1887

Chapter 25 : Initiator tRNAs and Initiation of Protein Synthesis

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Initiator tRNAs and Initiation of Protein Synthesis, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818333/9781555810733_Chap25-1.gif /docserver/preview/fulltext/10.1128/9781555818333/9781555810733_Chap25-2.gif

Abstract:

Initiation of protein synthesis occurs universally with the amino acid methionine or its derivative formyl methionine. Of the two classes of methionine tRNAs present in all organisms, the initiator is used for initiation of protein synthesis, whereas the elongator is used for insertion of methionine into internal peptidic linkages. In eubacteria and in eukaryotic organelles such as chloroplasts and mitochondria, the initiator tRNAs are used as formylmethionyl-tRNA (fMet-tRNA). In the cytoplasmic protein synthesis system of eukaryotes and in archaebacteria, they are used as methionyl-tRNA (Met-tRNA) without formylation. This chapter focuses on initiator tRNAs and their role in initiation of protein synthesis. It provides a brief and somewhat simplified description of some of the steps of protein synthesis initiation that involve the initiator tRNA most directly. Then, it describes the special properties of eubacterial and eukaryotic initiator tRNAs and the current knowledge of the relationship between the sequence and structure of the initiator tRNAs and their function.

Citation: Rajbhandary U, Chow C. 1995. Initiator tRNAs and Initiation of Protein Synthesis, p 511-528. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch25
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Possible steps in formation of 30S initiation complex involving 30S ribosome, mRNA, and initiator fMet-tRNA. Other components involved in the process, such as the initiation factors and GTP, are not shown here.

Citation: Rajbhandary U, Chow C. 1995. Initiator tRNAs and Initiation of Protein Synthesis, p 511-528. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch25
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Schematic diagram of formation of initiation complex consisting of 40S ribosome, mRNA, and initiator Met-tRNA.

Citation: Rajbhandary U, Chow C. 1995. Initiator tRNAs and Initiation of Protein Synthesis, p 511-528. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch25
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Steps in utilization of elongator (top) and initiator (bottom) tRNAs in protein synthesis in eubacteria.

Citation: Rajbhandary U, Chow C. 1995. Initiator tRNAs and Initiation of Protein Synthesis, p 511-528. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch25
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Steps in utilization of elongator (top) and initiator (bottom) tRNAs in protein synthesis in eukaryotes.

Citation: Rajbhandary U, Chow C. 1995. Initiator tRNAs and Initiation of Protein Synthesis, p 511-528. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch25
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

Unique features in initiator tRNAs. (A) structure of elongator tRNAs in cloverleaf form, including nucleotides common to all elongator tRNAs (R = purine; Y = pyrimidine). (B) unique features found in eubacterial (left) and eukaryotic (right) initiator tRNAs indicated by arrows. * = site of special ribose modifications found in fungal and plant initiator tRNAs; → = special feature (C33 instead of U33) found in plant, insect, and vertebrate initiator tRNAs.

Citation: Rajbhandary U, Chow C. 1995. Initiator tRNAs and Initiation of Protein Synthesis, p 511-528. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch25
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6.
Figure 6.

Sequence of yeast cytoplasmic initiator tRNA in cloverleaf form. A* = 5'-phosphoribosyl-2'-adenosine.

Citation: Rajbhandary U, Chow C. 1995. Initiator tRNAs and Initiation of Protein Synthesis, p 511-528. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch25
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 7
Figure 7

Purification of overproduced tRNA. Electrophoresis of tRNA isolated from B (lane 3), K12 (lane 2), and K12 transformed with plasmids carrying the tRNA gene (lane 1) or tRNA gene (lane 4).

Citation: Rajbhandary U, Chow C. 1995. Initiator tRNAs and Initiation of Protein Synthesis, p 511-528. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch25
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 8
Figure 8

Analysis of effect of mutations on aminoacylation and formylation of mutant tRNAs in vivo. (A) Separation of the three forms of initiator tRNA: tRNA, aminoacyl-tRNA, and formylaminoacyl-tRNA by polyacrylamide gel electrophoresis under acidic conditions, followed by detection of tRNA by RNA blot analysis using a labeled DNA probe. (B) RNA blot analysis of tRNA from transformants carrying wild-type or various mutant tRNA genes. Control: tRNA isolated from transformants carrying the plasmid vector without any tRNA gene.

Citation: Rajbhandary U, Chow C. 1995. Initiator tRNAs and Initiation of Protein Synthesis, p 511-528. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch25
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 9
Figure 9

Codon-anticodon pairing between mutant chloramphenicol acetyltransferase (CAT) mRNA carrying a AUG→UAG mutation in the initiation codon and initiator tRNA carrying a CAU→CUA anticodon sequence change.

