1887

Chapter 24 : Translational Suppression: When Two Wrongs DO Make a Right

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Translational Suppression: When Two Wrongs DO Make a Right, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818333/9781555810733_Chap24-1.gif /docserver/preview/fulltext/10.1128/9781555818333/9781555810733_Chap24-2.gif

Abstract:

This chapter talks about the genetic translational suppression, that is, suppression caused by a mutation in the gene for one of the translational macromolecules, particularly tRNAs. Such suppressor mutants usually generate a much stronger suppression signal, more easily allowing the analysis of the alteration in translational fidelity. Furthermore, they allow the study of structural determinants of that macromolecule's functions and of its functional interactions with other translational macromolecules. Translational suppression is a most effective way to examine the structure, function, and interactions of any translational macromolecule, as long as and to the extent that that molecule is involved in the specificity or accuracy of translation. The chapter is divided into four parts: (a) review of the requirements of any system to be used for the in vivo selection and study of suppressors, (b) examples of interesting suppressors of missense, nonsense, and frameshift mutations, (c) conclusions from and ramifications of some suppressor tRNA studies, and (d) discussion of some suppressors that are not altered tRNAs but that nevertheless lead, directly or indirectly, to altered functioning of some tRNA.

Citation: Murgola E. 1995. Translational Suppression: When Two Wrongs DO Make a Right, p 491-509. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch24

Key Concept Ranking

Frameshift Mutation
0.51366097
Elongation Factor Tu
0.4477863
Genetic Selection
0.4125843
0.51366097
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

