1887

Chapter 25 : Initiator tRNAs and Initiation of Protein Synthesis

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Initiator tRNAs and Initiation of Protein Synthesis, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818333/9781555810733_Chap25-1.gif /docserver/preview/fulltext/10.1128/9781555818333/9781555810733_Chap25-2.gif

Abstract:

Initiation of protein synthesis occurs universally with the amino acid methionine or its derivative formyl methionine. Of the two classes of methionine tRNAs present in all organisms, the initiator is used for initiation of protein synthesis, whereas the elongator is used for insertion of methionine into internal peptidic linkages. In eubacteria and in eukaryotic organelles such as chloroplasts and mitochondria, the initiator tRNAs are used as formylmethionyl-tRNA (fMet-tRNA). In the cytoplasmic protein synthesis system of eukaryotes and in archaebacteria, they are used as methionyl-tRNA (Met-tRNA) without formylation. This chapter focuses on initiator tRNAs and their role in initiation of protein synthesis. It provides a brief and somewhat simplified description of some of the steps of protein synthesis initiation that involve the initiator tRNA most directly. Then, it describes the special properties of eubacterial and eukaryotic initiator tRNAs and the current knowledge of the relationship between the sequence and structure of the initiator tRNAs and their function.

Citation: Rajbhandary U, Chow C. 1995. Initiator tRNAs and Initiation of Protein Synthesis, p 511-528. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch25
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Possible steps in formation of 30S initiation complex involving 30S ribosome, mRNA, and initiator fMet-tRNA. Other components involved in the process, such as the initiation factors and GTP, are not shown here.

Citation: Rajbhandary U, Chow C. 1995. Initiator tRNAs and Initiation of Protein Synthesis, p 511-528. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch25
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Schematic diagram of formation of initiation complex consisting of 40S ribosome, mRNA, and initiator Met-tRNA.

Citation: Rajbhandary U, Chow C. 1995. Initiator tRNAs and Initiation of Protein Synthesis, p 511-528. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch25
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Steps in utilization of elongator (top) and initiator (bottom) tRNAs in protein synthesis in eubacteria.

Citation: Rajbhandary U, Chow C. 1995. Initiator tRNAs and Initiation of Protein Synthesis, p 511-528. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch25
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Steps in utilization of elongator (top) and initiator (bottom) tRNAs in protein synthesis in eukaryotes.

Citation: Rajbhandary U, Chow C. 1995. Initiator tRNAs and Initiation of Protein Synthesis, p 511-528. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch25
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

Unique features in initiator tRNAs. (A) structure of elongator tRNAs in cloverleaf form, including nucleotides common to all elongator tRNAs (R = purine; Y = pyrimidine). (B) unique features found in eubacterial (left) and eukaryotic (right) initiator tRNAs indicated by arrows. * = site of special ribose modifications found in fungal and plant initiator tRNAs; → = special feature (C33 instead of U33) found in plant, insect, and vertebrate initiator tRNAs.

Citation: Rajbhandary U, Chow C. 1995. Initiator tRNAs and Initiation of Protein Synthesis, p 511-528. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch25
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6.
Figure 6.

Sequence of yeast cytoplasmic initiator tRNA in cloverleaf form. A* = 5'-phosphoribosyl-2'-adenosine.

Citation: Rajbhandary U, Chow C. 1995. Initiator tRNAs and Initiation of Protein Synthesis, p 511-528. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch25
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 7
Figure 7

Purification of overproduced tRNA. Electrophoresis of tRNA isolated from B (lane 3), K12 (lane 2), and K12 transformed with plasmids carrying the tRNA gene (lane 1) or tRNA gene (lane 4).

Citation: Rajbhandary U, Chow C. 1995. Initiator tRNAs and Initiation of Protein Synthesis, p 511-528. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch25
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 8
Figure 8

Analysis of effect of mutations on aminoacylation and formylation of mutant tRNAs in vivo. (A) Separation of the three forms of initiator tRNA: tRNA, aminoacyl-tRNA, and formylaminoacyl-tRNA by polyacrylamide gel electrophoresis under acidic conditions, followed by detection of tRNA by RNA blot analysis using a labeled DNA probe. (B) RNA blot analysis of tRNA from transformants carrying wild-type or various mutant tRNA genes. Control: tRNA isolated from transformants carrying the plasmid vector without any tRNA gene.

Citation: Rajbhandary U, Chow C. 1995. Initiator tRNAs and Initiation of Protein Synthesis, p 511-528. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch25
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 9
Figure 9

Codon-anticodon pairing between mutant chloramphenicol acetyltransferase (CAT) mRNA carrying a AUG→UAG mutation in the initiation codon and initiator tRNA carrying a CAU→CUA anticodon sequence change.

