1887

Chapter 26 : The Selenocysteine-Inserting tRNA Species: Structure and Function

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

The Selenocysteine-Inserting tRNA Species: Structure and Function, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818333/9781555810733_Chap26-1.gif /docserver/preview/fulltext/10.1128/9781555818333/9781555810733_Chap26-2.gif

Abstract:

The occurrence of the amino acid selenocysteine in proteins was first demonstrated for protein A of glycine reductase from in 1976, and questions were immediately raised on its mechanism of incorporation. At that time, the universality of the 20 proteinogenic amino acids was taken for granted, as was the fact that the 64 codons of the "universal" genetic code are assigned either to code for one of these 20 amino acids or to serve as termination signals. Thus, it seemed unlikely that selenocysteine would be considered as a classical amino acid. In principle, the definition of such a 21st amino acid would require (i) that its incorporation proceeds via a cotranslational mechanism, (ii) that it is directed by a specific codon, and (iii) that a specific tRNA mediates its transport to the ribosome. This chapter illustrates that selenocysteine fulfills these criteria. It first describes the unusual structural properties of tRNA, and then discusses the unique pathway of selenocysteine insertion that has been worked out for , which has finally led to the proposal of a model for the co-translational incorporation process at the ribosome. The chapter further compares the pathway established in with the current knowledge on the mammalian system. Finally, it addresses the interesting question of the evolution of the pathway for the incorporation of selenocysteine that differs from that of the 20 standard amino acids in many respects.

Citation: Baron C, Bock A. 1995. The Selenocysteine-Inserting tRNA Species: Structure and Function, p 529-544. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch26

Key Concept Ranking

Elongation Factor Tu
0.48141965
Transmission Electron Microscope
0.457647
Scanning Electron Microscope
0.44035286
Amino Acids
0.41517085
Amino Acid Synthesis
0.40222082
0.48141965
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Cloverleaf structures of tRNA from (A) and (B). The numbering of tRNAS is according to Sprinzl et al. ( ); the nucleotides 5a and 67a designate extra nucleotides renamed in order to keep the standard numbering system ( ). The numbering of tRNA is according to Sturchler et al. ( ); the extra nucleotides in the acceptor stem were renamed to keep the standard numbering system.

Citation: Baron C, Bock A. 1995. The Selenocysteine-Inserting tRNA Species: Structure and Function, p 529-544. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch26
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Stereo view of three-dimensional model of solution structure of tRNA from ( ).

Citation: Baron C, Bock A. 1995. The Selenocysteine-Inserting tRNA Species: Structure and Function, p 529-544. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch26
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Biosynthesis and incorporation of selenocysteine into proteins of compared with that of the 20 standard amino acids. The selenocysteine pathway involves the action of seryl-tRNA synthetase and the gene products. The discrimination of the UGA (selenocysteine) from UGA (stop) codons is mediated by a stem-loop structure immediately 3' to the UGA codons in the and mRNAs. Selenium is also incorporated in the anticodon of tRNAclu and tRNALys isoacceptors; the modification at U34 is 5-methylaminomethyl-2-selenouridine (mnm5se2U).

Citation: Baron C, Bock A. 1995. The Selenocysteine-Inserting tRNA Species: Structure and Function, p 529-544. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch26
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Postulated reaction mechanism for conversion of seryl-tRNA to selenocysteyl-tRNA in active site of selenocysteine synthase ( ).

Citation: Baron C, Bock A. 1995. The Selenocysteine-Inserting tRNA Species: Structure and Function, p 529-544. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch26
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

Cloverleaf structure of mutated tRNA variant (tRNAdelAc), where extra base pair 5a-67a in acceptor stem has been deleted, and functional consequences of this deletion.

Citation: Baron C, Bock A. 1995. The Selenocysteine-Inserting tRNA Species: Structure and Function, p 529-544. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch26
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6
Figure 6

Electron micrographs of selenocysteine synthase from different angles free and complexed with aminoacryloyl-tRNASec ( ). Selenocysteine synthase is shown symmetrized fivefold in top view orientation (A) and in side view projection (B). Selenocysteine synthase is also shown bound with five molecules of aminoacryloyl-tRNASec in top view projection (C) and in side view projection (D). Note the additional densities under and above the plane, which correspond to the additional densities of the tRNA.