References

/content/book/10.1128/9781555818333.chap24
1. Agris, P. F.,, D. Söll,, and T. Seno. 1973. Biological function of 2-thiouridine in Escherichia coli glutamic transfer ribonucleic acid. Biochemistry 12:43314337.
2. An, G.,, and J. D. Friesen. 1980. The nucleotide sequence of tufB and four nearby tRNA structural genes of Escherichia coli. Gene 12:3339.
3. Atkins, J. F.,, R. B. Weiss,, and R. F. Gesteland. 1990. Ribosome gymnastics—degree of difficulty 9.5, style 10.0. Cell 62:413423.
4. Atkins, J. F.,, R. B. Weiss,, S. Thompson,, and R. F. Gesteland. 1991. Towards a genetic dissection of the basis of triplet decoding, and its natural subversion: programmed reading frame shifts and hops. Annu. Rev. Genet. 25:201228.
5. Benzer, S.,, and S. P. Champe. 1961. Ambivalent rII mutants of phage T4. Proc. Natl. Acad. Sci. USA 47:10251039.
6. Benzer, S.,, and S. P. Champe. 1962. A change from nonsense to sense in the genetic code. Proc. Natl. Acad. Acad. USA 48:11141121.
7. Berg, P. 1973. Suppression: a subversion of genetic decoding. Harvey Lectures 67:247272.
8. Björk, G. R.,, P. M. Wikström,, and A. S. Byström. 1989. Prevention of translational frameshifting by the modified nucleoside 1-methylguanosine. Science 244:986989.
9. Bossi, L.,, and J. R. Roth. 1981. Four-base codons ACCA, ACCU, and ACCC are recognized by frameshift suppressor sufJ. Cell 25:489496.
10. Brody, S.,, and C. Yanofsky. 1963. Suppressor gene alteration of protein primary structure. Proc. Natl. Acad. Sci. USA 50:916.
11. Brown, C. M.,, K. K. McCaughan,, and W. P. Tate. 1993. Two regions of the Escherichia coli 16S ribosomal RNA are important for decoding stop signals in polypeptide chain termination. Nucleic Acids Res. 21:21092115.
11a.. Buckingham, R. H.,, D. Brechemier-Baey,, P. Sorensen,, K. A. Hijazi,, and E. J. Murgola. Unpublished data.
12. Buckingham, R. H. 1990. Codon context. Experientia 46:11261133.
13. Buckingham, R. H.,, E. J. Murgola,, P. Sorensen,, F. T. Pagel,, K. A. Hijazi,, B. H. Mims,, N. Figueroa,, D. Brechemier-Baey,, and E. Coppin-Raynal,. 1990. Effects of codon context on the suppression of nonsense and missense mutations in the trpA gene of Escherichia coli, p. 541545. In W. E. Hill,, A. Dahlberg,, R. A. Garrett,, P. B. Moore,, D. Schlessinger,, and J. R. Warner (ed.), The Ribosome: Structure, Function, and Evolution. American Society for Microbiology, Washington, D.C..
14. Buckingham, R. H.,, P. Sörensen,, F. T. Pagel,, K. A. Hijazi,, B. H. Mims,, D. Brechemier-Baey,, and E. J. Murgola. 1990. Third position base changes in codons 5' and 3' adjacent UGA codons affect UGA suppression in vivo. Biochim. Biophys. Acta 1050:259262.
15. Capecchi, M. R.,, and G. N. Gussin. 1965. Suppression in vitro: identification of a serine-sRNA as a "nonsense" suppressor. Science 149:417422.
16. Carbon, J.,, P. Berg,, and C. Yanofsky. 1966. Studies of missense suppression of the tryptophan synthetase A-protein mutant A36. Proc. Natl. Acad. Set. USA 56:764771.
17. Carbon, J.,, and E. W. Fleck. 1974. Genetic alteration of structure and function in glycine transfer RNA of Escherichia coli: mechanism of suppression of the tryptophan synthetase A78 mutation. J. Mol. Biol. 85:371391.
18. Carbon, J.,, C. Squires,, and C. W. Hill. 1970. Glycine transfer RNA of Escherichia coli. II. Impaired GGA- recognition in strains containing a genetically altered transfer RNA; reversal by a secondary suppressor mutation. J. Mol. Biol. 52:571584.
19. Coleman, R. D.,, R. W. Dunst,, and C. W. Hill. 1980. A double base change in alternate base pairs induced by ultraviolet irradiation in a glycine transfer RNA gene. Mol. Gen. Genet. 177:213222.
20. Crawford, I. P.,, and G. V. Stauffer. 1980. Regulation of tryptophan biosynthesis. Annu. Rev. Biochem. 49:163195.
21. Crawford, I. P.,, and C. Yanofsky. 1959. The formation of a new enzymatically active protein as a result of suppression. Proc. Natl. Acad. Sci. USA 45:12801287.
22. Crick, F. H. C. 1966. Codon-anticodon pairing: the wobble hypothesis. J. Mol. Biol. 19:548555.
23. Crick, F. H. C.,, L. Barnett,, S. Brenner,, and R. J. Watts-Tobin. 1961. Triplet nature of the genetic code. Nature (London) 192:12271232.
24. Culbertson, M. R.,, P. Leeds,, M. G. Sandbaken,, and P. G. Wilson,. 1990. Frameshift suppression, p. 559570. In W. E. Hill,, A. Dahlberg,, R. A. Garrett,, P. B. Moore,, D. Schlessinger,, and J. R. Warner (ed.), The Ribosome: Structure, Function, and Evolution. American Society for Microbiology, Washington, D.C..