Citation: Rajbhandary U, Chow C. 1995. Initiator tRNAs and Initiation of Protein Synthesis, p 511-528. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch25
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 10
Figure 10

Mutants of tRNA . (A) Sequence of tRNA in cloverleaf form, with sites of mutation indicated by dots (substitution) or a triangle (deletion). (B) Mutants of tRNA in which the anticodon sequence mutation has been coupled to mutations in other regions of the tRNA.

Citation: Rajbhandary U, Chow C. 1995. Initiator tRNAs and Initiation of Protein Synthesis, p 511-528. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch25
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 11
Figure 11

RNA blot analysis of tRNA from transformants expressing the U1 mutant tRNA. A, B, and C indicate locations of uncharged tRNA, fMet-tRNA, and Met-tRNA, respectively. The U1-mutant tRNA was expressed in CA274 (lanes 2 and 3) and AA7852 (temperature-sensitive mutant of peptidyl-tRNA hydrolase, PTH ts, lanes 4 and 5).

Citation: Rajbhandary U, Chow C. 1995. Initiator tRNAs and Initiation of Protein Synthesis, p 511-528. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch25
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 12
Figure 12

Activity of mutant initiator tRNAs in elongation of protein synthesis, as measured by incorporation of [S]methionine from [S]Met-tRNAs to protein in an MS2 RNA-directed protein-synthesizing system.

Citation: Rajbhandary U, Chow C. 1995. Initiator tRNAs and Initiation of Protein Synthesis, p 511-528. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch25
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 13
Figure 13

Cloverleaf structure of human initiator tRNA with sites of mutation indicated by arrows.

