1887

Chapter 5 : tRNA Processing Nucleases

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

tRNA Processing Nucleases, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818333/9781555810733_Chap05-1.gif /docserver/preview/fulltext/10.1128/9781555818333/9781555810733_Chap05-2.gif

Abstract:

This chapter focuses on ribonucleases that are involved in generating the 3' terminus of tRNA precursors and in cleaving a tRNA from a multicomponent transcript. Much of our knowledge about tRNA-processing pathways has come from studies with and bacteriophage-infected , although there has been some examination of other bacteria as well. The major interest in is due primarily to the availability, in this system, of mutations that interfere with tRNA maturation, allowing processing intermediates to be identified and processing nucleases to be implicated in the processing pathway. However, the tRNA precursors isolated from these mutant strains have undergone partial processing. First, the tRNA portions of polycistronic precursors have been cleaved from the other RNAs with which they are co-transcribed. Second, multimeric tRNA precursors generally have been converted to monomeric or dimeric forms. A major goal in the study of any metabolic pathway is to identify the enzymes that catalyze each of its reactions, to understand their specificity and mechanism of action, and to determine whether they are subject to regulation, either directly on their activity or on their synthesis. The chapter presents a summary of the exoribonucleases and endoribonucleases implicated in tRNA processing. Given the availability of mutant strains lacking many of these enzymes, alone or in combination, it is likely that the details of a tRNA processing pathway will be forthcoming in the near future.

Citation: Deutscher M. 1995. tRNA Processing Nucleases, p 52-65. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch5

Key Concept Ranking

Saccharomyces cerevisiae
0.50510204
Escherichia coli
0.4370585
tRNA Maturation
0.43429533
Bacillus subtilis
0.4326879
0.50510204
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Proposed processing pathway for tRNA precursor. The initial endonucleolytic cleavages indicated as step 0 are only necessary for a complex transcript to remove the tRNA portion from its co-transcribed partners. In some cases, step 0 at the 3′ end and step 1 could be identical. Likewise, at the 5′ end, step 0 may correspond to an RNase P cleavage (step 3). However, mono- meric precursors usually can be generated from complex transcripts in the absence of RNase P. The exonucleolytic trimming reactions are shown here as two steps (2 and 4) to indicate that trimming occurs before and after RNase P cleavage (step 3). The actual number of trimming reactions that take place is not known, but recent evidence suggests that, at least for (SuUAG) tRNA, steps 2 and 4 are carried out most effectively by RNase PH and RNase T, respectively, other exoribonucleases can contribute as well. The enzymes involved in steps 0 and 1 are not well defined. See text for details.

Citation: Deutscher M. 1995. tRNA Processing Nucleases, p 52-65. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Processing pathway for the pre-tRNA specified by phage T4. A series of reactions (steps 1 to 5) are catalyzed by the enzymes RNase BN (steps 1 and 4), tRNA nucleotidyltransferase (steps 2 and 5), and RNase P (step 3). (Adapted from reference .)

Citation: Deutscher M. 1995. tRNA Processing Nucleases, p 52-65. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818333.chap5
1. Altman, S.,, C. Guerrier-Takada,, H. M. Frankfort,, and H. D. Robertson,. 1982. RNA-processing nucleases, p. 243274. In S. M. Linn, and R. J. Roberts (ed.), Nucleases. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y..
2. Altman, S.,, and J. D. Smith. 1971. Tyrosine tRNA precursor molecule polynucleotide sequence. Nature New Biol. 233:3539.
3. Asha, P. K.,, R. T. Blouin,, R. Zaniewski,, and M. P. Deutscher. 1983. Ribonuclease BN: identification and partial characterization of a new tRNA processing enzyme. Proc. Natl. Acad. Sci. USA 80:33013304.
4. Asha, P. K.,, and M. P. Deutscher. 1983. Escherichia coli strain CAN lacks a tRNA processing nuclease. J. Bacteriol. 156:419420.