Citation: Baron C, Bock A. 1995. The Selenocysteine-Inserting tRNA Species: Structure and Function, p 529-544. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch26
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 7
Figure 7

Dissection of mRNA determinants for selenocysteine insertion into proteins of A DNA segment corresponding to the UGA codon and the 3' adjacent stem-loop structure of the mRNA was fused in the correct reading frame into the gene. Selenocysteine insertion was assessed by the measurement of β-galactosidase activity and selenium labeling experiments (not shown). The values displayed correspond to the read-through activities of constructs in which the mutations indicated had been introduced, in percent relative to that of a wild-type construct ( ).

Citation: Baron C, Bock A. 1995. The Selenocysteine-Inserting tRNA Species: Structure and Function, p 529-544. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch26
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 8
Figure 8

Quaternary complex formation of the SELB protein with GTP, selenocysteyl-tRNASec, and mRNA recognition element of fdhF mRNA demonstrated by gel retardation assays in nondenaturing polyacrylamide gels ( ). A: 5'-[32P]-labeled mRNA transcript was incubated with increasing amounts of SELB • GTP or SELB-GTP• selenocysteyl-tRNASec complex as indicated and subjected to electrophoretic separation. B: Parallel experiment performed on unlabeled mRNA and [14C]-amino acid-labeled tRNASec.

Citation: Baron C, Bock A. 1995. The Selenocysteine-Inserting tRNA Species: Structure and Function, p 529-544. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch26
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 9
Figure 9

Model for co-translational incorporation of selenocysteine into proteins.