Citation: Rajbhandary U, Chow C. 1995. Initiator tRNAs and Initiation of Protein Synthesis, p 511-528. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch25
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818333.chap25
1. Atherly, A. G.,, and J. R. Menninger. 1972. Mutant E. coli strain with temperature sensitive peptidyl-transfer RNA hydrolase. Nature New Biol. 240:245246.
2. Attardi, G.,, and G. Schatz. 1988. Biogenesis of mitochondria. Annu. Rev. Cell Biol. 4:289333.
3. Basavappa, R.,, and P. B. Sigler. 1991. The 3 'crystal structure of yeast initiator tRNA: functional implications in initiator/elongator discrimination. EMBO J. 10:31053111.
4. Baumstark, B. R.,, L. L. Spremulli,, U. L. RajBhandary,, and G. M. Brown. 1977. Initiation of protein synthesis without formylation in a mutant of Escherichia coli that grows in the absence of tetrahydrofolate.J. Bacteriol. 129:457471.
5. Blanquet, S.,, P. Dessen,, and D. Kahn. 1984. Properties and specificity of methionyl-tRNAfMet formyltransferase from Escherichia coli. Methods Enzymol. 106:141153.
6. Bystrom, A.,, and G. R. Fink. 1989. Molecular and functional analysis of the methionine initiator tRNA genes (JMT) in yeast. Mol. Gen. Genet. 216:276286.
7. Calogero, R. A.,, C. L. Pon,, M. A. Canonaco,, and C. O. Gualerzi. 1988. Selection of the mRNA translation initiation region by Escherichia coli ribosomes. Proc. Natl. Acad. Sci. USA 85:64276431.
8. Capone, J. P.,, J. M. Sedivy,, P. A. Sharp,, and U. L. RajBhandary. 1986. Introduction of UAG, UAA and UGA nonsense mutations at a specific site in E. coli chloramphenicol acetyltransferase gene: use in measurement of amber, ochre, and opal suppression in mammalian cells. Mol. Cell. Biol. 6:30593067.
9. Cavarelli, J.,, B. Rees,, M. Ruff,, J.-C. Thierry,, and D. Moras. 1993. Yeast tRNAAsP recognition by its cognate class II aminoacyl-tRNA synthetase. Nature (London) 362:181184.
10. Chattapadhyay, R.,, H. Pelka,, and L. H. Schulman. 1990. Initiation of in vivo protein synthesis with non-methionine amino acids. Biochemistry 29:42634268.
11. Cigan, A. M.,, L. Feng,, and T. F. Donahue. 1988. tRNAMet1 functions in directing the scanning ribosome to the start site of translation. Science 242:9397.
12. Cigan, A. M.,, E. K. Pabich,, L. Feng,, and T. F. Donahue. 1989. Yeast translation initiation suppressor suil encodes the a subunit of eukaryotic initiation factor 2 and shares sequence identity with the human α subunit. Proc. Natl. Acad. Sci. USA 86:27842788.
13. Daniel, W. E., Jr.,, and M. Cohn. 1976. Changes in tertiary structure accompanying a single base change in transfer RNA. Proton magnetic resonance and aminoacylation studies of Escherichia coli tRNAMet1f and tRNAMet3f Biochemistry 15:39173924.
14. Delaney, P.,, J. Bierbaum,, and J. Ofengand. 1974. Conformational changes in the thiouridine region of Escherichia coli transfer RNA as assessed by photochemically induced cross-linking. Arch. Biophys. Biochem. 161:260267.
15. Delk, A. S.,, and J. C. Rabinowitz. 1974. Partial nucleotide sequence of a prokaryote initiator tRNA that functions in its non-formylated form. Nature (London) 252:106109.
16. Desgres, J.,, G. Keith,, L. C. Kuo,, and C. W. Gehrke. 1989. Presence of phosphorylated Oribosyl-adenosine in T-ψ-stem of yeast methionine initiator tRNA. Nucleic Acids Res. 17:865882.
17. Dickerman, H. W.,, E. Steers, Jr.,, R. G. Redfield,, and H. Weissbach. 1967. Methionyl soluble ribonucleic acid transformylase.J. Biol. Chem. 242:15221525.
18. Donahue, T. R.,, A. M. Cigan,, E. K. Pabich,, and B. C. Valavicius. 1988. Mutations at a Zn(II) finger motif in the yeast eIF-2b gene alter ribosomal start-site selection during the scanning process. Cell 54:621632.
19. Drabkin , H. J.,, B. Helk,, and U. L. RajBhandary. The role of nucleotides conserved in eukaryotic initiator methionine tRNAs in initiation of protein synthesis. J. Biol. Chem., in press.
20. Drabkin, H. J.,, and U. L. RajBhandary. Unpublished data.
21. Drabkin, H. J.,, and U. L. RajBhandary. 1985. Expression in vivo of a mutant human initiator tRNA gene in mammalian cells using an SV40 vector. J. Biol. Chem. 260:55885595.