5. Barkay, T.,, and A. Goldfarb. 1982. Processing of bacteriophage T4 primary transcripts with ribonuclease III. J. Mol. Biol. 162:299315.
6. Basl, M.,, and H. Kersten. 1991. A novel RNA product of the tyrT operon of Escherichia coli. Nucleic Acids Res. 19:58635870.
7. Bernhardt, D.,, and J. E. Darnell, Jr. 1969. tRNA synthesis in HeLa cells: a precursor to tRNA and the effects of methionine starvation on tRNA synthesis. J. Mol. Biol. 42:4356.
8. Bikoff, E. K.,, and M. L. Gefter. 1975. In vitro synthesis of transfer RNA. I. Purification of required components. J. Biol. Chem. 250:62406247.
9. Bikoff, E. K.,, B. F. LaRue,, and M. L. Gefter. 1975. In vitro synthesis of transfer RNA. II. Identification of required enzymatic activities. J. Biol. Chem. 250:62486255.
10. Birenbaum, M.,, D. Schlessinger,, and Y. Ohnishi. 1980. Altered bacteriophage T4 ribonucleic acid metabolism in a ribonuclease II-deficient mutant of Escherichia coli. J. Bacteriol. 142:327330.
11. Blouin, R. T.,, R. Zaniewski,, and M. P. Deutscher. 1983. Ribonuclease D is not essential for the normal growth of Escherichia coli or bacteriophage T4 or for the biosynthesis of a T4 suppressor tRNA. J. Biol. Chem. 258:14231426.
12. Bonekamp, F.,, H. D. Andersen,, T. Christensen,, and K. F. Jensen. 1985. Codon defined ribosomal pausing in Escherichia coli detected by using the pyrE attenuator to probe the uncoupling between transcription and translation. Nucleic Acids Res. 13:41134123.
13. Bonekamp, F.,, K. Clemmesen,, O. Karlstrom,, and K. F. Jensen. 1984. Mechanism of UTP-modulated attenuation at the pyrE gene of Escherichia coli: an example of operon polarity control through the coupling of translation to transcription. EMBO J. 3:28572861.
13a.. Callahan, C. C.,, and M. P. Deutscher. Unpublished data.
14. Case, L. M.,, X. Chen,, and M. P. Deutscher. 1989. Localization of the Escherichia coli rnt gene encoding RNase T using a combination of physical and genetic mapping. J. Bacteriol. 171:57365737.
15. Castano, J. G.,, J. A. Tobian,, and M. Zasloff. 1985. Purification and characterization of an endonuclease from Xenopus laevis ovaries which accurately processes the 3' terminus of human pre-tRNAMet1 (3' pre-tRNase). J. Biol. Chem. 260:90029008.
16. Craven, M. G.,, D. J. Henner,, D. Alessi,, A. T. Schauer,, K. A. Ost,, M. P. Deutscher,, and D. I. Friedman. 1992. Identification of the rph (RNase PH) gene of B. subtilis: evidence for suppression of Cs mutations in Escherichia coli. J. Bacteriol. 174:47274735.
17. Cudny, H.,, and M. P. Deutscher. 1980. Apparent involvement of RNase D in the 3' processing of tRNA precursors. Proc. Natl. Acad. Sci. USA 77:837841.
18. Cudny, H.,, and M. P. Deutscher. 1988. 3' Processing of tRNA precursors in ribonuclease-deficient Escherichia coli. J. Biol. Chem. 263:15181523.
19. Cudny, H.,, R. Zaniewski,, and M. P. Deutscher. 1981. E. coli RNase D. Purification and structural characterization of a putative processing nuclease. J. Biol. Chem. 256:56275632.
20. Cudny, H.,, R. Zaniewski,, and M. P. Deutscher. 1981. E. coli RNase D. Catalytic properties and substrate specificity. J. Biol. Chem. 256:56335637.
21. Daniel, V.,, M. Zeevi,, and A. Goldfarb,. 1980. In vitro synthesis of tRNA: identification and processing of primary transcripts, p. 2941. In D. Söll,, J. Abelson,, and P. Schimmel (ed.), tRNA: Biological Aspects. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y..