Citation: Baron C, Bock A. 1995. The Selenocysteine-Inserting tRNA Species: Structure and Function, p 529-544. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch26
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818333.chap26
1. Atkins, J. F.,. R. B. Weiss,, and R. F. Gesteland. 1990. Ribosome gymnastics: degree of difficulty 9.5, style 10.0. Cell 62:413423.
2. Atwater, J. A.,. R. Wisdom,, and I. M. Verma. 1990. Regulated mRNA stability. Annu. Rev. Genet. 24:519541.
3. Axley, M. J.,. A. Bock,, and T. C. Stadtman. 1991. Catalytic properties of an Escherichia coli formate dehydrogenase mutant in which sulfur replaces selenium. Proc. Natl. Acad. Sci. USA 88:84508454.
4. Baron, C.,, and A. Bock. 1991. The length of the aminoacyl-acceptor stem of the selenocysteine-specific tRNASec of Escherichia coli is the determinant for binding to elongation factors SELB or Tu. J. Biol. Chem. 266:2037520379.
5. Baron, C.,, J. Heider,, and A. Bock. 1989. Mutagenesis of selC, the gene for the selenocysteine-inserting tRNA-species in E. coli: effects on in vivo function. Nucleic Acids Res. 18:67616766.
6. Baron, C.,, J. Heider,, and A. Bock. 1993. Interaction of translation factor SELB with the formate dehydrogenase H se-lenopeptide mRNA. Proc. Natl. Acad. Sci. USA 90:41814185.
7. Baron, C.,, E. Westhof,, A. Bock,, and R. Giegé. 1993. Solution structure of selenocysteine-inserting tRNASec from Escherichia coli. Comparison with canonical tRNAser. J. Mol. Biol. 231:274292.
8. Behne, D.,. H. Hilmert,. S. Scheid,. H. Gessner,, and W. Elger. 1988. Evidence for specific selenium target tissues and new biologically important selenoproteins. Biochem. Biophys. Acta 966:1221.
9. Behne, D.,. A. Kyriakopoulos,. H. Meinhold,, and J. Köhrle. 1990. Identification of Type I iodothyronine 5'-deiodinase as a selenoenzyme. Biochem. Biophys. Res. Commun. 173:11431149.
10. Berg, B. L.,, C. Baron,, and V. Stewart. 1991. Nitrate-inducible formate dehydrogenase in Escherichia coli K-12. II. Evidence that a mRNA stem-loop structure is essential for decoding opal (UGA) as selenocysteine. J. Biol. Chem. 266:2238622391.
11. Berg, B. L.,, J. Li,, J. Heider,, and V. Stewart. 1991. Nitrate-inducible formate dehydrogenase in Escherichia coli K-12. I. Nucleotide sequence of the fdnGHl operon and evidence that opal (UGA) encodes selenocysteine. J. Biol. Chem. 266:2238022385.
12. Berry, M. L.,. L. Banu,. Y. Chen,. S. J. Mandei,. J. D. Kieffer,. J. W. Harney,, and P. R. Larsen. 1991. Recognition of UGA as a selenocysteine codon in type I deiodinase requires sequences in the 3' untranslated region. Nature (London) 353:273276.
13. Berry, M. L.,. L. Banu,, and P. R. Larsen. 1991. Type I iodothyronine deiodinase is a selenocysteine-containing enzyme. Nature (London) 349:438440.
14. Berry, M.,. J. D. Kieffer,. J. W. Harney,, and P. R. Larsen. 1991. Selenocysteine confers the biochemical properties characteristic of the type I iodothyronine deiodinase. J. Biol. Chem. 266:1415514158.
15. Bock, A.,. K. Forchhammer,. J. Heider,, and C. Baron. 1991. Selenoprotein synthesis: an expansion of the genetic code. Trends Biochem. Sci. 16:463467.
16. Bock, A.,. K. Forchhammer,. J. Heider,. W. Leinfelder,. G. Sawers,. B. Veprek,, and F. Zinoni. 1991. Selenocysteine: the 21st amino acid. Mol. Microbiol. 5:515520.
17. Brown, C. M.,. P. A. Stockwell,. C. N. A. Trotman,, and W. P. Tate. 1990. The signal for the termination of protein synthesis in prokaryotes. Nucleic Acids Res. 18:20792086.
18. Casey, J. L.,. M. W. Hentze,. D. K. Koeller,. S. W. Caughman,. T. A. Rouault,. R. D. Klausner,, and J. B. Harford. 1988. Iron-responsive elements: regulatory RNA sequences that control mRNA levels and translation. Science 240:924928.
19. Chambers, I.,. J. Frampton,. P. Goldfarb,. N. Affara,. W. Mc-Bain,, and P. R. Harrison. 1986. The structure of the mouse glutathione peroxidase gene: the selenocysteine in the active site is encoded by the "termination" codon TGA. EMBO J. 5:12211227.
20. Cheong, C.,, G. Varani,, and I. Tinoco, Jr. 1990. Solution structure of an unusually stable RNA hairpin, 5'-GGAC(UUCG)GUCC. Nature (London) 346:680682.
