1887

Chapter 27 : Glutamyl-tRNA as an Intermediate in Glutamate Conversions

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Glutamyl-tRNA as an Intermediate in Glutamate Conversions, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818333/9781555810733_Chap27-1.gif /docserver/preview/fulltext/10.1128/9781555818333/9781555810733_Chap27-2.gif

Abstract:

Since the discovery of initiator tRNA, a number of reactions have been found that involve modification of amino acids attached to tRNA. These reactions include well-understood processes like the formation of formylmethionyl-tRNA, which serves to initiate peptide chain formation in prokaryotes, or the synthesis of selenocysteine, which functions as the 21st amino acid. Less well understood are the conversions of glutamate. The first conversion serves for the formation of glutamate-1-semialdehyde, the initial precursor of porphyrins (e.g., chlorophylls and hemes). The other known reaction is a transamidation of glutamate attached to tRNA, which is a required intermediate in the formation of glutaminyl-tRNA in many organisms and organelles. These conversions of glutamate based on Glu-tRNA as intermediate are the topic of this chapter. Tetrapyrrole-containing compounds, such as hemes and chlorophylls, are essential components of respiratory and photosynthetic reactions. The porphyrin ring of these compounds is derived from eight molecules of 5-aminolevulinic acid (ALA), a precursor whose formation provides a key regulatory control point in heme and chlorophyll biosynthesis.

Citation: Verkamp E, Kumar A, Lloyd A, Martins O, Stange-Thomann N, Söll D. 1995. Glutamyl-tRNA as an Intermediate in Glutamate Conversions, p 545-550. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch27

Key Concept Ranking

Green Algae
0.49715406
Amino Acids
0.49287486
Protein Biosynthesis
0.48498097
Succinyl-Coenzyme A
0.4841293
0.49715406
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

The C5-pathway of ALA formation. Glu-tRNA reductase reduces Glu-tRNA to glutamate 1-semialdehyde, with the release of free tRNA. GSA is converted to ALA by glutamate 1- semialdehyde-2,l-aminomutase. The gene designations (for plant) and cofactor requirements are listed.

Citation: Verkamp E, Kumar A, Lloyd A, Martins O, Stange-Thomann N, Söll D. 1995. Glutamyl-tRNA as an Intermediate in Glutamate Conversions, p 545-550. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch27
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Comparison of tRNA sequences. The sequence of barley chloroplast tRNA is shown. Nucleotides in circled positions (variable positions) designate differences in primary structure among the chloroplast and sp. PCC 6803 tRNA gene sequences compiled in Table 1 . Arrows indicate the differences (in addition to those found in the variable positions) between and barley chloroplast tRNA.

Citation: Verkamp E, Kumar A, Lloyd A, Martins O, Stange-Thomann N, Söll D. 1995. Glutamyl-tRNA as an Intermediate in Glutamate Conversions, p 545-550. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch27
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

The transamidation pathway of Gln-tRNA formation.