22. Drabkin, H. J.,, and U. L. RajBhandary. 1985. Site-specific mutagenesis on a human initiator methionine tRNA gene within a sequence conserved in all eukaryotic initiator tRNAs and studies of its effects on in vitro transcription. J. Biol. Chem. 260:55805587.
23. Dube, S. K.,, and K. A. Marcker. 1969. The nucleotide sequence of N-formyl-methionyl-transfer RNA-partial digestion with pancreatic and Tl-ribonulease and derivation of the total primary structure. Eur. J. Biochem. 8:256262.
24. Dube, S. K.,, K. A. Marcker,, B. E C. Clark, and S. Cory. 1968. Nucleotide sequence of N-formyl-methionyl-transfer RNA. Nature (London) 218:232233.
25. Dutka, S.,, T. Meinnel,, C. Lazennec, Y Mechulam, and S. Blanquet. 1993. Role of the 1-72 base pair in tRNAs for the activity of Escherichia coli peptidyl-tRNA hydrolase. Nucleic Acids Res. 21:40254030.
26. Dyson, M. R.,, N. Mandal,, and U. L. RajBhandary. 1993. Relation ship between the structure and function of Escherichia coli initiator tRNA. Biochimie 75:10511060.
27. Dyson, M. R.,, and U. L. RajBhandary. Unpublished results.
28. Egan, B. Z.,, J. F. Weiss,, and A. D. Kelmers. 1973. Separation and comparison of primary structures of three formylmethionine tRNAs from E. coli K-12. Biochem. Biophys. Res. Commun. 55:320327.
29. Francis, M.,, and U. L. RajBhandary. 1990. Expression and function of a human initiator tRNA gene in the yeast Saccharomyces cerevisiae. Mol. Cell. Biol. 10:44864494.
30. Ghosh, H. P.,, K. Ghosh,, M. Simsek,, and U. L. RajBhandary. 1982. Nucleotide sequence of wheat germ cytoplasmic initiator methionine transfer ribonucleic acid. Nucleic Acids Res. 10:32413247.
31. Giege, R.,, J. P. Ebel,, and B. F. C. Clark. 1973. Formylation of mischarged E. coli tRNA0*1". FEBS Lett. 30:291295.
32. Gilium, A. M.,, L. I. Hecker,, M. Silberklang,, S. D. Schwartzbach,, U. L. RajBhandary,, and W. E. Barnett. 1977. Nucleotide sequence of Neurospora crassa cytoplasmic initiator tRNA. Nucleic Acids Res. 4:41094131.
33. Gillum, A. M.,, B. Roe,, M. P. J. S. Anandraj,, and U. L. RajBhandary. 1975. Nucleotide sequence of human placenta cytoplasmic initiator tRNA. Cell 6:407413.
34. Gillum, A. M.,, N. Urquhart,, M. Smith,, and U. L. RajBhandary. 1975. Nucleotide sequence of salmon testes and salmon liver cytoplasmic initiator tRNA. Cell 6:395405.
35. Goddard, J. P.,, and L. H. Schulman. 1972. Conversion of exposed cytidine residues to uridine residues in Escherichia coli formylmethionine transfer ribonucleic acid. J. Biol. Chem. 247:38643867.
36. Gold, L. 1988. Posttranscriptional regulatory mechanisms in Escherichia coli. Anttu. Rev. Biochem. 57:199233.
37. Gorman, C. M.,, L. F. Moffat,, and B. H. Howard. 1982. Recombinant genomes which express chloramphenicol acetyl-transferase in mammalian cells. Mol. Cell. Biol. 2:10441051.
38. Grunberg-Manago, M., 1987. Regulation of the expression of aminoacyl-tRNA synthetases and translation factors, p. 13861409. In F. Neidhardt,, J. L. Ingraham,, K. B. Low,, B. Magasanik,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology. American Society for Microbiology, Washington, D.C.
39. Gualerzi, C. O.,, and C. L. Pon. 1990. Initiation of mRNA translation in prokaryotes. Biochemistry 29:58815889.
40. Guillon, J.-M.,, Y. Mechulam,, J.-M. Schmitter,, S. Blanquet,, and G. Fayat. 1992. Disruption of the gene for Met-tRNAfMet formyltransferase severely impairs growth of Escherichia coli. J. Bacteriol. 174:42944301.
41. Guillon, J.-M.,, T. Meinnel,, Y. Mechulam,, S. Blanquet,, and G. Fayat. 1993. Importance of formylability and anticodon stem sequence to give a tRNAMet an initiator identity in Escherichia coli. J. Bacteriol. 175:45074514.
42. Guillon, J.-M.,, T. Meinnel,, Y. Mechulam,, C. Lazennec,, S. Blanquet,, and G. Fayat. 1992. Nucleotides of tRNA governing the specificity of Escherichia coli methionyl-tRNA fMet formyltransferase. J. Mol. Biol. 224:359367.
43. Halbreich, A.,, and M. Rabinowitz. 1971. Isolation of Saccharomyces cerevisiae mitochondrial formyltetrahydrofolic acid: methionyl-tRNA transformylase and the hybridization of mitochondrial fMet-tRNA with mitochondrial DNA. Proc. Natl. Acad. Sci. USA 68:294298.
