense mutations.

Absence of references in this column is meant to indicate results obtained in my laboratory. Suppressor isolations and conversions were by F. T. Pagel, K. A. Hijazi, and myself; tRNA sequence analyses were by N. E. Prather, B. H. Mims, and myself.

This tRNA has eight nucleotides in the anticodon loop. See Table 1 , footnote e.

Citation: Murgola E. 1995. Translational Suppression: When Two Wrongs DO Make a Right, p 491-509. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch24
Generic image for table
Table 4

Modified nucleosides” in the anticodon loops of related suppressor tRNAs

A,2-methyladenosine, mA; A, 2-methylthio-N-isopentenyladenosine, msiA; A, -[(9-beta-D-ribofuranosylpurin-6-yl) carbamoyl] threonine, tA; U, 5-methylaminomethyl-2-thiouridine, mamsU; U*,U,U,U, unidentified modifications of U that are different from U.

See Tables 1 and 3 for further information.

Brackets indicate that the modification is partial. Parentheses indicate that the nucleoside is predominantly unmodified. Absence of brackets or parentheses indicates that the nucleoside is either completely unmodified at the position in question (no modified nucleoside detected) or completely modified (no unmodified nucleoside detected at precisely that position). These observations are reported by comparison with or in contrast to modified or unmodified nucleosides present in relevant wild type tRNAs (for example, gly, trp, cys, or glu) from cells grown under the same conditions.

These suppressor tRNAs have an extra A (A38:A) (not shown) in the anticodon loop, resulting in an anticodon shift to nucleotides 35, 36, and 37 ( ).

All of these derivatives retain the C70 to U change in the amino acid acceptor stem.

Corresponds to both and (see Table 3 ).

Citation: Murgola E. 1995. Translational Suppression: When Two Wrongs DO Make a Right, p 491-509. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch24

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error