22. Deutscher, M. P., 1983. tRNA nucleotidyltransferase and the -CCA terminus of transfer RNA, p. 159183. In S. T. Jacob (ed.), Enzymes of Nucleic Acid Synthesis and Modification, vol. II. CRC Press, Boca Raton, Fla..
23. Deutscher, M. P. 1984. Processing of tRNA in prokaryotes and eukaryotes. Crit. Rev. Biochem. 17:4571.
24. Deutscher, M. P. 1985. E. coli RNases: making sense of alphabet soup. Cell 40:731732.
25. Deutscher, M. P. 1988. The metabolic role of RNases. Trends Biochem. Sci. 13:136139.
26. Deutscher, M. P. 1990. Ribonucleases, tRNA nucleotidyltransferase and the 3' processing of tRNA. Prog. Nucleic Acid Res. Mol. Biol. 39:209240.
27. Deutscher, M. P.,, J. Foulds,, and W. H. McClain. 1974. tRNA nucleotidyltransferase plays an essential role in the normal growth of E. coli and in the biosynthesis of some T4 tRNAs. J. Biol. Chem. 249:66966699.
28. Deutscher, M. P.,, and R. K. Ghosh. 1978. Preparation of synthetic tRNA precursors with tRNA nucleotidyltransferase. Nucleic Acids Res. 5:38213829.
29. Deutscher, M. P.,, J. C. Lin,, and J. A. Evans. 1977. Transfer RNA metabolism in Escherichia coli cells deficient in tRNA nucleotidyltransferase. J. Mol. Biol. 117:10811094.
30. Deutscher, M. P.,, and C. W. Marlor. 1985. Purification and characterization of E. coli RNase T. J. Biol. Chem. 260:70677071.
31. Deutscher, M. P.,, C. W. Marlor,, and R. Zaniewski. 1984. Ribonuclease T: a new exoribonuclease possibly involved in end-turnover of tRNA. Proc. Natl. Acad. Sci. USA 81:42904293.
32. Deutscher, M. P.,, C. W. Marlor,, and R. Zaniewski. 1985. RNase T is responsible for the end-turnover of tRNA in Escherichia coli. Proc. Natl. Acad. Sci. USA 82:64276430.
33. Deutscher, M. P.,, G. T. Marshall,, and H. Cudny. 1988. RNase PH: a new phosphate-dependent nuclease distinct from polynucleotide phosphorylase. Proc. Natl. Acad. Sci. USA 85:47104714.
34. Deutscher, M. P.,, and N. B. Reuven. 1991. Enzymatic basis for hydrolytic versus phosphorolytic mRNA degradation in Escherichia coli and Bacillus subtilis. Proc. Natl. Acad. Sci. USA 88:32773280.
35. Deutscher, M. P.,, and J. Zhang,. 1990>. Ribonucleases: diversity and regulation, p. 111. In J. G. G. McCarthy, and M. F. Tuite (ed.), Post-Transcriptional Regulation of Gene Expression. Springer-Verlag, Berlin.
36. Donovan, W. P.,, and S. R. Kushner. 1983. Amplification of ribonuclease II (rnb) activity in Escherichia coli K-12. Nucleic Acids Res. 11:265275.
37. Donovan, W. P.,, and S. R. Kushner. 1986. Polynucleotide phosphorylase and ribonuclease II are required for cell viability and mRNA turnover in Escherichia coli K12. Proc. Natl. Acad. Sci. USA 83:120124.
38. Dunn, J. J.,, and F. W. Studier. 1973. T7 early RNAs and Escherichia coli ribosomal RNAs are cut from large precursor RNAs in vivo by ribonuclease III. Proc. Natl. Acad. Sci. USA 70:32963300.
39. Engelke, D. R.,, P. Gegenheimer,, and J. Abelson. 1985. Nu- cleolytic processing of a tRNAArg-tRNAAsp dimeric precursor by a homologous component from Saccharomyces cerevisiae. J. Biol. Chem. 260:12711279.