44. Hartz, D.,, J. Binkley,, T. Hollingsworth,, and L. Gold. 1990. Domains of initiator tRNA and initiation codon crucial for initiator tRNA selection by Escherichia coli IF3. Genes Dev. 4:17901800.
45. Hartz, D.,, D. S. McPheeters,, and L. Gold. 1989. Selection of the initiator tRNA by Escherichia coli initiation factors. Genes Dev. 3:18991912.
46. Hartz, D.,, D. S. McPheeters,, L. Green,, and L. Gold. 1991. Detection of Escherichia coli ribosome binding at translation initiation sites in the absence of tRNA. J. Mol. Biol. 218:99105.
47. Harvey, R. J. 1973. Growth and initiation of protein synthesis in Escherichia coli in the presence of trimethoprim. J. Bacteriol. 114:309322.
48. Heckman, J. E.,, L. Hecker,, S. Schwartzbach,, W. E. Barnett,, B. Baumstark,, and U. L. RajBhandary. 1978. Structure and function of initiator methionine tRNA from mitochondria of Neurospora crassa. Cell 13:8595.
49. Hershey, J. W. B., 1987. Protein synthesis, p. 613647. In F. Neidhardt,, J. L. Ingraham,, K. B. Low,, B. Magasanik,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology. American Society for Microbiology, Washington, D.C.
50. Hinnebusch, A. G. 1988. Mechanisms of gene regulation in the general control of amino acid biosynthesis in yeast. Microbiol. Rev. 52:248273.
51. Hirsh, D. 1971. Tryptophan transfer RNA as the UGA suppressor.J. Mol. Biol. 58:439458.
52. Ho, Y.-H.,, and, Y. W. Kan. 1987. In vivo aminoacylation of human and Xenopus suppressor tRNAs constructed by site specific mutagenesis. Proc. Natl. Acad. Sci. USA 84:21852188.
53. Housman D.,, N. Jacobs-Lorena,, U. L. RajBhandary,, and H. F. Lodish. 1970. Initiation of hemoglobin synthesis by methionyl transfer RNA. Nature (London) 227:913918.
54. Ishii, S.,, K. Kuroki,, and F. Imamoto. 1984. tRNAg"" gene in the leader region of the nusA operon in Escherichia coli. Proc. Natl. Acad. Sci. USA 81:409413.
55. Jang, S. K.,, M. V. Davies,, R. J. Kaufman,, and E. Wimmer. 1989. Initiation of protein synthesis by internal entry of ribosomes into the 5'- nontranslated region of encephalomyocarditis virus RNA in vivo.J. Virol. 63:16511660.
56. Jay, G.,, and R. Kaempfer. 1974. Sequence of events in initiation of translation: a role for initiator transfer RNA in the recognition of messenger RNA. Proc. Natl. Acad. Sci. USA 71:31993203.
57. Keith, G.,, J. Heitzler,, C. El Adlouni,, A.-L. Glasser,, C. Fix,, J. Desgres,, and G. Dirheimer. 1993. The primary structure of cytoplasmic initiator tRNAMet from Schizosaccharomyces pombe. Nucleic Acids Res. 21:2949.
58. Kenri, T.,, F. Imamoto,, and Y. Kano. 1992. Construction and characterization of an Escherichia coli mutant deficient in the metY gene encoding tRNAfMet2 : either tRNAfMet1 or tRNAf2Metis required for cell growth. Gene 114:109114.
59. Kenri, T.,, K. Kohno,, N. Goshima,, F. Imamoto,, and Y. Kano. 1991. Construction and characterization of an Escherichia coli mutant with a deletion of the metZ gene encoding tRNAJfMet1. Gene 103:3136.
60. Kiesewetter, S.,, G. Ott,, and M. Sprinzl. 1990. The role of modified purine 64 in initiator/elongator discrimination of tRNAfMet1 from yeast and wheat germ. Nucleic Acids Res. 18:46774682.
61. Kossel, H.,, and U. L. RajBhandary. 1968. Studies on polynucleotides. LXXXVI. Enzymatic hydrolysis of N-acylaminoacyl transfer RNA.J. Mol. Biol. 35:539560.
62. Kozak, M. 1983. Comparison of initiation of protein synthesis in procaryotes, eucaryotes, and organelles. Microbiol. Rev. 47:145.
63. Kozak, M. 1991. Structural features in eukaryotic mRNAs that modulate the initiation of translation. J. Biol. Chem. 266:1986719870.
64. Kozak, M. 1992. Regulation of translation in eukaryotic systems. Annu. Rev. Cell Biol. 8:197225.
65. Kozak, M. 1992. A consideration of alternative models for the initiation of translation in eukaryotes. Cn'r. Rev. Biochem. Mol. Biol. 27:385402.
66. Lee, C. P.,, M. R. Dyson,, N. Mandal,, U. Varshney, & Bahramian, and U. L. RajBhandary. 1992. Striking effects of coupling mutations in the acceptor stem on recognition of tRNAs by E. coli methionyl-tRNA synthetase and methionyl-tRNA transformylase. Proc. Natl. Acad. Sci. USA 89:92629266.