Citation: Rajbhandary U, Chow C. 1995. Initiator tRNAs and Initiation of Protein Synthesis, p 511-528. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch25
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 10
Figure 10

Mutants of tRNA . (A) Sequence of tRNA in cloverleaf form, with sites of mutation indicated by dots (substitution) or a triangle (deletion). (B) Mutants of tRNA in which the anticodon sequence mutation has been coupled to mutations in other regions of the tRNA.

Citation: Rajbhandary U, Chow C. 1995. Initiator tRNAs and Initiation of Protein Synthesis, p 511-528. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch25
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 11
Figure 11

RNA blot analysis of tRNA from transformants expressing the U1 mutant tRNA. A, B, and C indicate locations of uncharged tRNA, fMet-tRNA, and Met-tRNA, respectively. The U1-mutant tRNA was expressed in CA274 (lanes 2 and 3) and AA7852 (temperature-sensitive mutant of peptidyl-tRNA hydrolase, PTH ts, lanes 4 and 5).

Citation: Rajbhandary U, Chow C. 1995. Initiator tRNAs and Initiation of Protein Synthesis, p 511-528. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch25
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 12
Figure 12

Activity of mutant initiator tRNAs in elongation of protein synthesis, as measured by incorporation of [S]methionine from [S]Met-tRNAs to protein in an MS2 RNA-directed protein-synthesizing system.

Citation: Rajbhandary U, Chow C. 1995. Initiator tRNAs and Initiation of Protein Synthesis, p 511-528. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch25
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 13
Figure 13

Cloverleaf structure of human initiator tRNA with sites of mutation indicated by arrows.