21. Ching, W. M.,. L. Tsai,, and A. J. Wittwer. 1985. Selenium-containing transfer RNAs. Curr. Top. Cell. Regul. 27:497507.
22. Cone, J. E.,. R. Martin del Rio,. J. N. Davis,, and T. C. Stadtman. 1976. Chemical characterization of the selenoprotein component of clostridial glycine reductase: identification of selenocysteine as the organoselenium moiety. Proc. Natl. Acad. Sci. USA 73:26592663.
23. Diamond, A. M.,. B. Dudock,, and D. Hatfield. 1981. Structure and properties of a bovine liver UGA suppressor serine tRNA with a tryptophan anticodon. Cell 25:497506.
24. Diamond, A. M.,. Y. Montero-Puerner,. B. J. Lee,, and D. Hatfield. 1990. Selenocysteine tRNAs are likely generated by tRNA editing. Nucleic Acids Res. 18:6727.
25. Ehrenreich, A.,. K. Forchhammer,. P. Tormay,. B. Veprek,, and A. Bock. 1992. Selenoprotein synthesis in E. coli. Purification and characterization of the enzyme catalyzing selenium activation. Eur. J. Biochem. 206:767773.
26. Engelhardt, H.,. K. Forchhammer,. S. Muller,. A. Engel,, and A. Bock. 1992. Structure of selenocysteine synthase from Escherichia coli and location of tRNA in the seryl-tRNASec-en-zyme complex. Mol. Microbiol. 6:34613467.
27. Flohé, L., 1989. The selenoprotein glutathione peroxidase, p. 643731. In D. Dolphin,, R. Poulson,, and O. Avramovic (ed.), Glutathione: Chemical, Biochemical, and Medical Aspects, Part A. John Wiley & Sons, Inc., New York.
28. Forchhammer, K.,, and A. Bock. 1991. Selenocysteine synthase from Escherichia coli. Analysis of the reaction sequence. J. Biol. Chem. 266:63246328.
29. Forchhammer, K.,, K. BoesmUler,, and A. Böck. 1991. The function of selenocysteine synthase and SELB in the synthesis and incorporation of selenocysteine. Biochimie 73:14811486.
30. Forchhammer, K.,, L. Leinfelder,, and A. Bock. 1989. Identification of a novel translation factor necessary for the incorporation of selenocysteine into protein. Nature (London) 342:453456.
31. Forchhammer, K.,, W. Leinfelder,. K. Boesmiller,. B. Veprek,, and A. Bock. 1991. Selenocysteine synthase from Escherichia coli. Nucleotide sequence of the gene (selA) and purification of the protein. J. Biol. Chem. 266:63186323.
32. Forchhammer, K.,, K. P. Rücknagel,, and A. Böck. 1990. Purification and biochemical characterization of SELB, a translation factor involved in selenoprotein synthesis. J. Biol. Chem. 265:93469350.
33. Förster, C.,, G. Ott,, K. Forchhammer,, and M. Sprinzl. 1990. Interaction of a selenocysteine-incorporating tRNA with elongation factor Tu from E. coli. Nucleic Acids Res. 18:487491.
34. Garcia, G. E.,, and T. C. Stadtman. 1992. Clostridium stick-landii glycine reductase selenoprotein A gene: cloning, sequencing, and expression in Escherichia coli. J. Bacteriol. 174:70807089.
35. Gavis, E. R.,, and R. Lehmann. 1992. Localization of nanos RNA controls embryonic polarity. Cell 71:301313.
36. Gelpi, C.,, E. J. Sontheimer,, and J. L. Rodriguez-Sanchez. 1992. Autoantibodies against a serine tRNA-protein complex implicated in cotranslational selenocysteine insertion. Proc. Natl. Acad. Sci. USA 89:97399743.
37. Gesteland, R. F.,, R. B. Weiss,, and J. F. Atkins. 1992. Receding: reprogrammed genetic decoding. Science 257:16401641.
38. Halboth, S.,, and A. Klein. 1992. Methanococcus voltae harbors four gene clusters potentially encoding two [NiFe] and two [NiFeSe] hydrogenases, each of the cofactor F420-reduc-ing or F420-non-reducing types. Mol. Gen. Genet. 233:217224.
39. Hatfield, D.,. I. S. Choi,, S. Mischke,, and L. D. Owens. 1992. Selenocysteyl-tRNAs recognize UGA in Beta vulgaris, a higher plant, and in Gliocladium virens, a filamentous fungus. Bio-chem. Biophys. Res. Commun. 184:254259.
40. Hatfield, D.,. B. J. Lee,. L. Hampton,, and A. M. Diamond. 1991. Selenium induces changes in the selenocysteine tRNA[Ser]Sec population in mammalian cells. Nucleic Acids Res. 19:939943.
41. Hatfield, D.,. B. J. Lee,. N. M. Price,, and T. C. Stadtman. 1991. Selenocysteyl-tRNA occurs in the diatom Thalassiosira and in the ciliate Tetrahymena. Mol. Microbiol. 5:11831186.