67. Lee, C.-R.,, N. Mandal,, M. R. Dyson,, and U. L. RajBhandary. 1993. The discriminator base influences tRNA structure at the end of the acceptor stem and possibly its interaction with proteins. Proc. Natl. Acad. Sci. USA 90:71497152.
68. Lee, C. P.,, and U. L. RajBhandary. 1991. Mutants of Escherichia coli initiator tRNA which suppress amber codons in Saccharomyces cerevisiae and are aminoacylated with tyrosine by yeast extracts. Proc. Natl. Acad. Sci. USA 88:1137811382.
69. Lee, C. P.,, B. L. Seong,, and U. L. RajBhandary. 1991. Structural and sequence elements important for recognition of Escherichia coli formylmethionine tRNA by methionyl-tRNA transformylase are clustered in the acceptor stem. J. Biol. Chem. 266:1801218017.
70. Leon, M.,, J. Dondon,, J. Labouesse,, M. Grunberg-Manago,, and R. H. Buckingham. 1979. Recognition of tRNATrp by initiation factors from Escherichia coli. Eur. J. Biochem. 98:149154.
71. Macejak, D. G.,, and P. Sarnow. 1991. Internal initiation of translation mediated by the 5' leader of a cellular mRNA. Nature (London) 353:9094.
72. Mandal, N.,, and U. L. RajBhandary. Unpublished data.
73. Mandal, N.,, and U. L. RajBhandary. 1992. Escherichia coli B lacks one of the two initiator tRNA species present in E. coli K-12. J. Bacteriol. 174:78277830.
74. Mao, J.-L.,, O. Schmidt,, and D. Soli. 1980. Dimeric tRNA precursors in Schizosaccharomyces pombe. Cell 21:509516.
75. Marker, K.,, and F. Sanger. 1964. N-formylmethionyls-RNA.J. Mol. Biol. 8:835840.
76. Meinnel, T.,, Y. Mechulam,, G. Fayat,, and S. Blanquet. 1992. Involvement of the size and sequence of the anticodon loop in tRNA recognition by mammalian and E. coli methionyl-tRNA synthetases. Nucleic Acids Res. 20:47414746.
77. Meinnel, X.,, Y. Mechulam,, C. Lazennec,, S. Blanquet,, and G. Fayat. 1993. Critical role of the acceptor stem of tRNAMets in their aminoacylation by Escherichia coli methionyl-tRNA synthetase. J. Mol. Biol. 229:2636.
78. Menninger, J. R. 1978. The accumulation as peptidyl-transfer RNA of isoaccepting transfer RNA families in Escherichia coli with temperature-sensitive peptidyl-transfer RNA hydrolase.J. Biol. Chem. 253:68086813.
79. Merrick, W. C. 1992. Mechanism and regulation of eukaryotic protein synthesis. Microbiol. Rev. 56:291315.
80. Normanly, J.,, L. G. Kleina,, J.-M. Masson,, J. Abelson,, and J. H. Miller. 1990. Construction of Escherichia coli amber suppressor tRNA genes. III. Determination of tRNA specificity. J. Mol. Biol. 213:719726.
81. Ono, Y.,, A. Skoultchi,, A. Klein,, and P. Lengyel. 1968. Peptide chain elongation: discrimination against the initiator transfer RNA by microbial amino-acid polymerization factors. Nature (London) 220:13041307.
82. Pallanck, L.,, and L. H. Schulman. 1991. Anticodon-dependent aminoacylation of a noncognate tRNA with isoleucine, valine, and phenylalanine in vivo. Proc. Natl. Acad. Sci. USA 88:38723876.
83. Pathak, V. K.,, P. J. Nielsen,, H. Trachsel,, and J. W. B. Hershey. 1988. Structure of the β-subunit of translational initiation factor eIF-2. Cell 54:633639.
84. Pelletier, J.,, and N. Sonenberg. 1988. Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from polio virus RNA. Nature (London) 324:320325.
85. Piper, P. W.,, and B. F. C. Clark. 1974. Primary structure of a mouse myeloma cell initiator tRNA. Nature (London) 247:518520.
86. RajBhandary, U. L.,, and H. P. Ghosh. 1969. Studies on polynucleotides. XCI. Yeast methionine transfer RNA: purification, properties and terminal nucleotide sequences. J. Biol. Chem. 244:11041113.
86a. RajBhandary, U. L. 1994. Initiator transfer RNAs. J. Bacteriol. 176:547552.
87. Rich, A.,, and U. L. RajBhandary. 1975. Transfer RNA: molecular structure, sequence and properties. Annu. Rev. Biochem. 45:805860.
88. Richter, D.,, and F. Lipmann. 1970. Formation of a ternary complex between formylatable yeast Met-tRNA, GTP and binding factor T of yeast and of E. coli. Nature (London) 227:12121214.
89. Richter, D.,, F. Lipmann,, F. Tarrago,, and J. E. Allende. 1971. Interaction of eukaryotic initiator methionyl-tRNA with the eukaryotic equivalent of bacterial elongation factor T and guanosine triphosphate. Proc. Natl. Acad. Sci. USA 68:18051809.