Citation: Rajbhandary U, Chow C. 1995. Initiator tRNAs and Initiation of Protein Synthesis, p 511-528. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch25
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818333.chap25
1. Atherly, A. G.,, and J. R. Menninger. 1972. Mutant E. coli strain with temperature sensitive peptidyl-transfer RNA hydrolase. Nature New Biol. 240: 245 246.
2. Attardi, G.,, and G. Schatz. 1988. Biogenesis of mitochondria. Annu. Rev. Cell Biol. 4: 289 333.
3. Basavappa, R.,, and P. B. Sigler. 1991. The 3 'crystal structure of yeast initiator tRNA: functional implications in initiator/elongator discrimination. EMBO J. 10: 3105 3111.
4. Baumstark, B. R.,, L. L. Spremulli,, U. L. RajBhandary,, and G. M. Brown. 1977. Initiation of protein synthesis without formylation in a mutant of Escherichia coli that grows in the absence of tetrahydrofolate. J. Bacteriol. 129: 457 471.
5. Blanquet, S.,, P. Dessen,, and D. Kahn. 1984. Properties and specificity of methionyl-tRNA fMet formyltransferase from Escherichia coli. Methods Enzymol. 106: 141 153.
6. Bystrom, A.,, and G. R. Fink. 1989. Molecular and functional analysis of the methionine initiator tRNA genes (JMT) in yeast. Mol. Gen. Genet. 216: 276 286.
7. Calogero, R. A.,, C. L. Pon,, M. A. Canonaco,, and C. O. Gualerzi. 1988. Selection of the mRNA translation initiation region by Escherichia coli ribosomes. Proc. Natl. Acad. Sci. USA 85: 6427 6431.
8. Capone, J. P.,, J. M. Sedivy,, P. A. Sharp,, and U. L. RajBhandary. 1986. Introduction of UAG, UAA and UGA nonsense mutations at a specific site in E. coli chloramphenicol acetyltransferase gene: use in measurement of amber, ochre, and opal suppression in mammalian cells. Mol. Cell. Biol. 6: 3059 3067.
9. Cavarelli, J.,, B. Rees,, M. Ruff,, J.-C. Thierry,, and D. Moras. 1993. Yeast tRNA AsP recognition by its cognate class II aminoacyl-tRNA synthetase. Nature (London) 362: 181 184.
10. Chattapadhyay, R.,, H. Pelka,, and L. H. Schulman. 1990. Initiation of in vivo protein synthesis with non-methionine amino acids. Biochemistry 29: 4263 4268.
11. Cigan, A. M.,, L. Feng,, and T. F. Donahue. 1988. tRNA Met1 functions in directing the scanning ribosome to the start site of translation. Science 242: 93 97.
12. Cigan, A. M.,, E. K. Pabich,, L. Feng,, and T. F. Donahue. 1989. Yeast translation initiation suppressor suil encodes the a subunit of eukaryotic initiation factor 2 and shares sequence identity with the human α subunit. Proc. Natl. Acad. Sci. USA 86: 2784 2788.
13. Daniel, W. E., Jr.,, and M. Cohn. 1976. Changes in tertiary structure accompanying a single base change in transfer RNA. Proton magnetic resonance and aminoacylation studies of Escherichia coli tRNA Met1f and tRNA Met3f Biochemistry 15: 3917 3924.
14. Delaney, P.,, J. Bierbaum,, and J. Ofengand. 1974. Conformational changes in the thiouridine region of Escherichia coli transfer RNA as assessed by photochemically induced cross-linking. Arch. Biophys. Biochem. 161: 260 267.
15. Delk, A. S.,, and J. C. Rabinowitz. 1974. Partial nucleotide sequence of a prokaryote initiator tRNA that functions in its non-formylated form. Nature (London) 252: 106 109.
16. Desgres, J.,, G. Keith,, L. C. Kuo,, and C. W. Gehrke. 1989. Presence of phosphorylated Oribosyl-adenosine in T-ψ-stem of yeast methionine initiator tRNA. Nucleic Acids Res. 17: 865 882.
17. Dickerman, H. W.,, E. Steers, Jr.,, R. G. Redfield,, and H. Weissbach. 1967. Methionyl soluble ribonucleic acid transformylase. J. Biol. Chem. 242: 1522 1525.
18. Donahue, T. R.,, A. M. Cigan,, E. K. Pabich,, and B. C. Valavicius. 1988. Mutations at a Zn(II) finger motif in the yeast eIF-2b gene alter ribosomal start-site selection during the scanning process. Cell 54: 621 632.
19. Drabkin , H. J.,, B. Helk,, and U. L. RajBhandary. The role of nucleotides conserved in eukaryotic initiator methionine tRNAs in initiation of protein synthesis. J. Biol. Chem., in press.
20. Drabkin, H. J.,, and U. L. RajBhandary. Unpublished data.
21. Drabkin, H. J.,, and U. L. RajBhandary. 1985. Expression in vivo of a mutant human initiator tRNA gene in mammalian cells using an SV40 vector. J. Biol. Chem. 260: 5588 5595.