40. Frendeway, D.,, T. Dingermann,, L. Cooley,, and D. Soil. 1985. Processing of precursor tRNAs in Drosophila. J. Biol. Chem. 260:449454.
41. Garber, R. L.,, and S. Altman. 1979. In vitro processing of B. mori transfer RNA precursor molecules. Cell 17:389397.
42. Garber, R. L.,, and L. P. Gage. 1979. Transcription of a cloned Bombyx mori tRNA gene: nucleotide sequence of the tRNA precursor and its processing in vitro. Cell 18:817828.
43. Gegenheimer, P.,, and D. Apirion. 1981. Processing of prokaryotic ribonucleic acid. Microbiol. Rev. 45:502541.
44. Ghosh, R. K.,, and M. P. Deutscher. 1978. Identification of an E. coli nuclease acting on structurally altered transfer RNA molecules. J. Biol. Chem. 253:9971000.
45. Ghosh, R. K.,, and M. P. Deutscher. 1978. Purification of potential 3' processing nucleases using synthetic tRNA precursors. Nucleic Acids Res. 5:38313842.
46. Goldfarb, A.,, and V. Daniel. 1980. An Escherichia coli endonuclease responsible for primary cleavage of in vitro transcripts of bacteriophage T4 tRNA gene cluster. Nucleic Acids Res. 8:45014516.
47. Goldfarb, A.,, E. Seaman,, and V. Daniel. 1978. In vitro transcription and isolation of a polycistronic RNA product of the T4 tRNA operon. Nature (London) 273:562564.
48. Gorbalenya, A. E.,, E. V. Koonin,, A. P. Donchenko,, and V. M. Blinov. 1989. Two related superfamilies of putative helicases involved in replication, recombination, repair, and expression of DNA and RNA genomes. Nucleic Acids Res. 17:47134730.
49. Guarneros, G.,, and C. Portier. 1990. Different specificities of ribonuclease II and polynucleotide phosphorylase in 3' mRNA decay. Biochimie 72:771777.
50. Gurevitz, M.,, N. Watson,, and D. Apirion. 1982. A cleavage site for ribonuclease F. A putative processing endoribonuclease from Escherichia coli. Eur. J. Biochem. 124:553559.
51. Guthrie, C.,, J. G. Seidman,, M. M. Comer,, R. M. Bock,, F. J. Schmidt,, B. G. Barrell,, and W. H. McClain. 1975. The biology of bacteriophage T4 transfer RNAs. Brookhaven Symp. Biol. 26:106123.
52. Hagenbuchle, O.,, D. Larson,, G. I. Hall,, and K. U. Sprague. 1979. The primary transcription product of a silkworm alanine tRNA gene: identification of in vitro sites of initiation, termination and processing. Cell 18:12171229.
53. Huang, S.,, and M. P. Deutscher. 1992. Sequence and transcriptional analysis of the Escherichia coli rnt gene encoding RNase T. J. Biol. Chem. 267:2560925613.
54. Jensen, K. F.,, J. T. Andersen,, and P. Poulsen. 1992. Overexpression and rapid purification of the orfE/rph gene product, RNase PH of Escherichia coli. J. Biol. Chem. 267:1714717152.
55. Kelly, K. O.,, and M. P. Deutscher. 1992. The presence of only one of five exoribonucleases is sufficient to support the growth of Escherichia coli. J. Bacteriol. 174:66826684.
56. Kelly, K. O.,, and M. P. Deutscher. 1992. Characterization of Escherichia coli RNase PH. J. Biol. Chem. 267:1715317158.
57. Kelly, K. O.,, N. B. Reuven,, Z. Li,, and M. P. Deutscher. 1992. RNase PH is essential for tRNA processing and viability in RNase-deficient Escherichia coli cells. J. Biol. Chem. 267:1601516018.