90. Rould, M. A.,, J. J. Perona,, D. Soil,, and T. A. Steitz. 1989. Structure of E. coli glutaminyl-tRNA synthetase complexed with tRNAGln and ATP at 2.8 resolution. Science 246:11351142.
91. Rould, M. A.,, J. J. Perona,, and T. A. Steitz. 1991. Structural basis of anticodon loop recognition by glutaminyl-tRNA synthetase. Nature (London) 352:213218.
92. Ruff, M.,, S. Krishnaswamy,, M. Boeglin,, A. Poterszman,, A. Mitschler,, A. Podjarny,, R. Rees,, J. C. Thierry,, and D. Moras. 1991. Class II aminoacyl transfer RNA synthetases: crystal structure of yeast aspartyl-tRNA synthetase complexed with tRNAAsp. Science 252:16821689.
93. Sacerdot, C.,, P. Dessen,, J. W. R. Hershey,, J. A. Plumbridge,, and M. Grunberg-Manago. 1984. Sequence of the initiation factor IF2 gene: unusual protein features and homologies with elongation factors. Proc. Natl. Acad. Sci. USA 81:77877791.
94. Samuel, C. E.,, and J. C. Rabinowitz. 1974. Initiation of protein synthesis by folate-sufficient and folate-deficient Streptococcus faecalis R. J. Biol. Chem. 249:11981206.
95. Santos, T.,, and M. Zasloff. 1981. Comparative analysis of human chromosomal segments bearing nonallelic dispersed tRNAMet genes. Cell 23:699709.
96. Schulman, L. H. 1991. Recognition of tRNAs by aminoacyl-tRNA synthetases. Prog. Nucleic Acid Res. Mol. Biol. 41:2387.
97. Schulman, L. H.,, and H. Pelka. 1975. Formylmethionine transfer ribonucleic acid cleavage by Escherichia coli peptidyl transfer ribonucleic acid hydrolase. J. Biol. Chem. 250:542547.
98. Schulman, L. H.,, and H. Pelka. 1985. In vitro conversion of a methionine to a glutamine-acceptor tRNA. Biochemistry 24:73097314.
99. Schulman, L. H.,, and H. Pelka. 1988. Anticodon switching changes the identity of methionine and valine transfer RNAs. Science 242:765768.
100. Schulman, L. H.,, H. Pelka,, and R. M. Sundari. 1974. Structural requirements for recognition of Escherichia coli initiator and non-initiator transfer ribonucleic acids by bacterial T factor.J. Biol. Chem. 249:71027110.
101. Seong, R. L.,, C. P. Lee,, and U. L. RajBhandary. 1989. Suppression of amber codons in vivo as evidence that mutants derived from E. coli initiator tRNA can act at the step of elongation in protein synthesis. J. Biol. Chem. 246:65046508.
102. Seong, R. L.,, and U. L. RajBhandary. 1987. Escherichia coli formylmethionine tRNA: mutations in G-G-G:C-C-C sequence conserved in anticodon stem of initiator tRNAs affect initiation of protein synthesis and conformation of anticodon loop. Proc. Natl. Acad. Sci. USA 84:334338.
103. Seong, R. L.,, and U. L. RajBhandary. 1987. Mutants of Escherichia coli formylmethionine tRNA: a single base change enables initiator tRNA to act as an elongator in vitro. Proc. Natl. Acad. Sci. USA 84:88598863.
104. Shannon, K. W.,, and J. C. Rabinowitz. 1988. Isolation and characterization of the Saccharomyces cerevisiae MIS1 gene encoding mitochondrial C1-tetrahydrofolate synthetase. J. Biol. Chem. 263:77177725.
105. Silverman, S.,, J. Heckman,, G. J. Cowling,, A. D. Delaney,, R. J. Dunn,, I. C. Gillam,, G. M. Tener,, D. Soli,, and U. L. RajBhandary. 1979. The nucleotide sequence of the initiator tRNA from Drosphila melanogaster. Nucleic Acids Res. 6:421433.
106. Simsek, M.,, G. Petrissant,, and U. L. RajBhandary. 1973. Replacement of the sequence G-T-ψ-C-G(A)- by G-A-U-C-G- in initiator transfer RNA of rabbit liver cytoplasm. Proc. Natl. Acad. Sci. USA 70:26002604.
107. Simsek, M.,, and U. L. RajBhandary. 1972. The primary structure of yeast initiator transfer RNA. Biochem. Biophys. Res. Commun. 49:508515.
108. Simsek, M.,, U. L. RajBhandary,, M. Boisnard,, and G. Petrissant. 1974. Nucleotide sequence of rabbit liver and sheep mammary gland cytoplasmic initiator transfer RNAs. Nature (London) 247:518520.
109. Simsek, M.,, J. Ziegenmeyer,, J. Heckman,, and U. L. RajBhandary. 1973. Absence of the sequence G-T-ψ-C-G(A)- in several eukaryotic cytoplasmic initiator transfer RNAs. Proc. Natl. Acad. Sci. USA 70:10411045.