25. Cuzin, F.,, N. Kretchmer,, R. F. Greenberg,, R. Hurwitz,, and F. Chapeville. 1967. Enzymatic hydrolysis of N-substituted aminoacyl-tRNA. Proc. Natl. Acad. Sci. USA 58:20792086.
26. Dunst, R. W.,, R. D. Coleman,, B. W. Harnish,, and C. W. Hill. 1981. A system for measuring the frequencies of tandem and non-tandem double base substitutions induced by ultraviolet irradiation. Mol. Gen. Genet. 184:445449.
27. Eggertsson, G. 1982. Suppressors causing temperature sensitivity of growth in Escherichia coli. Genetics 60:269280.
28. Eggertsson, G., and Adelberg, E. A. 1965. Map positions and specificities of suppressdr mutations in Escherichia coli K-12. Genetics 52:319340.
29. Eggertsson, G.,, and D. Söll. 1988. Transfer-RNA mediated suppression of termination codons in Escherichia coli. Microbiol. Rev. 52:354374.
30. Etcheverry, T.,( D. Colby,, and C. Guthrie. 1979. A precursor to a minor species of yeast tRNASer contains an intervening sequence. Cell 18:1126.
31. Falahee, M. B.,, R. B. Weiss,, M. O'Connor,, S. Doonan,, R. F. Gesteland,, and J. F. Atkins. 1988. Mutants of translational components that alter reading frame by two steps forward or one step back. J. Biol. Chem. 263:1809918103.
32. Farabaugh, P. J. 1993. Alternative readings of the genetic code. Cell 74:591596.
33. Fleck, E. W.,, and J. Carbon. 1975. Multiple gene loci for a single species of glycine transfer ribonucleic acid. J. Bacteriol. 122:492501.
34. Francetic, O.,, M. P. Hanson,, and C. Kumamoto. 1993. prlA suppression of defective export of maltose-binding protein in secB mutants of Escherichia coli. J. Bacteriol. 175:40364044.
34a.. Francetic, O.,, and C. Kumamoto. Unpublished data.
35. Garcia-Villegas, M. R.,, F. M. De La Vega,, J. M. Galindo,, M. Segura,, R. H. Buckingham,, and G. Guarneros. 1991. Peptidyl-tRNA hydrolase is involved in ? inhibition of host protein synthesis. EMBO J. 10:35493555.
36. Goringer, H. U.,, K. A. Hijazi,, E. J. Murgola,, and A. E. Dahlberg. 1991. Mutations in 16S rRNA that affect UGA (stop codon) directed translation termination. Proc. Natl. Acad. Sci. USA 88:66036607.
37. Grosjean, H.,, K. Nicoghosian,, E. Haumont,, D. Söll,, and R. Cedergren. 1985. Nucleotide sequences of two serine tRNAs with a GGA anticodon: the structure-function relationships in the serine family of E. coli tRNAs. Nucleic Acids Res. 13:56975706.
38. Gupta, N. K.,, and H. G. Khorana. 1966. Missense suppression of the tryptophan synthetase A-protein mutant A78. Proc. Natl. Acad. Sci. USA 56:772779.
39. Guzman, P.,, and G. Guarneros. 1990. Phage genetic sites involved in X growth inhibition by the Escherichia coli rap mutant. Genetics 121:401410.
40. Guzman, P.,, B. E. Rivera Chavira,, D. L. Court,, M. E. Gottesman,, and G. Guarneros. 1990. Transcription of a bacteriophage ? DNA site blocks growth of Escherichia coli. J. Bacteriol. 172:10301034.
41. Hadley, K. H.,, and E. J. Murgola. 1978. Isolation of lysine codon suppressors in Escherichia coli. Curr. Microbiol. 1:99103.
42. Hagervall, T. G.,, T. M. F. Tuohy,, J. F. Atkins,, and G. R. Björk. 1993. Deficiency of 1-methylguanosine in tRNA from Salmonella typhimurium induces frameshifting by quadruplet translocation. J. Mol. Biol. 232:756765.
43. Hatfield, D.,, B. J. Lee,, D. W. E. Smith,, and S. Oroszlan. 1990. Role of nonsense, frameshift, and missense suppressor tRNAs in mammalian cells. Prog. Mol. Subcell. Biol. 11:115146.
44. Hatfield, D. L.,, D. W. E. Smith,, B. J. Lee,, P. J. Worland,, and S. Orozlan. 1990. Structure and function of suppressor tRNAs in higher eukaryotes. Crit. Rev. Biochem. Mol. Biol. 25:7196.
45. Henderson, D.,, and J. Weil. 1976. A mutant of Escherichia coli that prevents growth of phage lambda and is bypassed by lambda mutants in a non-essential region of the genome. Virology 71:546559.
46. Hill, C. W. 1975. Informational suppression of missense mutations. Cell 6:419427.
47. Hill, C. W.,, G. Combriato,, and W. Dolph. 1974. Three different missense suppressor mutations affecting the tRNAGlyGGG species of Escherichia coli. J. Bacteriol. 117:351359.
48. Hill, C. W.,, C. Squires,, and J. Carbon. 1970. Glycine transfer RNA of Escherichia coli. I. Structural genes for two glycine tRNA species. J. Mol. Biol. 52:557569.