58. King, T. C.,, R. Sirdeskmukh,, and D. Schlessinger. 1986. Nucleolytic processing of ribonucleic acid transcripts in procaryotes. Microbiol. Rev. 50:428451.
59. Komire, Y.,, A. Toshiharu,, H. Inokuchi,, and H. Ozeki. 1990. Genomic organization and physical mapping of the transfer RNA genes in Escherichia coli K12. J. Mol. Biol. 212:579598.
59a.. Li, Z.,, and M. P. Deutscher. 1994. The role of individual exoribonucleases in processing at the 3? end of Escherichia coli tRNA precursors. J. Biol. Chem. 269:60646071.
59b.. Li, Z.,, and M. P. Deutscher. Unpublished data.
60. Littauer, U. Z.,, and H. Soreq,. 1982. Polynucleotide phosphorylase, p. 518553. In P. D. Boyer (ed.), The Enzymes, vol. XV, part B. Academic Press, New York..
61. Lund, E.,, and J. E. Dahlberg. 1977. Spacer tRNAs in ribosomal RNA transcripts of E. coli-. processing of 30S ribosomal RNA in vitro. Cell 11:247262.
62. Maisurian, A. N.,, and E. A. Buyanovskaya. 1973. Isolation of an Escherichia coli strain restricting bacteriophage suppressor. Mol. Gen. Genet. 120:227229.
63. Maisurian, A. N.,, and E. A. Buyanovskaya. 1975. A phenomenon of restriction of bacteriophage T4 amber suppression. Genetica (Russian) XI:114118.
64. Mazzara, G. P.,, G. Plunkett III,, and W. H. McClain. 1980. Maturation events leading to transfer RNA and ribosomal RNA. Cell Biol. 3:439545.
65. McClain, W. H. 1977. Seven terminal steps in a biosynthetic pathway leading from DNA to transfer RNA. Accounts Chem. Res. 10:418425.
66. McClain, W. H. 1979. A role for ribonuclease III in synthesis of bacteriophage T4 transfer RNAs. Biochem. Biophys. Res. Commun. 86:718724.
67. McLaren, R. S.,, S. F. Newbury,, G. S. C. Dance,, H. C. Caus- ton,, and C. F. Higgins. 1991. mRNA degradation by processing 3'-5' exoribonucleases in vitro and the implications for prokaryotic mRNA decay in vivo. J. Mol. Biol. 221:8195.
68. Melton, D. A.,, E. M. DeRobertis,, and R. Cortese. 1980. Order and intracellular location of the events involved in the maturation of a spliced tRNA. Nature (London) 284:143148.
69. Miczak, A.,, R. A. K. Srivastava,, and D. Apirion. 1991. Location of the RNA processing enzymes RNase III, RNase E, and RNase P in the Escherichia coli cell. Mol. Microbiol. 5:18011810.
70. Misra, T. K.,, and D. Apirion. 1979. RNase E, an RNA processing enzyme from Escherichia coli. J. Biol. Chem. 254:1115411159.
71. Morgan, E. A.,, T. Ikemura,, L. Lindahl,, A. M. Fallon,, and M. Nomura. 1978. Some rRNA operons in E. coli have tRNA genes at their distal ends. Cell 13:335.
72. Mulligan, M. E.,, D. K. Hawley,, R. Enriken,, and W. R. McClure. 1984. Escherichia coli promoter sequences predict in vitro RNA polymerase selectivity. Nucleic Acids Res. 12:789800.
72a.. Neri-Cortes, D.,, and M. P. Deutscher. Unpublished data.
73. Nomura, T.,, and A. Ishihama. 1988. A novel function of RNase P from Escherichia coli: processing of a suppressor tRNA precursor. EMBO J. 7:35393545.
74. O'Connor, J. P.,, and C. L. Peebles. 1991. In vivo pre-tRNA processing in Saccharomyces cerevisiae. Mol. Cell. Biol. 11:425439.
75. Ost, K. A.,, and M. P. Deutscher. 1990. RNase PH catalyzes a synthetic reaction, the addition of nucleotides to the 3' end of tRNA. Biochimie 72:813818.