110. Smith, A. E.,, and K. A. Marcker. 1970. Cytoplasmic methionine transfer RNAs from eukaryotes. Nature (London) 226:607610.
111. Smith, D.,, and M. Yarus. 1989. Transfer RNA structure and coding specificity. II. A D-arm tertiary interaction that restricts coding range.J. Mol. Biol. 206:503511.
112. Sprinzl, M.,, T. Hartman,, J. Weber,, J. Blank,, and R. Zeidler. 1989. Sequences supplement. Nucleic Acids Res. 17:rlrl72.
113. Sugimoto, N.,, R. Kierzek,, and D. H. Turner. 1987. Sequence dependence for the energetics of dangling ends and terminal base pairs in ribonucleic acid. Biochemistry 26:45544558.
114. Sundari, R.,, E. A. Stringer,, L. H. Schulman,, and U. Maitra. 1976. Interaction of bacterial initiation factor 2 with initiator tRNA.J. Biol. Chem. 251:33383345.
115. van Duin, J.,, G. P. Overbeek,, and C. Backendorf. 1980. Functional recognition of phage RNA by 30S ribosomal subunits in the absence of initiator tRNA. Eur. J. Biochem. 110:593597.
116. Varshney, U.,, C. P. Lee,, and U. L. RajBhandary. 1991. Direct analysis of aminoacylation levels of tRNA in vitro. J. Biol. Chem. 266:2471224718.
117. Varshney, U.,, C. P. Lee,, and U. L. RajBhandary. 1993. From elongator tRNA to initiator tRNA. Proc. Natl. Acad. Sci. USA 90:23052309.
118. Varshney, U.,, C. P. Lee,, B. L. Seong,, and U. L. RajBhandary. 1991. Mutants of initiator tRNA that function both as initiators and elongators. J. Biol. Chem. 266:1801818024.
119. Varshney, U.,, and U. L. RajBhandary. 1990. Initiation of protein synthesis using a termination codon. Proc. Natl. Acad. Sci. USA 87:15861590.
120. Varshney, U.,, and U. L. RajBhandary. 1992. Role of methionine and formylation of initiator tRNA in initiation of protein synthesis in Escherichia coli. J. Bacteriol. 174:78197826.
121. von Pawel-Rammingen, U.,, S. Astrom,, and A. S. Bystrom. 1992. Mutational analysis of conserved positions potentially important for initiator tRNA function in Saccharomyces cerevisiae. Mol. Cell. Biol. 12:14321442.
122. Wagner, T.,, M. Gross,, and P. B. Sigler. 1984. Isoleucyl initiator tRNA does not initiate eucaryotic protein synthesis. J. Biol. Chem. 259:47064709.
123. Wakao, H.,, P. Romby,, E. Westhof,, S. Laalami,, M. Grunberg-Manago,, J.-P. Ebel,, C. Ehresmann,, and B. Ehresmann. 1989. The solution structure of the Escherichia coli initiator tRNA and its interactions with initiation factor 2 and the ribosomal 30 S subunit. J. Biol. Chem. 264:2036320371.
124. Wegnez, M.,, A. Mazabraud,, H. Denis,, G. Petrissant,, and M. Boisnard. 1975. Biochemical research on oogenesis: nucleotide sequence of initiator tRNA from oocytes and from somatic cells of Xenopus laevis. Eur. J. Biochem. 60:295302.
125. Woo, N. H.,, B. A. Roe,, and A. Rich. 1980. Three dimensional structure of E. coli tRNAfMet. Nature (London) 286:346351.
126. Wrede, P.,, N. H. Woo,, and A. Rich. 1979. Initiator tRNAs have a unique anticodon loop conformation. Proc. Natl. Acad. Sci. USA 76:32893293.

Tables

Generic image for table
Table 1

Kinetic parameters in aminoacylation of tRNAs by MetRS

Citation: Rajbhandary U, Chow C. 1995. Initiator tRNAs and Initiation of Protein Synthesis, p 511-528. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch25
Generic image for table
Table 2

Kinetic parameters in formylation of mutant tRNA by Met-tRNA transformylase

Citation: Rajbhandary U, Chow C. 1995. Initiator tRNAs and Initiation of Protein Synthesis, p 511-528. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch25
Generic image for table
Table 3

AUG-dependent ribosome binding of various mutant tRNAs and puromycin reactivity of bound fMet-tRNAs

Citation: Rajbhandary U, Chow C. 1995. Initiator tRNAs and Initiation of Protein Synthesis, p 511-528. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch25
Generic image for table
Table 4

Relative CAT activities in extracts of CA274 transformed with CATaml.2.5 and various initiator tRNA genes

Values are expressed as mean percent ± standard deviation.

Citation: Rajbhandary U, Chow C. 1995. Initiator tRNAs and Initiation of Protein Synthesis, p 511-528. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch25

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error