49. Hinnebusch, A. G.,, and Liebman, S. W. 1991. Protein synthesis and translational control in Saccharomyces cerevisiae, p. 627735. In The Molecular and Cellular Biology of the Yeast Saccharomyces: Genome Dynamics, Protein Synthesis, and Energetics, vol. 1. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y..
50. Hirsh, D. 1971. Tryptophan transfer RNA as the UGA suppressor. J. Mol. Biol. 58:439458.
51. Hodgkin, J.,, K. Kondo,, and R. H. Waterston. 1987. Suppression in the nematode Caenorhabditis elegans. Trends Genet. 3:325329.
52. Hughes, D.,, J. F. Atkins,, and S. Thompson. 1987. Mutants of elongation factor Tu promote ribosomal frameshifting and nonsense readthrough. EMBO J. 6:42354239.
53. Ilgen, C.,, L. L. Kirk,, and J. Carbon. 1976. Isolation and characterization of large transfer ribonucleic acid precursors from Escherichia coli. J. Biol. Chem. 251:922929.
54. Jemiolo, D. K.,, F. T. Pagel,, and E. J. Murgola. Submitted for publication.
55. Kawakami, K.,, T. Inada,, and Y. Nakamura. 1988. Conditionally lethal and recessive UGA-suppressor mutations in the prfB gene encoding peptide chain release factor 2 of Escherichia coli. J. Bacteriol. 170:53785381.
56. Kleina, L. G.,, J.-M. Masson,, J. Normanly,, J. Abelson,, and J. H. Miller. 1990. Construction of Escherichia coli amber suppressor tRNA genes. II. Synthesis of additional tRNA genes and improvement of suppressor efficiency. J. Mol. Biol. 213:704717.
57. Kohli, J.,, F. Altruda,, T. Kwong,, A. Rafalski,, R. Wetzel,, and D. Soli,. 1980. Nonsense suppressor tRNA in Schizosaccharomyces pombe, p. 407419. In D. Söll,, J. N. Abelson,, and P. R. Schimmel (ed.), Transfer RNA: Biological Aspects. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y..
58. Komine, Y.,, T. Adachi,, H. Inokuchi,, and H. Ozeki. 1990. Genomic organization and physical mapping of the transfer RNA genes in Escherichia coli K12. J. Mol. Biol. 212:579598.
59. Kossel, H.,, and U. L. RajBhandary. 1968. Studies on polynucleotides. LXXXVI. Enzymic hydrolysis of N-acylaminoacyl-transfer RNA. J. Mol. Biol. 35:539560.
60. Kubli, E. 1986. Molecular mechanism of suppression in Drosophila. Trends Genet. 2:204209.
61. Kurland, C. G., 1979. Reading frame errors on ribosomes, p. 97108. In J. E. Celis, and J. D. Smith (ed.), Nonsense Mutations and tRNA Suppressors. Academic Press, London.
62. Kurland, C. G.,, and M. Ehrenberg. 1984. Optimization of translation accuracy. Prog. Nucleic Acid Res. Mol. Biol. 31:191219.
63. Kurland, C. G.,, and J. A. Gallant,. 1986. The secret life of the ribosome, p. 127157. In T. B. L. Kirkwood,, R. F. Rosenberger,, and D. J. Galas (ed.), Accuracy in Molecular Processes. Chapman & Hall, New York.
64. Lagerkvist, U. 1978. "Two out of three": an alternative method for codon reading. Proc. Natl. Acad. Sci. USA 75:17591762.
65. Li, M.,, and A. Tzagoloff. 1979. Assembly of the mitochondrial membrane system: sequences of yeast mitochondrial valine and an unusual threonine tRNA gene. Cell 18:4753.
66. Munz, P.,, U. Leupold,, P. Agris,, and J. Kohli. 1981. In vivo decoding rules in Schizosaccharomyces pombe are at variance with in vitro data. Nature (London) 294:187188.
67. Murgola, E. J. 1981. Restricted wobble in UGA codon recognition by glycine tRNA suppressors of UGG. J. Mol. Biol. 149:113.
68. Murgola, E. J. 1985. tRNA, suppression and the code. Annu. Rev. Genet. 19:5780.
69. Murgola, E. J., 1990. Mutant glycine tRNAs and other wonders of translational suppression, p. 83101. In J. Cherayil (ed.), Transfer RNAs and Other Soluble RNAs. CRC Press, Boca Raton, Fla..
70. Murgola, E. J. 1990. Suppression and the code: beyond codons and anticodons. Experientia 46:11341141.
71. Murgola, E. J., Ribosomal RNA in peptide chain termination: all's well that ends well. In R. A. Zimmermann, and A. E. Dahlberg (ed.), Ribosomal RNA: Structure, Evolution, Processing and Function in Protein Synthesis, in press. CRC Press, Boca Raton, Fla.
72. Murgola, E. J.,, and J. E. Bryant. 1980. Glutamic acid codon suppressors derived from a unique species of glycine transfer ribonucleic acid. J. Bacteriol. 142:131137.
73. Murgola, E. J.,, and J. R. Childress. 1980. Suppressors of a UGG missense mutation in Escherichia coli. J. Bacteriol. 143:285292.
74. Murgola, E. J.,, and G. Guarneros. 1991. Ribosomal RNA and peptidyl-tRNA hydrolase: a peptide chain termination model for lambda Bar RNA inhibition. Biochimie 73:15731578.