42. Hatfield, D.,. D. W. E. Smith,. B. L. Lee,. P. J. Worland,, and S. Oroszlan. 1990. Structure and function of suppressor tRNAs in higher eucaryotes. Crit. Rev. Biochem. Mol. Biol. 25:7196.
43. Heider, J.,. C. Baron,, and A. Bock. 1992. Coding from a distance: dissection of the mRNA determinants required for the incorporation of selenocysteine into protein. EMBO J. 11:37593766.
44. Hill, K. E.,. R. S. Lloyd,. J. G. Yang,, R. Read,, and R. F. Burk. 1991. The cDNA for rat selenoprotein P contains 10 TGA codons in the open reading frame. J. Biol. Chem. 266:1005010053.
45. Hodges, P.,, and J. Scott. 1992. Apolipoprotein B mRNA editing: a new tier for the control of gene expression. Trends Biochem. Sci. 17:7781.
46. Ip, C., 1989. Is selenium metabolism necessary for its anticar-cinogenic activity?, p. 305312. In A. Wendel (ed.), Selenium in Biology and Medicine. Springer-Verlag, Berlin.
47. Lee, B. L.,, M. Rajagopalan,, Y. S. Kim,, K. H. You,, K. B. Jacobson,, and D. Hatfield. 1990. Selenocysteine tRNA[Ser]Sec gene is ubiquitous within the animal kingdom. Mol. Cell. Biol. 10:19401949.
48. Lee, B. L.,. P. J. Worland,. J. N. Davis,. T. C. Stadtman,, and D. Hatfield. 1989. Identification of a selenocysteyl-tRNASer in mammalian cells that recognizes the nonsense codon UGA. J. Biol. Chem. 264:97249727.
49. Leinfelder, W.,. K. Forchhammer,. B. Veprek,. E. Zehelein,, and A. Bock. 1990. In vitro synthesis of selenocysteyl-tRNAUCA from seryl-tRNAUCA: involvement and characterization of the selD gene product. Proc. Natl. Acad. Sci. USA 87:543547.
50. Leinfelder, W.,. K. Forchhammer,. F. Zinoni,. G. Sawers,. M. A. Mandrand-Berthelot,, and A. Bock. 1988. Escherichia coli genes whose products are involved in selenium metabolism. J. Bacteriol. 170: 540546.
51. Leinfelder, W.,. T. C. Stadtman,, and A. Bock. 1989. Occurrence in vivo of selenocysteyl-tRNAUCA in Escherichia coli. Effect of sel mutations, J. Biol. Chem. 264:97209723.
52. Leinfelder, W.,. E. Zehelein,. M. A. Mandrand-Berthelot,, and A. Bock. 1988. Gene for a novel tRNA species that cotransla-tionally inserts selenocysteine. Nature (London) 331:723725.
53. Li, N. Q.,. P. S. Reddy,, K. Thyagaraju,. A. P. Reddy,. B. L. Hsu,. R. W. Scholz,. C. P. D. Tu,, and C. C. Reddy. 1990. Elevation of rat liver mRNA for selenium-dependent glutathione peroxidase by selenium deficiency. J. Biol. Chem. 265:108113.
54. Li, W. Q.,, and M. Yaras. 1992. Bar to normal UGA translation by the selenocysteine tRNA. J. Mol. Biol. 223:915.
55. Menon, N. K.,. H. D. Peck, Jr.,, J. Le Gall,, and A. E. Przybyla. 1988. Cloning and sequencing of the genes encoding the large and small subunits of the periplasmic [NiFeSe] hydrogenase of Desulfovibrio baculatus. J. Bacteriol. 170:4429.
56. Mizutani, T. 1989. Some evidence of the enzymatic conversion of bovine suppressor phosphoseryl-tRNA to se-lenocysteyl-tRNA. FEBS Lett. 250:142146.
57. Mizutani, T.,, H. Kurata,, and K. Yamada. 1991. Study of mammalian selenocysteyl-tRNA synthesis with [75Se] HSe-. FEBS Lett. 289:5963.
58. Mizutani, T.,, H. Kurata,, K. Yamada,, and T. Totsuka. 1992. Some properties of murine selenocysteine synthase. Biochem.J. 284:827834.
59. Mizutani, T.,, N. Maruyama,, T. Hitaka,, and Y. Sukenaga. 1989. The detection of natural opal suppressor seryl-tRNA in Escherichia coli by the dot blot hybridization and its phosphorylation by a tRNA kinase. FEBS Lett. 247:345348.
60. Mullenbach, G. T.,, A. Tabrizi,, B. D. Irvine,. G. I. Bell,, J. A. Tainer,, and R. B. Hallewell. 1988. Selenocysteine's mechanism of incorporation and evolution revealed in cDNAs of three glutathione peroxidases. Protein Eng. 2:239246.
60a. Müller, S.,, H. Senn,, B. Gsell,, W. Vetter,, C. Baron,, and A. Böck. 1994. The formation of diselenide bridges in proteins by incorporation of selenocysteine residues: biosynthesis and characterisation of (Se)2-thioredoxin. Biochemistry 33:34043412.
61. Normanly, J.,. T. Ollick,, and J. Abelson. 1992. Eight base changes are sufficient to convert a leucine-inserting tRNA into a serine-inserting tRNA. Proc. Natl. Acad. Sci. USA 89:56805684.
62. Osawa, S.,, T. H. Jukes,. K. Watanabe,, and A. Muto. 1992. Recent evidence for evolution of the genetic code. Microbiol. Rev. 56:229264.