22. Drabkin, H. J.,, and U. L. RajBhandary. 1985. Site-specific mutagenesis on a human initiator methionine tRNA gene within a sequence conserved in all eukaryotic initiator tRNAs and studies of its effects on in vitro transcription. J. Biol. Chem. 260: 5580 5587.
23. Dube, S. K.,, and K. A. Marcker. 1969. The nucleotide sequence of N-formyl-methionyl-transfer RNA-partial digestion with pancreatic and Tl-ribonulease and derivation of the total primary structure. Eur. J. Biochem. 8: 256 262.
24. Dube, S. K.,, K. A. Marcker,, B. E C. Clark, and S. Cory. 1968. Nucleotide sequence of N-formyl-methionyl-transfer RNA. Nature (London) 218: 232 233.
25. Dutka, S.,, T. Meinnel,, C. Lazennec, Y Mechulam, and S. Blanquet. 1993. Role of the 1-72 base pair in tRNAs for the activity of Escherichia coli peptidyl-tRNA hydrolase. Nucleic Acids Res. 21: 4025 4030.
26. Dyson, M. R.,, N. Mandal,, and U. L. RajBhandary. 1993. Relation ship between the structure and function of Escherichia coli initiator tRNA. Biochimie 75: 1051 1060.
27. Dyson, M. R.,, and U. L. RajBhandary. Unpublished results.
28. Egan, B. Z.,, J. F. Weiss,, and A. D. Kelmers. 1973. Separation and comparison of primary structures of three formylmethionine tRNAs from E. coli K-12. Biochem. Biophys. Res. Commun. 55: 320 327.
29. Francis, M.,, and U. L. RajBhandary. 1990. Expression and function of a human initiator tRNA gene in the yeast Saccharomyces cerevisiae. Mol. Cell. Biol. 10: 4486 4494.
30. Ghosh, H. P.,, K. Ghosh,, M. Simsek,, and U. L. RajBhandary. 1982. Nucleotide sequence of wheat germ cytoplasmic initiator methionine transfer ribonucleic acid. Nucleic Acids Res. 10: 3241 3247.
31. Giege, R.,, J. P. Ebel,, and B. F. C. Clark. 1973. Formylation of mischarged E. coli tRNA 0* 1". FEBS Lett. 30: 291 295.
32. Gilium, A. M.,, L. I. Hecker,, M. Silberklang,, S. D. Schwartzbach,, U. L. RajBhandary,, and W. E. Barnett. 1977. Nucleotide sequence of Neurospora crassa cytoplasmic initiator tRNA. Nucleic Acids Res. 4: 4109 4131.
33. Gillum, A. M.,, B. Roe,, M. P. J. S. Anandraj,, and U. L. RajBhandary. 1975. Nucleotide sequence of human placenta cytoplasmic initiator tRNA. Cell 6: 407 413.
34. Gillum, A. M.,, N. Urquhart,, M. Smith,, and U. L. RajBhandary. 1975. Nucleotide sequence of salmon testes and salmon liver cytoplasmic initiator tRNA. Cell 6: 395 405.
35. Goddard, J. P.,, and L. H. Schulman. 1972. Conversion of exposed cytidine residues to uridine residues in Escherichia coli formylmethionine transfer ribonucleic acid. J. Biol. Chem. 247: 3864 3867.
36. Gold, L. 1988. Posttranscriptional regulatory mechanisms in Escherichia coli. Anttu. Rev. Biochem. 57: 199 233.
37. Gorman, C. M.,, L. F. Moffat,, and B. H. Howard. 1982. Recombinant genomes which express chloramphenicol acetyl-transferase in mammalian cells. Mol. Cell. Biol. 2: 1044 1051.
38. Grunberg-Manago, M., 1987. Regulation of the expression of aminoacyl-tRNA synthetases and translation factors, p. 1386 1409. In F. Neidhardt,, J. L. Ingraham,, K. B. Low,, B. Magasanik,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology. American Society for Microbiology, Washington, D.C.
39. Gualerzi, C. O.,, and C. L. Pon. 1990. Initiation of mRNA translation in prokaryotes. Biochemistry 29: 5881 5889.
40. Guillon, J.-M.,, Y. Mechulam,, J.-M. Schmitter,, S. Blanquet,, and G. Fayat. 1992. Disruption of the gene for Met-tRNA fMet formyltransferase severely impairs growth of Escherichia coli. J. Bacteriol. 174: 4294 4301.
41. Guillon, J.-M.,, T. Meinnel,, Y. Mechulam,, S. Blanquet,, and G. Fayat. 1993. Importance of formylability and anticodon stem sequence to give a tRNA Met an initiator identity in Escherichia coli. J. Bacteriol. 175: 4507 4514.
42. Guillon, J.-M.,, T. Meinnel,, Y. Mechulam,, C. Lazennec,, S. Blanquet,, and G. Fayat. 1992. Nucleotides of tRNA governing the specificity of Escherichia coli methionyl-tRNA fMet formyltransferase. J. Mol. Biol. 224: 359 367.
43. Halbreich, A.,, and M. Rabinowitz. 1971. Isolation of Saccharomyces cerevisiae mitochondrial formyltetrahydrofolic acid: methionyl-tRNA transformylase and the hybridization of mitochondrial fMet-tRNA with mitochondrial DNA. Proc. Natl. Acad. Sci. USA 68: 294 298.