75. Murgola, E. J.,, and K. A. Hijazi. 1983. Selection for new codons corresponding to position 234 of the tryptophan synthetase alpha chain of Escherichia coli. Mol. Gen. Genet. 191:132137.
76. Murgola, E. J.,, K. A. Hijazi,, H. U. Goringer,, and A. E. Dahlberg. 1988. Mutant 16S ribosomal RNA: a codon-specific translational suppressor. Proc. Natl. Acad. Sci. USA 85:41624165.
77. Murgola, E. J.,, D. K. Jemiolo,, and J. L. Ebaugh. 1992. A tale of two suppressors: both 16S and 23S ribosomal RNAs of E. coli are involved in UGA-specific peptide chain termination. Abstracts of the Cold Spring Harbor Laboratory Meeting on Molecular Genetics of Bacteria and Phages.
78. Murgola, E. J.,, and C. I. Jones. 1978. A novel method for detection and characterization of ochre suppressors in Escherichia coli. Mol. Gen. Genet. 159:179184.
79. Murgola, E. J.,, B. H. Mims,, and N. E. Prather. 1978. Characterization of missense suppressors of a double mutant of the tryptophan synthetase alpha chain of Escherichia coli. Mol. Gen. Genet. 165:225230.
80. Murgola, E. J.,, and E. T. Pagel. 1980. Codon recognition by glycine transfer RNAs of Escherichia coli in vivo. J. Mol. Biol. 138:833844.
81. Murgola, E. J.,, F. T. Pagel,, and K. A. Hijazi. 1984. Codon context effects in missense suppression. J. Mol. Biol. 175:1927.
82. Murgola, E. J.,, N. E. Prather,, and K. H. Hadley. 1978. Variations among glyV-derived glycine tRNA suppressors of glutamic acid codons. J. Bacteriol. 134:801807.
83. Murgola, E. J.,, N. E. Prather,, B. H. Mims,, F. T. Pagel,, and K. A. Hijazi. 1983. Anticodon shift in tRNA: a novel mechanism in missense and nonsense suppression. Proc. Natl. Acad. Sci. USA 80:49364939.
84. Murgola, E. J.,, N. E. Prather,, F. T. Pagel,, B. H. Mims,, and K. A. Hijazi. 1984. Missense and nonsense suppressors derived from a glycine tRNA by nucleotide insertion and deletion in vivo. Mol. Gen. Genet. 193:7681.
85. Murgola, E. J.,, and C. Yanofslcy. 1974. Selection for new amino acids at position 211 of the tryptophan synthetase a chain of Escherichia coli. J. Mol. Biol. 86:775784.
86. Murgola, E. J.,, and C. Yanofsky. 1974. Suppression of glutamic acid codons by mutant glycine transfer ribonucleic acid. J. Bacteriol. 117:439443.
87. Murgola, E. J.,, and C. Yanofsky. 1974. Structural interactions between amino acid residues at positions 22 and 211 in the tryptophan synthetase alpha chain of Escherichia coli. J. Bacteriol. 117:444448.
88. Noller, H. F.,, V. Hoffarth,, and L. Zimniak. 1992. Unusual resistance of peptidyl transferase to protein extraction procedures. Science 256:14161419.
89. Normanly, J.,, L. G. Kleina,, J.-M. Masson,, J. Abelson,, and J. H. Miller. 1990. Construction of Escherichia coli amber suppressor tRNA genes. III. Determination of tRNA specificity. J. Mol. Biol. 213:719726.
90. O'Connor, M.,, and A. E. Dablberg. 1993. Mutations at U2555, a tRNA-protected base in 23S rRNA, affect translational fidelity. Proc. Natl. Acad. Sci. USA 90:92149218.
91. O'Connor, M.,, R. F. Gesteland,, and J. F. Atkins. 1989. tRNA hopping: enhancement by an expanded anticodon. EMBO J. 8:43154323.
92. O'Connor, M.,, N. M. Wills,, L. Bossi,, R. F. Gesteland,, and J. F. Atkins. 1993. Functional tRNAs with altered 3' ends. EMBO J. 12:25592566.
93. Oeschger, M. P.,, N. S. Oeschger,, G. T. Wiprud,, and S. L. Woods. 1980. High efficiency temperature-sensitive amber suppressor strains of Escherichia coli K12: isolation of strains with suppressor-enhancing mutations. Mol. Gen. Genet. 177: 545552.
94. O'Mahony, D. J.,, D. Hughes,, S. Thompson,, and J. F. Atkins. 1989. Suppression of a -1 frameshift mutation by a recessive tRNA suppressor which causes doublet decoding. J. Bacteriol. 171:38243830.
95. O'Mahony, D. J.,, B. H. Mims,, S. Thompson,, E. J. Murgola,, and J. F. Atkins. 1989. Glycine tRNA mutants with normal anticodon loop size cause -1 frameshifting. Proc. Natl. Acad. Sci. USA 86:79797983.
96. Ozeki, H.,, H. Inokuchi,, F. Yamao,, M. Kodaira,, H. Sakano,, T. Ikemura,, and Y. Shimura,. 1980. Genetics of nonsense suppressor tRNAs in Escherichia coli, p. 341362. In D. Soll,, J. N. Abelson,, and P. R. Schimmel (ed.), Transfer RNA: Biological Aspects. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y..
96a.. Pagel, F. T.,, and E. J. Murgola. Unpublished data.
97. Pagel, F. T.,, and E. J. Murgola. 1994. Submitted for publication.