Citation: Verkamp E, Kumar A, Lloyd A, Martins O, Stange-Thomann N, Söll D. 1995. Glutamyl-tRNA as an Intermediate in Glutamate Conversions, p 545-550. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch27
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818333.chap27
1. Avissar, Y. J.,, and S. I. Beale. 1990. Cloning and expression of a structural gene from Chlorobium vibrioforme that complements the hemA mutation in Escherichia coli. J. Bacteriol. 172: 1656 1659.
2. Beale, S. I.,, and J. D. Weinstein,. 1990. Tetrapyrrole metabolism in photosynthetic organisms, p. 287 391. In H. A. Dailey (ed.), Biosynthesis of Heme and Chlorophylls. McGraw-Hill Book Co., New York.
3. Berry-Lowe, S. 1987. The chloroplast glutamate tRNA gene required for 6-aminolevulinate synthesis. Carlsberg Res. Commun. 52: 197 210.
4. Chen, M. W.,, D. Jahn,, G. P. O'Neill,, and D. Soli. 1990. Purification of the glutamyl-tRNA reductase from Chlamydomonas reinhardtii involved in 5-aminolevulinic acid formation during chlorophyll biosynthesis. J. Biol. Chem. 265: 4058 4063.
5. Hoben, P.,, N. Royal,, A. Cheung,, F. Yamao,, K. Biemann,, and D. Söll. 1982. Escherichia coli glutaminyl-tRNA synthetase. II. J. Biol. Chem. 257: 11644 11650.
6. Huang, D.-D.,, and W.-Y. Wang. 1986. Chlorophyll biosynthesis in Chlamydomonas starts with the formation of glutamyl-tRNA. J. Biol. Chem. 261: 13451 13455.
7. Huang, D.-D.,, W.-Y. Wang,, S. P. Gough,, and C. G. Kannangara. 1984. 6-Aminolevulinic acid-synthesizing enzymes need an RNA moiety for activity. Science 225: 1482 1484.
8. Hag, L. I.,, A. M. Kumar,, and D. Söll. 1994. Light regulation of chlorophyll biosynthesis at the level of 5-aminolevulinate formation in Arabidopsis. Plant C ell 6: 265 275.
9. Jahn, D. 1992. Complex formation between glutamyl-tRNA synthetase and glutamyl-tRNA reductase during the tRNA-dependent synthesis of 5-aminolevulinic acid in Chlamydomonas reinhardtii. FEBSLett. 314: 77 80.
10. Jahn, D.,, M.-W. Chen,, and D. Soil. 1991. Purification and functional characterization of glutamate-l-semialdehyde aminotransferase from Chlamydomonas reinhardtii. J. Biol. Chem. 266: 161 167.
11. Jahn, D.,, Y. C. Kim,, Y. Ishino,, M. W. Chen,, and D. Söll. 1990. Purification and functional characterization of the Glu-tRNA Gln amidotransferase from Chlamydomonas reinhardtii. J. Biol. Chem. 265: 8059 8064.
12. Jahn, D.,, U. Michelsen,, and D. Soil. 1991. Two glutamyl-tRNA reductase activities in Escherichia coli. J. Biol. Chem. 266: 2542 2548.
13. Jahn, D.,, G. P. O'Neill,, E. Verkamp,, and D. Soil. 1992. Glutamate tRNA: involvement in protein synthesis and aminolevulinate formation in Cblamydomonas reinhardtii. Plant Physiol. Biochem. 30: 245 253.
14. Jahn, D.,, E. Verkamp,, and D. Soil. 1992. Glutamyl-transfer RNA: a precursor of heme and chlorophyll biosynthesis. Trends Biochem. Sci. 17: 215 218.
15. Jordan, P.M., 1990. Biosynthesis of 5-aminolevulinic acid and its transformation into coproporphyrinogen in animals and bacteria, p. 55 121. In H. A. Dailey (ed.), Biosynthesis of Heme and Chlorophylls. McGraw-Hill Book Co., New York.
16. Kannangara, C. G.,, S. P. Gough,, P. Bruyant,, J. K. Hoober,, A. Kahn,, and D. von Wettstein. 1988. tRNA Glu as a cofactor in 5-aminolevulinate biosynthesis: steps that regulate chlorophyll synthesis. Trends Biochem. Sci. 13: 139 143.
17. Kannangara, C. G.,, S. P. Gough,, R. P. Oliver,, and S. K. Rasmussen. 1984. Biosynthesis of 5-aminolevulinate in greening barley leaves. VI. Activation of glutamate by ligation to RNA. Carlsberg Res. Commun. 49: 417 437.
17a. Lloyd, A. Unpublished data.
17b. Martins, O.,, and N. Stange-Thomann. Unpublished data.
18. Mei, B.,, and H. Zalkin. 1989. A Cys-His-Asp catalytic triad is involved in glutamine amidotransferase function in purF- type glutamine amidotransferase. J. Biol. Chem. 264: 16613 16619.
19. Moras, D. 1992. Structural and functional relationships between aminoacyl-tRNA synthetases. Trends Biochem. Sci. 17: 159 164.
20. O'Neill, G. P.,, D. Jahn,, and D. Soil. 1991. Transfer RNA involvement in chlorophyll biosynthesis. Subcell. Biochem. 17: 235 264.
21. O'Neill, G. P.,, D. M. Peterson,, A. Schôn,, M. W. Chen,, and D. Soil. 1988. Formation of the chlorophyll precursor 5-aminolevulinic acid in cyanobacteria requires aminoacylation of a tRNA Glu species. J. Bacterial. 170: 3810 3816.
22. O'Neill, G. P.,, and D. Soli. 1990. Expression of the Syn-echocystis 6803 tRNA Glu gene provides a functional excess of tRNA for protein and chlorophyll biosynthesis. J. Bacterial. 172: 6363 6371.