44. Hartz, D.,, J. Binkley,, T. Hollingsworth,, and L. Gold. 1990. Domains of initiator tRNA and initiation codon crucial for initiator tRNA selection by Escherichia coli IF3. Genes Dev. 4: 1790 1800.
45. Hartz, D.,, D. S. McPheeters,, and L. Gold. 1989. Selection of the initiator tRNA by Escherichia coli initiation factors. Genes Dev. 3: 1899 1912.
46. Hartz, D.,, D. S. McPheeters,, L. Green,, and L. Gold. 1991. Detection of Escherichia coli ribosome binding at translation initiation sites in the absence of tRNA. J. Mol. Biol. 218: 99 105.
47. Harvey, R. J. 1973. Growth and initiation of protein synthesis in Escherichia coli in the presence of trimethoprim. J. Bacteriol. 114: 309 322.
48. Heckman, J. E.,, L. Hecker,, S. Schwartzbach,, W. E. Barnett,, B. Baumstark,, and U. L. RajBhandary. 1978. Structure and function of initiator methionine tRNA from mitochondria of Neurospora crassa. Cell 13: 85 95.
49. Hershey, J. W. B., 1987. Protein synthesis, p. 613 647. In F. Neidhardt,, J. L. Ingraham,, K. B. Low,, B. Magasanik,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology. American Society for Microbiology, Washington, D.C.
50. Hinnebusch, A. G. 1988. Mechanisms of gene regulation in the general control of amino acid biosynthesis in yeast. Microbiol. Rev. 52: 248 273.
51. Hirsh, D. 1971. Tryptophan transfer RNA as the UGA suppressor. J. Mol. Biol. 58: 439 458.
52. Ho, Y.-H.,, and, Y. W. Kan. 1987. In vivo aminoacylation of human and Xenopus suppressor tRNAs constructed by site specific mutagenesis. Proc. Natl. Acad. Sci. USA 84: 2185 2188.
53. Housman D.,, N. Jacobs-Lorena,, U. L. RajBhandary,, and H. F. Lodish. 1970. Initiation of hemoglobin synthesis by methionyl transfer RNA. Nature (London) 227: 913 918.
54. Ishii, S.,, K. Kuroki,, and F. Imamoto. 1984. tRNAg"" gene in the leader region of the nusA operon in Escherichia coli. Proc. Natl. Acad. Sci. USA 81: 409 413.
55. Jang, S. K.,, M. V. Davies,, R. J. Kaufman,, and E. Wimmer. 1989. Initiation of protein synthesis by internal entry of ribosomes into the 5'- nontranslated region of encephalomyocarditis virus RNA in vivo. J. Virol. 63: 1651 1660.
56. Jay, G.,, and R. Kaempfer. 1974. Sequence of events in initiation of translation: a role for initiator transfer RNA in the recognition of messenger RNA. Proc. Natl. Acad. Sci. USA 71: 3199 3203.
57. Keith, G.,, J. Heitzler,, C. El Adlouni,, A.-L. Glasser,, C. Fix,, J. Desgres,, and G. Dirheimer. 1993. The primary structure of cytoplasmic initiator tRNA Met from Schizosaccharomyces pombe. Nucleic Acids Res. 21: 2949.
58. Kenri, T.,, F. Imamoto,, and Y. Kano. 1992. Construction and characterization of an Escherichia coli mutant deficient in the metY gene encoding tRNA fMet2 : either tRNA fMet1 or tRNA f 2 Metis required for cell growth. Gene 114: 109 114.
59. Kenri, T.,, K. Kohno,, N. Goshima,, F. Imamoto,, and Y. Kano. 1991. Construction and characterization of an Escherichia coli mutant with a deletion of the metZ gene encoding tRNAJ fMet1. Gene 103: 31 36.
60. Kiesewetter, S.,, G. Ott,, and M. Sprinzl. 1990. The role of modified purine 64 in initiator/elongator discrimination of tRNA fMet1 from yeast and wheat germ. Nucleic Acids Res. 18: 4677 4682.
61. Kossel, H.,, and U. L. RajBhandary. 1968. Studies on polynucleotides. LXXXVI. Enzymatic hydrolysis of N-acylaminoacyl transfer RNA. J. Mol. Biol. 35: 539 560.
62. Kozak, M. 1983. Comparison of initiation of protein synthesis in procaryotes, eucaryotes, and organelles. Microbiol. Rev. 47: 1 45.
63. Kozak, M. 1991. Structural features in eukaryotic mRNAs that modulate the initiation of translation. J. Biol. Chem. 266: 19867 19870.
64. Kozak, M. 1992. Regulation of translation in eukaryotic systems. Annu. Rev. Cell Biol. 8: 197 225.
65. Kozak, M. 1992. A consideration of alternative models for the initiation of translation in eukaryotes. Cn'r. Rev. Biochem. Mol. Biol. 27: 385 402.
66. Lee, C. P.,, M. R. Dyson,, N. Mandal,, U. Varshney, & Bahramian, and U. L. RajBhandary. 1992. Striking effects of coupling mutations in the acceptor stem on recognition of tRNAs by E. coli methionyl-tRNA synthetase and methionyl-tRNA transformylase. Proc. Natl. Acad. Sci. USA 89: 9262 9266.