98. Pagel, F. T.,, T. M. F. Tuohy,, J. F. Atkins,, and E. J. Murgola. 1992. Doublet translocation at GGA is mediated directly by mutant tRNA2Gly. J. Bacteriol. 174:41794182.
99. Pages, D.,, K. Hijazi,, E. J. Murgola,, J. Finelli,, and R. H. Buckingham. 1991. Suppression of a double missense mutation by a mutant tRNAphe in Escherichia coli. Nucleic Acids Res. 19:867869.
100. Parker, J., 1992. Variations in reading the genetic code, p. 191267. In D. L. Hatfield,, B. J. Lee,, and R. M. Pirde (ed.), Transfer RNA in Protein Synthesis. CRC Press, Boca Raton, Fla..
101. Perez-Morga, D.,, and G. Guarneros. 1990. A short DNA sequence from ? phage inhibits protein synthesis in Escherichia coli rap. J. Mol. Biol. 216:243250.
102. Piccirilli, J. A.,, T. S. McConnell,, A. J. Zaug,, H. F. Noller,, and T. R. Cech. 1992. Aminoacyl esterase activity of the Tetrahymena ribozyme. Science 256:14201424.
103. Piper, P. W. 1978. A correlation between a recessive lethal amber suppressor mutation in S. cerevisiae and an anticodon change in minor serine tRNA. J. Mol. Biol. 122:217235.
104. Platt, T., 1978. Regulation of gene expression in the tryptophan operon of Escherichia coli, p. 263302. In J. H. Miller, and W. S. Reznikoff (ed.), The Operon. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y..
104a.. Prather, N. E.,, and E. J. Murgola. Unpublished data.
104b.. Prather, N. E.,, B. H. Mims,, and E. J. Murgola. Unpublished data.
105. Prather, N. E.,, E. J. Murgola,, and B. H. Mims. 1981. Nucleotide insertion in the anticodon loop of a glycine transfer RNA causes missense suppression. Proc. Natl. Acad. Sci. USA 78:74087411.
106. Prather, N. E.,, E. J. Murgola,, and B. H. Mims. 1981. Primary structure of an unusual glycine tRNA UGA suppressor. Nucleic Acids Res. 9:64216428.
107. Prather, N. E.,, E. J. Murgola,, and B. H. Mims. 1983. supG and supL in Escherichia coli code for mutant lysine tRNAs. Nucleic Acids Res. 11:82838286.
108. Prather, N. E.,, E. J. Murgola,, and A H. Mims. 1984. Nucleotide substitution in the amino acid acceptor stem of tRNALys causes missense suppression. J. Mol. Biol. 172:177184.
109. Raftery, L. A.,, and M. Yarus. 1985. Site-specific mutagenesis of Escherichia coli gltT yields a weak, glutamic acid-inserting ochre suppressor. J. Mol. Biol. 184:343345.
110. Riddle, D. L.,, and J. Carbon. 1973. Frameshift suppression: a nucleotide addition in the anticodon of a glycine transfer RNA. Nature New Biol. 242:230234.
111. Riddle, D. L.,, and J. R. Roth. 1970. Suppressors of frame-shift mutations in Salmonella typhimurium. J. Mol. Biol. 54:131144.
112. Riyasaty, S.,, and J. F. Atkins. 1968. External suppression of a frameshift mutant in Salmonella. J. Mol. Biol. 34:541557.
113. Roberts, J. W.,, and J. Carbon. 1975. Nucleotide sequence studies of normal and genetically altered glycine transfer ribonucleic acids from Escherichia coli. J. Biol. Chem. 250:55305541.
114. Ryden, M.,, and L. A. Isaksson. 1984. A temperature sensitive mutant of Escherichia coli that shows enhanced misreading of UAG/A and increased efficiency for some tRNA nonsense suppressors. Mol. Gen. Genet. 193:3845.
115. Sherman, J. M.,, K. Rogers,, M. J. Rogers,, and D. Söll. 1992. Synthetase competition and tRNA context determine the in vivo identity of tRNA discriminator mutants. J. Mol. Biol. 228:10551062.
116. Smith, D.,, and M. Yarus. 1989. tRNA-tRNA interactions within cellular ribosomes. Proc. Natl. Acad. Sci. USA 86:43974401.
117. Söll, D.,, D. S. Jones,, E. Ohtsuka,, R. D. Faulkner,, R. Lohrmann,, H. Hayatsu,, H. G. Khorana,, J. D. Cherayil,, A. Hampel,, and R. M. Bock. 1966. Specificity of sRNA for recognition of codons as studied by the ribosomal binding technique. J. Mol. Biol. 19:556573.
118. Sorensen, P. M.,, K. A. Hijazi,, E. J. Murgola,, and R. H. Buckingham. 1990. A radioactive assay for the physiological activity of the tryptophan synthetase a- subunit in crude extracts of Escherichia coli. Biochimie 72:873879.
119. Sprinzl, M.,, T. Hartmann,, J. Weber,, J. Blank,, and R. Zeidler. 1989. Compilation of tRNA sequences and sequences of tRNA genes. Nucleic Acids Res. 17(Suppl.):rlrl72.
120. Squires, C.,, and J. Carbon. 1971. Normal and mutant glycine transfer RNAs. Nature New Biol. 223:274277.
121. Sroga, G. E.,, F. Nemoto,, Y. Kuchino,, and G. R. Björk. 1992. Insertion (sufB) in the anticodon loop or base substitution (sufC) in the anticodon stem of tRNAPro2 from Salmonella typhimurium induces suppression of frameshift mutations. Nucleic Acids Res. 20:34633469.