63. Puglisi, J. D.,, J. R. Wyatt,, and I. Tinoco, Jr. 1991. RNA pseudoknots. Accounts Chem. Res. 24:152158.
64. Rein, A.,, and J. G. Levin. 1992. Readthrough suppression in the mammalian type C retroviruses and what it has taught us. New Biologist 4:283289.
65. Roy, K. L.,, and D. Söil. 1970. Purification of five serine transfer ribonucleic acid species from Escherichia coli and their acylation by homologous and heterologous seryl-transfer ribonucleic acid synthetases. J. Biol. Chem. 245:13941400.
66. Schön, A.,, A. Bock,. G. Ott,, M. Sprinzl,, and D. Soli. 1989. The selenocysteine-inserting opal suppressor serine tRNA from E. coli is highly unusual in structure and modification. Nucleic Acids Res. 17:71597165.
67. Schuckelt, R.,, R. Brigelius -Flohé,, M. Maiorino,, A. Roveri,, J. Reumkens,, W. Stra/3burger,, F. Ursini,, B. Wolf,, and L. Flohé. 1991. Phospholipid hydroperoxide glutathione peroxidase is a selenoenzyme distinct from the classical glutathione peroxidase as evident from cDNA and amino acid sequencing. Free Rad. Res. Commun. 14:343361.
68. Sprinzl, M.,, N. Dank,. S. Nock,, and A. Schön. 1991. Compilation of tRNA sequences and sequences of tRNA genes. Nucleic Acids Res. 19(Suppl.):21272171.
69. Stadtman, T. C. 1990. Selenium biochemistry. Annu. Rev. Biochem. 59:111127.
70. Sturchler, C.,, E. Westhof,, P. Carbon,, and A. Krol. 1993. Unique secondary and tertiary structural features of the euca-ryotic selenocysteine tRNASec. Nucleic Acids Res. 21:10731079.
71. Sunde, R. A. 1990. Molecular biology of selenoproteins. Annu. Rev. Nutr. 10:451474.
72. Takahashi, K.,, M. Akasaka,, Y. Yamamoto,, C. Kobayashi,, J. Mizoguchi,, and J. Koyama. 1990. Primary structure of human plasma glutathione peroxidase deduced from cDNA sequences. J. Biochem. 108:145148.
73. Veres, Z.,. L. Tsai,, T. D. Scholz,, M. Politino,. R. S. Balaban,, and T. C. Stadtman. 1992. Synthesis of 5-meth-ylaminomethyl-2-selenouridine in tRNAs: 31P NMR studies show the labile selenium donor synthesized by the selD gene product contains selenium bonded to phosphorus. Proc. Natl. Acad. Sci. USA 89:29752979.
74. Wickens, M. 1990. In the beginning is the end: regulation of poly(A) addition and removal during early development. Trends Biochem. Sci. 15:320324.
75. Wittwer, A. J.,, and W. M. Ching. 1989. Selenium-containing tRNAGlu and tRNALys from Escherichia coli: purification, codon specificity and translational activity. BioFactors 2:2734.
76. Wittwer, A. J.,, and T. C. Stadtman. 1986. Biosynthesis of 5-methylaminomethyl-2-selenouridine, a naturally occurring nucleoside in Escherichia coli tRNA. Arch. Biochem. Biophys. 248:540550.
77. Woese, C. R. 1987. Bacterial evolution. Microbiol. Rev. 51:221271.
78. Wyatt, J. R.,. J. D. Puglisi,, and I. Tinoco, Jr. 1989. RNA folding: pseudoknots, loops and bulges. BioEssays 11:100106.
79. Young, R. A.,, and I. I. Kaiser. 1975. Aminoacylation of Escherichia coli cysteine tRNA by selenocysteine. Arch. Biochem. Biophys. 171:483489.
80. Zinoni, R.,, A. Birkmann,, W. Leinfelder,, and A. Bock. 1987. Cotranslational insertion of selenocysteine into formate dehydrogenase from Escherichia coli directed by a UGA codon. Proc. Natl. Acad. Sci. USA 84:31563160.
81. Zinoni, F.,. A. Birkmann,, T. C. Stadtman,, and A. Böck. 1986. Nucleotide sequence and expression of the selenocysteine-con-taining polypeptide of formate dehydrogenase (formate-hy-drogen-lyase-linked) from Escherichia coli. Proc. Natl. Acad. Sci. USA 83:46504654.
82. Zinoni, F.,. J. Heider,, and A. Böck. 1990. Features of the formate dehydrogenase mRNA necessary for decoding of the UGA codon as selenocysteine. Proc. Natl. Acad. Sci. USA 87:46604664.

Tables

Generic image for table
Table 1

Selenocysteine incorporation into proteins of all three lines of descent

This table lists only those selenoproteins where the presence of the uga codon was confirmed by sequencing of the corresponding genes.

Citation: Baron C, Bock A. 1995. The Selenocysteine-Inserting tRNA Species: Structure and Function, p 529-544. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch26

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error