76. Ost, K. A.,, and M. P. Deutscher. 1991. Escherichia coli orfE (upstream of pyrE) encodes RNase PH. J. Bacteriol. 173:55895591.
77. Padmanabha, K. P.,, and M. P. Deutscher. 1991. RNase T affects growth and recovery of Escherichia coli from metabolic stress. J. Bacteriol. 173:13761381.
78. Piper, P. W.,, and K. B. Straby. 1989. Processing of transcripts of a dimeric tRNA gene in yeast uses the nuclease responsible for maturation of the 3' termini upon 5S and 37S precursor rRNAs. FEBS Lett. 250:311316.
79. Plentz, G.,, and D. Apirion. 1981. Processing of RNA in Escherichia coli is limited in the absence of ribonuclease III, ribonuclease E, and ribonuclease P. J. Mol. Biol. 149:813819.
80. Poulsen, P.,, J. T. Anderson,, and K. F. Jensen. 1989. Molecular and mutational analysis of three genes preceding pyrE on the Escherichia coli chromosome. Mol. Microbiol. 3:393404.
81. Poulsen, P.,, F. Bonekamp,, and K. F. Jensen. 1984. Structure of the Escherichia coli pyrE operon and control of pyrE expression by a UTP modulated intercistronic attenuation. EMBO J. 3:17831790.
82. Foulsen, P.,, K. F. Jensen,, P. Valentin-Hansen,, P. Carlsson,, and L. G. Lundberg. 1983. Nucleotide sequence of the Escherichia coli pyrE gene and of the DNA in front of the protein-coding region. Eur. J. Biochem. 135:223229.
83. Pragai, B.,, and D. Apirion. 1981. Processing of bacteriophage T4 tRNAs. The role of RNase III. J. Mol. Biol. 153:619630.
84. Ray, B. K.,, and D. Apirion. 1981. Transfer RNA precursors are accumulated in Escherichia coli in the absence of RNase E. Eur. J. Biochem. 114:517524.
85. Ray, B. K., and D. Apirion. 1981. RNase P is dependent on RNase E−action in processing monomeric RNA precursors that accumulate in an RNase E? mutant of Escherichia coli. J. Mol. Biol. 149:599617.
86. Regnier, P.,, and M. Grunberg-Manago. 1989. Cleavage by RNase III in the transcripts of the metY-nusA-infB operon of Escherichia coli releases the tRNA and initiates the decay of the downstream mRNA. J. Mol. Biol. 210:293302.
87. Reilly, R. M.,, and U. L. Rajbhandary. 1986. A single mutation in loop IV of Escherichia coli suIII tRNA blocks processing at both 5'- and 3'-ends of the precursor tRNA. J. Biol. Chem. 261:29282935.
88. Reuven, N. B.,, and M. P. Deutscher. Multiple exoribonucleases are required for the 3' processing of Escherichia coli tRNA precursors in vivo. FASEB J., in press.
88a.. Reuven, N. B.,, and M. P. Deutscher. Unpublished data.
89. Robertson, H. D.,, S. Altman,, and J. D. Smith. 1972. Purification and properties of a specific Escherichia coli ribonuclease which cleaves a tyrosine transfer RNA. J. Biol. Chem. 247:52435251.
90. Robertson, H. D.,, R. E. Webster,, and N. D. Zinder. 1968. Purification and properties of ribonuclease III from Escherichia coli. J. Biol. Chem. 243:8291.
91. Rooney, R. J.,, and J. D. Harding. 1986. Processing of mammalian tRNA transcripts in vitro: different pre-tRNAs are processed along alternative pathways that contain a common rate-limiting step. Nucleic Acids Res. 14:48494864.
92. Roy, M. K.,, B. Singh,, B. K. Ray,, and D. Apirion. 1983. Maturation of 5S RNA: ribonuclease E cleavages and their dependence on precursor sequences. Eur. J. Biochem. 131:119127.