122. Strigini, P.,, and E. Brickman. 1973. Analysis of specific misreading in Escherichia coli. J. Mol. Biol. 75:659672.
123. Su, J.-Y.,, L. Belmont,, and R. A. Sclafani. 1990. Genetic and molecular analysis of the SOE1 gene: a tRNAGlu3 missense suppressor of yeast cdc8 mutations. Genetics 124:523531.
123a.. Tiedeman, A. A.,, and E. J. Murgola. Unpublished data.
124. Thorbjarnardóttir, S.,, H. Uemura,, T. Dingermann,, T. Rafnar,, S. Thorsteinsdóttir,, D. Söll,, and G. Eggertsson. 1985. Escherichia coli supH suppressor: temperature-sensitive missense suppression caused by an anticodon change in tRNASer2. J. Bacteriol. 161:207211.
125. Tsang, T. H.,, M. Buck,, and R N. Ames. 1983. Sequence specificity of tRNA-modifying enzymes: an analysis of 258 tRNA sequences. Biochim. Biophys. Acta 741:180196.
126. Tucker, S. D.,, and E. J. Murgola. 1985. Sequence analysis of the glyW region in Escherichia coli. Biochimie 67:10531057.
127. Tucker, S. D.,, and E. J. Murgola. 1986. Sequence verification of mutant codon assignments in trpA of Escherichia coli. DNA 5:123128.
128. Tucker, S. D.,, E. J. Murgola,, and F. T. Pagel. 1989. Missense and nonsense suppressors can correct frameshift mutations. Biochimie 71:729739.
129. Tuohy, T. M. F.,, S. Thompson,, R. F. Gesteland,, and J. F. Atkins. 1992. Seven, eight and nine-membered anticodon loop mutants of tRNAArg2 which cause +1 frameshifting. Tolerance of DHU arm and other secondary mutations. J. Mol. Biol. 228:10421054.
130. Weiss, R. B.,, D. M. Dunn,, J. F. Atkins,, and R. F. Gesteland. 1990. Ribosomal frameshifting from -2 to +50 nucleotides. Prog. Nucleic Acid Res. Mol. Biol. 39:159183.
130a.. Xu, W.,, K. A. Hijazi,, G. Guarneros,, and E. J. Murgola. Unpublished data.
131. Yanofsky, C., 1956. Gene interactions in enzyme synthesis, p. 147160. In O. H. Gaebler (ed.), Enzymes: Units of Biological Structure and Function. Academic Press, New York.
132. Yanofsky, C., 1969. Protein structure and evolution, p. 191206. In M. Marois (ed.), Proceedings of the 2nd International Conference on Theoretical Physiology and Biology. Centre Natl. Rech. Sci., Paris.
133. Yanofsky, C. 1969. In vivo studies on the genetic code. Proceedings of the 12th International Congress on Genetics. 3:155165.
134. Yanofsky, C. 1971. Tryptophan biosynthesis. JAMA 218:10261035.
135. Yanofsky, C. 1976. The search for the structural relationship between gene and enzymes, p. 263271. In Reflections on Biochemistry. Pergamon Press, New York.
136. Yanofsky, C. 1987. Tryptophan synthetase: its charmed history. BioEssays 6:133137.
137. Yanofsky, C.,, and D. M. Bonner. 1955. Gene interaction in tryptophan synthetase formation. Genetics 40:761769.
138. Yanofsky, C.,, and I. P. Crawford. 1972. Tryptophan synthetase. Enzymes 7:131.
139. Yanofsky, C.,, D. R. Helinski,, and B. D. Maling. 1961. The effects of mutation on the composition and properties of the A protein of Escherichia coli tryptophan synthetase. Cold Spring Harbor Symp. Quant. Biol. 26:1124.
140. Yanofsky, C.,, and V. Horn. 1972. Tryptophan synthetase ? chain positions affected by mutations near the ends of the genetic map of trpA of Escherichia coli. J. Biol. Chem. 247:44944498.
141. Yanofsky, C.,, J. Ito,, and V. Horn. 1966. Amino acid replacements and the genetic code. Cold Spring Harbor Symp. Quant. Biol. 31:151162.
142. Yanofsky, C.,, T. Platt,, I. P. Crawford,, B. P. Nichols,, G. E. Christie,, H. Horowitz,, M. Van Cleemput,, and A. M. Wu. 1981. The complete nucleotide sequence of the tryptophan operon of Escherichia coli. Nucleic Acids Res. 9:66476668.
143. Yanofsky, C.,, and P. St. Lawrence. 1960. Gene action. Annu. Rev. Microbiol. 14:311340.
144. Yarus, M.,, and J. Curran,. 1992. The translational context effect, p. 319365. In D. L. Hatfield,, B. J. Lee,, and R. M. Pirtle (ed.), Transfer RNA in Protein Synthesis. CRC Press, Boca Raton, Fla..
145. Yourno, J.,, and S. Tanemura. 1970. Restoration of in-phase translation by an unlinked suppressor of a frameshift mutation in Salmonella typhimurium. Nature (London) 225:422426.
146. Yutani, K.,, K. Ogasahara,, T. Tsujita,, K. Kanemoto,, M. Matsumoto,, S. Tanaka,, T. Miyoshita,, A. Matsushiro,, Y. Sugino,, and E. W. Miles. 1987. Tryptophan synthase ? subunit glutamic acid 49 is essential for activity. Studies with 19 mutants at position 49. J. Biol. Chem. 262:1342913433.