23. Perona, J. J.,, R. N. Swanson,, M. A. Rould,, T. A. Steitz,, and D. Soil. 1989. Structural basis for misaminoacylation by mutant E. coli glutaminyl-tRNA synthetase enzymes. Science 246: 1152 1154.
24. Peterson, D.,, A. Schôn,, and D. Soli. 1988. The nucleotide sequences of barley cytoplasmic glutamate transfer RNAs and structural features essential for formation of 5-aminolevulinic acid. Plant Mol. Biol. 11: 293 299.
25. Rould, M. A.,, J. Perona,, D. Soil,, and T. Steitz. 1989. Structure of E. coli glutaminy-tRNA synthetase complexed with tRNA Gln and ATP at 2.8 À resolution. Science 246: 1135 1142.
26. Schneegurt, M. A.,, S. Rieble,, and S. I. Beale. 1988. The tRNA required for in vitro delta-aminolevulinic acid formation from glutamate in Synechocystis extracts. Plant Physiol. 88: 1358 1366.
27. Schön, A.,, H. Hottinger,, and D. Söll. 1988. Misaminoacyla-tion and transamidation are required for protein biosynthesis in Lactobacillus bulgaricus. Biochimie 70: 391 394.
28. Schön, A.,, C. G. Kannangara,, S. Gough,, and D. Söll. 1988. Protein biosynthesis in organelles requires misaminoacylation of tRNA. Nature (London) 331: 187 190.
29. Schön, A.,, G. Krupp,, S. Gough,, S. Berry-Lowe,, C. G. Kannangara,, and D. Söll. 1986. The RNA required in the first step of chlorophyll biosynthesis is a chloroplast glutamate tRNA. Nature (London) 322: 281 284.
30. Schröder, I.,, L. Hederstedt,, C. G. Kannangara,, and S. P. Gough. 1992. Glutamyl-tRNA reductase activity in Bacillus subtilis is dependent on the hemA gene product. Biochem. J. 281: 843 850.
31. Sprinzl, M.,, N. Dank,, S. Nock,, and A. Schön. 1991. Compilation of tRNA and tRNA Gene Sequences, 1991 ed. Laboratorium für Biochemie, Universität Bayreuth, Germany.
32. Srivastava, D. K.,, and S. A. Bernhard. 1986. Metabolite transfer via enzyme-enzyme complexes. Science 234: 1081 1086.
33. Stange-Thomann, N.,, H.-U. Thomann,, A. J. Lloyd,, H. Lyman,, and D. Söll. 1994. A point mutation in Euglena gracilis chloroplast tRNA Glu uncouples protein and chlorophyll biosynthesis. Proc. Natl. Acad. Sci. USA 91: 7947 7951.
34. Strauch, M. A.,, H. Zalkin,, and A. I. Aronson. 1988. Characterization of the glutamyl-tRNA Gln-to-glutaminyl-tRNA Gln amidotransferase reaction of Bacillus subtilis. J. Bacteriol. 170: 916 920.
35. Sylvers, L. A.,, K. C. Rogers,, M. Shimizu,, E. Ohtsuka,, and D. Söll. 1993. A 2-thiouridine derivative in tRNA Glu is a positive determinant for aminoacylation by Escherichia coli glutamyl-tRNA synthetase. Biochemistry 32: 3836 3841.
36. Verkamp, E.,, M. Jahn,, D. Jahn,, A. M. Kumar,, and D. Söll. 1992. Glutamyl-tRNA reductase from Escherichia coli and Synechocystis 6S03. J. Biol. Chem. 267: 8275 8280.
37. Weinstein, J. D.,, and S. I. Beale. 1985. RNA is required for enzymatic conversion of glutamate to 6-aminolevulinate by extracts of Chlorella vulgaris. Arch. Biochem. Biophys. 239: 87 93.
38. Weinstein, J. D.,, S. M. Mayer,, and S. I. Beale. 1986. Stimulation of 8-aminolevulinic acid formation in algal extracts by heterologous RNA. Plant Physiol. 82: 1096 1101.
39. Wierenga, R. K.,, P. Terpstra,, and W. G. J. Hoi. 1986. Prediction of occurrence of the ADP binding ββ β fold in proteins, using an amino acid sequence finger print. J. Mol. Biol. 187: 101 107.
40. Wilcox, M. 1969. Gamma-glutamyl phosphate attached to glutamine-specific tRNA. A precursor of glutaminyl-tRNA in Bacillus subtilis. Eur. J. Biochem. 11: 405 412.
41. Wilcox, M.,, and M. Nirenberg. 1968. Transfer RNA as a cofactor coupling amino acid synthesis with that of protein. Proc. Natl. Acad. Sci. USA 61: 229 236.

Tables

Generic image for table
Table 1

Sequence alignment of chloroplast and Synechocystic 6803 tRNA genes

All sequences listed for comparison were obtained from GenBank or the EMBL data library. The organisms, with corresponding accession numbers, are as follows: (XO6378), (X15901), (X02805), (L20419), (X02217), (X00682), (X01676), (X04185), (X61798), (L20418), (L20417), (M20950), (J01412), (M22563), (X54406), and sp. PCC 6803 (M32099). The secondary structure features of the tRNA are indicated.

Citation: Verkamp E, Kumar A, Lloyd A, Martins O, Stange-Thomann N, Söll D. 1995. Glutamyl-tRNA as an Intermediate in Glutamate Conversions, p 545-550. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch27

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error