67. Lee, C.-R.,, N. Mandal,, M. R. Dyson,, and U. L. RajBhandary. 1993. The discriminator base influences tRNA structure at the end of the acceptor stem and possibly its interaction with proteins. Proc. Natl. Acad. Sci. USA 90: 7149 7152.
68. Lee, C. P.,, and U. L. RajBhandary. 1991. Mutants of Escherichia coli initiator tRNA which suppress amber codons in Saccharomyces cerevisiae and are aminoacylated with tyrosine by yeast extracts. Proc. Natl. Acad. Sci. USA 88: 11378 11382.
69. Lee, C. P.,, B. L. Seong,, and U. L. RajBhandary. 1991. Structural and sequence elements important for recognition of Escherichia coli formylmethionine tRNA by methionyl-tRNA transformylase are clustered in the acceptor stem. J. Biol. Chem. 266: 18012 18017.
70. Leon, M.,, J. Dondon,, J. Labouesse,, M. Grunberg-Manago,, and R. H. Buckingham. 1979. Recognition of tRNA Trp by initiation factors from Escherichia coli. Eur. J. Biochem. 98: 149 154.
71. Macejak, D. G.,, and P. Sarnow. 1991. Internal initiation of translation mediated by the 5' leader of a cellular mRNA. Nature (London) 353: 90 94.
72. Mandal, N.,, and U. L. RajBhandary. Unpublished data.
73. Mandal, N.,, and U. L. RajBhandary. 1992. Escherichia coli B lacks one of the two initiator tRNA species present in E. coli K-12. J. Bacteriol. 174: 7827 7830.
74. Mao, J.-L.,, O. Schmidt,, and D. Soli. 1980. Dimeric tRNA precursors in Schizosaccharomyces pombe. Cell 21: 509 516.
75. Marker, K.,, and F. Sanger. 1964. N-formylmethionyls-RNA. J. Mol. Biol. 8: 835 840.
76. Meinnel, T.,, Y. Mechulam,, G. Fayat,, and S. Blanquet. 1992. Involvement of the size and sequence of the anticodon loop in tRNA recognition by mammalian and E. coli methionyl-tRNA synthetases. Nucleic Acids Res. 20: 4741 4746.
77. Meinnel, X.,, Y. Mechulam,, C. Lazennec,, S. Blanquet,, and G. Fayat. 1993. Critical role of the acceptor stem of tRNA Mets in their aminoacylation by Escherichia coli methionyl-tRNA synthetase. J. Mol. Biol. 229: 26 36.
78. Menninger, J. R. 1978. The accumulation as peptidyl-transfer RNA of isoaccepting transfer RNA families in Escherichia coli with temperature-sensitive peptidyl-transfer RNA hydrolase. J. Biol. Chem. 253: 6808 6813.
79. Merrick, W. C. 1992. Mechanism and regulation of eukaryotic protein synthesis. Microbiol. Rev. 56: 291 315.
80. Normanly, J.,, L. G. Kleina,, J.-M. Masson,, J. Abelson,, and J. H. Miller. 1990. Construction of Escherichia coli amber suppressor tRNA genes. III. Determination of tRNA specificity. J. Mol. Biol. 213: 719 726.
81. Ono, Y.,, A. Skoultchi,, A. Klein,, and P. Lengyel. 1968. Peptide chain elongation: discrimination against the initiator transfer RNA by microbial amino-acid polymerization factors. Nature (London) 220: 1304 1307.
82. Pallanck, L.,, and L. H. Schulman. 1991. Anticodon-dependent aminoacylation of a noncognate tRNA with isoleucine, valine, and phenylalanine in vivo. Proc. Natl. Acad. Sci. USA 88: 3872 3876.
83. Pathak, V. K.,, P. J. Nielsen,, H. Trachsel,, and J. W. B. Hershey. 1988. Structure of the β-subunit of translational initiation factor eIF-2. Cell 54: 633 639.
84. Pelletier, J.,, and N. Sonenberg. 1988. Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from polio virus RNA. Nature (London) 324: 320 325.
85. Piper, P. W.,, and B. F. C. Clark. 1974. Primary structure of a mouse myeloma cell initiator tRNA. Nature (London) 247: 518 520.
86. RajBhandary, U. L.,, and H. P. Ghosh. 1969. Studies on polynucleotides. XCI. Yeast methionine transfer RNA: purification, properties and terminal nucleotide sequences. J. Biol. Chem. 244: 1104 1113.
86a. RajBhandary, U. L. 1994. Initiator transfer RNAs. J. Bacteriol. 176: 547 552.
87. Rich, A.,, and U. L. RajBhandary. 1975. Transfer RNA: molecular structure, sequence and properties. Annu. Rev. Biochem. 45: 805 860.
88. Richter, D.,, and F. Lipmann. 1970. Formation of a ternary complex between formylatable yeast Met-tRNA, GTP and binding factor T of yeast and of E. coli. Nature (London) 227: 1212 1214.
89. Richter, D.,, F. Lipmann,, F. Tarrago,, and J. E. Allende. 1971. Interaction of eukaryotic initiator methionyl-tRNA with the eukaryotic equivalent of bacterial elongation factor T and guanosine triphosphate. Proc. Natl. Acad. Sci. USA 68: 1805 1809.