Tables

Generic image for table
Table 1

Missense suppressors derived from tRNA isoacceptors in

Anticodon consists of nucleotides 34, 35, and 36. Anticodon loop is nucleotides 32 to 38. For entire wild type sequences, see reference . U* is a modified form of U that is unidentified but related to S-methylaminomethyl-2-thiouridine (mamsU). U, Uand U, however, are unidentified modified U's that are different from U*. tA, N-[(9-β-D-ribofuranosylpurin-6-yl) carbamoyl] threonine. msiA, 2-methylthio-N-isopentenyladenosine.

Each suppressor tRNA is specific for the codons listed, failing to suppress other missense as well as nonsense mutations.

Absence of references in this column is meant to indicate results obtained in my laboratory. Suppressor isolations and conversions were by F. T. Pagel, K. A. Hijazi, and myself; tRNA sequence analyses were by N. E. Prather, B. H. Mims, and myself.

Deduced from sequencing of (SuUAG) and (SuUG A/G) tRNAs, each of which was obtained from it in one step (see Table 3 ).

These tRNAs have eight nucleotides in the anticodon loop. As a result, the anticodon has been shifted from nucleotides 34, 35, and 36 to nucleotides 35, 36, and 37 ( ).

Citation: Murgola E. 1995. Translational Suppression: When Two Wrongs DO Make a Right, p 491-509. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch24
Generic image for table
Table 2

Missense suppressors derived from tRNAs other than tRNA

The glu3 suppressor is from . All others are from .

Anticodon consists of nucleotides 34, 35, and 36. For entire wild-type sequences, see reference .

In tRNA from , U9 is mcmsU, i.e., 5-methoxycarbonylmethyl-2-thiouridine. In tRNA, U is mamsU, i.e., 5-meth-ylaminomethyl-2-thiourdine. In the elongator tRNA of , C is acC, i.e., N-acetylcytidine.

Citation: Murgola E. 1995. Translational Suppression: When Two Wrongs DO Make a Right, p 491-509. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch24
Generic image for table
Table 3

Termination codon suppressors of amber (UAG), ochre (UAA), and opal (UGA) mutations in

Anticodon consists of nucleotides 34, 35, and 36. Anticodon loop is nucleotides 32 to 38. For entire wild-type sequences, see reference . In tRNA2, U* represents an unidentified modified U; in tRNA , U and U are unidentified modifications of U that differ from U*; in tRNA and tRNA , U is 5-methylaminomethyl-2-thiouridine (mamsU). msiA, 2-methylthio-N-isopentenyladenosine.

Each suppressor is specific for the codons listed, failing to suppress other nonsense as well as missense mutations.

Absence of references in this column is meant to indicate results obtained in my laboratory. Suppressor isolations and conversions were by F. T. Pagel, K. A. Hijazi, and myself; tRNA sequence analyses were by N. E. Prather, B. H. Mims, and myself.

This tRNA has eight nucleotides in the anticodon loop. See Table 1 , footnote e.

Citation: Murgola E. 1995. Translational Suppression: When Two Wrongs DO Make a Right, p 491-509. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch24
Generic image for table
Table 4

Modified nucleosides” in the anticodon loops of related suppressor tRNAs

A,2-methyladenosine, mA; A, 2-methylthio-N-isopentenyladenosine, msiA; A, -[(9-beta-D-ribofuranosylpurin-6-yl) carbamoyl] threonine, tA; U, 5-methylaminomethyl-2-thiouridine, mamsU; U*,U,U,U, unidentified modifications of U that are different from U.

See Tables 1 and 3 for further information.

Brackets indicate that the modification is partial. Parentheses indicate that the nucleoside is predominantly unmodified. Absence of brackets or parentheses indicates that the nucleoside is either completely unmodified at the position in question (no modified nucleoside detected) or completely modified (no unmodified nucleoside detected at precisely that position). These observations are reported by comparison with or in contrast to modified or unmodified nucleosides present in relevant wild type tRNAs (for example, gly, trp, cys, or glu) from cells grown under the same conditions.

These suppressor tRNAs have an extra A (A38:A) (not shown) in the anticodon loop, resulting in an anticodon shift to nucleotides 35, 36, and 37 ( ).

All of these derivatives retain the C70 to U change in the amino acid acceptor stem.

Corresponds to both and (see Table 3 ).

Citation: Murgola E. 1995. Translational Suppression: When Two Wrongs DO Make a Right, p 491-509. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch24

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error