90. Rould, M. A.,, J. J. Perona,, D. Soil,, and T. A. Steitz. 1989. Structure of E. coli glutaminyl-tRNA synthetase complexed with tRNA Gln and ATP at 2.8 resolution. Science 246: 1135 1142.
91. Rould, M. A.,, J. J. Perona,, and T. A. Steitz. 1991. Structural basis of anticodon loop recognition by glutaminyl-tRNA synthetase. Nature (London) 352: 213 218.
92. Ruff, M.,, S. Krishnaswamy,, M. Boeglin,, A. Poterszman,, A. Mitschler,, A. Podjarny,, R. Rees,, J. C. Thierry,, and D. Moras. 1991. Class II aminoacyl transfer RNA synthetases: crystal structure of yeast aspartyl-tRNA synthetase complexed with tRNAAsp. Science 252: 1682 1689.
93. Sacerdot, C.,, P. Dessen,, J. W. R. Hershey,, J. A. Plumbridge,, and M. Grunberg-Manago. 1984. Sequence of the initiation factor IF2 gene: unusual protein features and homologies with elongation factors. Proc. Natl. Acad. Sci. USA 81: 7787 7791.
94. Samuel, C. E.,, and J. C. Rabinowitz. 1974. Initiation of protein synthesis by folate-sufficient and folate-deficient Streptococcus faecalis R. J. Biol. Chem. 249: 1198 1206.
95. Santos, T.,, and M. Zasloff. 1981. Comparative analysis of human chromosomal segments bearing nonallelic dispersed tRNA Met genes. Cell 23: 699 709.
96. Schulman, L. H. 1991. Recognition of tRNAs by aminoacyl-tRNA synthetases. Prog. Nucleic Acid Res. Mol. Biol. 41: 23 87.
97. Schulman, L. H.,, and H. Pelka. 1975. Formylmethionine transfer ribonucleic acid cleavage by Escherichia coli peptidyl transfer ribonucleic acid hydrolase. J. Biol. Chem. 250: 542 547.
98. Schulman, L. H.,, and H. Pelka. 1985. In vitro conversion of a methionine to a glutamine-acceptor tRNA. Biochemistry 24: 7309 7314.
99. Schulman, L. H.,, and H. Pelka. 1988. Anticodon switching changes the identity of methionine and valine transfer RNAs. Science 242: 765 768.
100. Schulman, L. H.,, H. Pelka,, and R. M. Sundari. 1974. Structural requirements for recognition of Escherichia coli initiator and non-initiator transfer ribonucleic acids by bacterial T factor. J. Biol. Chem. 249: 7102 7110.
101. Seong, R. L.,, C. P. Lee,, and U. L. RajBhandary. 1989. Suppression of amber codons in vivo as evidence that mutants derived from E. coli initiator tRNA can act at the step of elongation in protein synthesis. J. Biol. Chem. 246: 6504 6508.
102. Seong, R. L.,, and U. L. RajBhandary. 1987. Escherichia coli formylmethionine tRNA: mutations in G-G-G:C-C-C sequence conserved in anticodon stem of initiator tRNAs affect initiation of protein synthesis and conformation of anticodon loop. Proc. Natl. Acad. Sci. USA 84: 334 338.
103. Seong, R. L.,, and U. L. RajBhandary. 1987. Mutants of Escherichia coli formylmethionine tRNA: a single base change enables initiator tRNA to act as an elongator in vitro. Proc. Natl. Acad. Sci. USA 84: 8859 8863.
104. Shannon, K. W.,, and J. C. Rabinowitz. 1988. Isolation and characterization of the Saccharomyces cerevisiae MIS1 gene encoding mitochondrial C 1-tetrahydrofolate synthetase. J. Biol. Chem. 263: 7717 7725.
105. Silverman, S.,, J. Heckman,, G. J. Cowling,, A. D. Delaney,, R. J. Dunn,, I. C. Gillam,, G. M. Tener,, D. Soli,, and U. L. RajBhandary. 1979. The nucleotide sequence of the initiator tRNA from Drosphila melanogaster. Nucleic Acids Res. 6: 421 433.
106. Simsek, M.,, G. Petrissant,, and U. L. RajBhandary. 1973. Replacement of the sequence G-T-ψ-C-G(A)- by G-A-U-C-G- in initiator transfer RNA of rabbit liver cytoplasm. Proc. Natl. Acad. Sci. USA 70: 2600 2604.
107. Simsek, M.,, and U. L. RajBhandary. 1972. The primary structure of yeast initiator transfer RNA. Biochem. Biophys. Res. Commun. 49: 508 515.
108. Simsek, M.,, U. L. RajBhandary,, M. Boisnard,, and G. Petrissant. 1974. Nucleotide sequence of rabbit liver and sheep mammary gland cytoplasmic initiator transfer RNAs. Nature (London) 247: 518 520.
109. Simsek, M.,, J. Ziegenmeyer,, J. Heckman,, and U. L. RajBhandary. 1973. Absence of the sequence G-T-ψ-C-G(A)- in several eukaryotic cytoplasmic initiator transfer RNAs. Proc. Natl. Acad. Sci. USA 70: 1041 1045.
110. Smith, A. E.,, and K. A. Marcker. 1970. Cytoplasmic methionine transfer RNAs from eukaryotes. Nature (London) 226: 607 610.
111. Smith, D.,, and M. Yarus. 1989. Transfer RNA structure and coding specificity. II. A D-arm tertiary interaction that restricts coding range. J. Mol. Biol. 206: 503 511.
112. Sprinzl, M.,, T. Hartman,, J. Weber,, J. Blank,, and R. Zeidler. 1989. Sequences supplement. Nucleic Acids Res. 17: rl rl72.
113. Sugimoto, N.,, R. Kierzek,, and D. H. Turner. 1987. Sequence dependence for the energetics of dangling ends and terminal base pairs in ribonucleic acid. Biochemistry 26: 4554 4558.
114. Sundari, R.,, E. A. Stringer,, L. H. Schulman,, and U. Maitra. 1976. Interaction of bacterial initiation factor 2 with initiator tRNA. J. Biol. Chem. 251: 3338 3345.
115. van Duin, J.,, G. P. Overbeek,, and C. Backendorf. 1980. Functional recognition of phage RNA by 30S ribosomal subunits in the absence of initiator tRNA. Eur. J. Biochem. 110: 593 597.
116. Varshney, U.,, C. P. Lee,, and U. L. RajBhandary. 1991. Direct analysis of aminoacylation levels of tRNA in vitro. J. Biol. Chem. 266: 24712 24718.
117. Varshney, U.,, C. P. Lee,, and U. L. RajBhandary. 1993. From elongator tRNA to initiator tRNA. Proc. Natl. Acad. Sci. USA 90: 2305 2309.
118. Varshney, U.,, C. P. Lee,, B. L. Seong,, and U. L. RajBhandary. 1991. Mutants of initiator tRNA that function both as initiators and elongators. J. Biol. Chem. 266: 18018 18024.
119. Varshney, U.,, and U. L. RajBhandary. 1990. Initiation of protein synthesis using a termination codon. Proc. Natl. Acad. Sci. USA 87: 1586 1590.
120. Varshney, U.,, and U. L. RajBhandary. 1992. Role of methionine and formylation of initiator tRNA in initiation of protein synthesis in Escherichia coli. J. Bacteriol. 174: 7819 7826.
121. von Pawel-Rammingen, U.,, S. Astrom,, and A. S. Bystrom. 1992. Mutational analysis of conserved positions potentially important for initiator tRNA function in Saccharomyces cerevisiae. Mol. Cell. Biol. 12: 1432 1442.
122. Wagner, T.,, M. Gross,, and P. B. Sigler. 1984. Isoleucyl initiator tRNA does not initiate eucaryotic protein synthesis. J. Biol. Chem. 259: 4706 4709.
123. Wakao, H.,, P. Romby,, E. Westhof,, S. Laalami,, M. Grunberg-Manago,, J.-P. Ebel,, C. Ehresmann,, and B. Ehresmann. 1989. The solution structure of the Escherichia coli initiator tRNA and its interactions with initiation factor 2 and the ribosomal 30 S subunit. J. Biol. Chem. 264: 20363 20371.
124. Wegnez, M.,, A. Mazabraud,, H. Denis,, G. Petrissant,, and M. Boisnard. 1975. Biochemical research on oogenesis: nucleotide sequence of initiator tRNA from oocytes and from somatic cells of Xenopus laevis. Eur. J. Biochem. 60: 295 302.
125. Woo, N. H.,, B. A. Roe,, and A. Rich. 1980. Three dimensional structure of E. coli tRNA fMet. Nature (London) 286: 346 351.
126. Wrede, P.,, N. H. Woo,, and A. Rich. 1979. Initiator tRNAs have a unique anticodon loop conformation. Proc. Natl. Acad. Sci. USA 76: 3289 3293.

Tables

Generic image for table
Table 1

Kinetic parameters in aminoacylation of tRNAs by MetRS

Citation: Rajbhandary U, Chow C. 1995. Initiator tRNAs and Initiation of Protein Synthesis, p 511-528. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch25
Generic image for table
Table 2

Kinetic parameters in formylation of mutant tRNA by Met-tRNA transformylase

Citation: Rajbhandary U, Chow C. 1995. Initiator tRNAs and Initiation of Protein Synthesis, p 511-528. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch25
Generic image for table
Table 3

AUG-dependent ribosome binding of various mutant tRNAs and puromycin reactivity of bound fMet-tRNAs

Citation: Rajbhandary U, Chow C. 1995. Initiator tRNAs and Initiation of Protein Synthesis, p 511-528. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch25
Generic image for table
Table 4

Relative CAT activities in extracts of CA274 transformed with CATaml.2.5 and various initiator tRNA genes

Values are expressed as mean percent ± standard deviation.

Citation: Rajbhandary U, Chow C. 1995. Initiator tRNAs and Initiation of Protein Synthesis, p 511-528. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch25

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error