93. Roy, P.,, H. Cudny,, and M. P. Deutscher. 1982. The tRNA processing defect in E. coli strains BN and CAN is not due to a mutation in RNase D or RNase II. J. Mol. Biol. 159:179187.
94. Sakano, H.,, and Y. Shimura. 1975. Sequential processing of precursor tRNA molecules in Escherichia coli. Proc. Natl. Acad. Sci. USA 72:33693373.
95. Sakano, H.,, and Y. Shimura. 1978. Characterization and in vitro processing of transfer RNA precursors accumulated in a temperature-sensitive mutant of Escherichia coli. J. Mol. Biol. 123:287326.
96. Sakano, H.,, S. Yamada,, T. Ikemura,, Y. Shimura,, and H. Ozeki. 1974. Temperature sensitive mutants of Escherichia coli for tRNA synthesis. Nucleic Acids Res. 1:355371.
97. Schedl, P.,, and P. Primakoff. 1973. Mutants of Escherichia coli thermosensitive for the synthesis of transfer RNA. Proc. Natl. Acad. Sci. USA 70:20912095.
98. Schedl, P.,, J. Roberts,, and P. Primakoff. 1976. In vitro processing of E. coli tRNA precursors. Cell 8:581594.
99. Schmidt, F. J.,, and W. H. McClain. 1978. An Escherichia coli ribonuclease which removes an extra nucleotide from a biosynthetic intermediate of bacteriophage T4 proline transfer RNA. Nucleic Acids Res. 5:41294139.
100. Seidman, J. G.,, B. G. Barrell,, and W. H. McClain. 1975. Five steps in the conversion of a large precursor RNA into bacteriophage proline and serine transfer RNAs. J. Mol. Biol. 99:733760.
101. Seidman, J. G.,, F. J. Schmidt,, K. Foss,, and W. H. McClain. 1975. A mutant of Escherichia coli defective in removing 3' terminal nucleotides from some transfer RNA precursor molecules. Cell 5:389400.
102. Sekiya, T.,, R. Contreras,, T. Takeya,, and H. G. Khorana. 1979. Total synthesis of a tyrosine suppressor transfer RNA gene. XVIII. Transcription, in vitro, of the synthetic gene and processing of the primary transcript to transfer RNA. J. Biol. Chem. 254:58025816.
103. Shen, V.,, and D. Schlessinger,. 1982. RNases I, II, and IV of Escherichia coli, p. 501515. In P. D. Boyer (ed.), The Enzymes, vol. XV, part B. Academic Press, New York.
104. Shimura, Y.,, H. Sakano,, and F. Nagaura. 1979. Specific ribonucleases involved in processing of tRNA precursors of Escherichia coli. Eur. J. Biochem. 86:267281.
105. Solari, A.,, and M. P. Deutscher. 1983. Identification of multiple RNases in Xenopus laevis oocytes and their possible role in tRNA processing. Mol. Cell. Biol. 3:17111717.
106. Stange, N.,, and H. Beier. 1987. A cell-free plant extract for accurate pre-tRNA processing, splicing and modification. EMBO J. 6:28112818.
107. van Tol, H.,, N. Stange,, H. J. Gross,, and H. Beier. 1987. A human and a plant intron- containing tRNATyr gene are both transcribed in a HeLa cell extract but spliced along different pathways. EMBO J. 6:3541.
108. Void, B. 1985. Structure and organization of genes for transfer RNA in Bacillus subtilis. Microbiol. Rev. 49:7180.
109. Watson, N.,, and D. Apirion. 1981. Ribonuclease F, a putative processing endonuclease from Escherichia coli. Biochem. Biophys. Res. Commun. 103:543551.
110. Wilhelm, M. L.,, G. Keith,, C. Fix,, and F. X. Wilhelm. 1992. Pleiotropic effect of a point mutation in the yeast sup 4-0 tRNA gene: in vivo pre-tRNA processing in S. cerevisiae. Nucleic Acids Res. 20:791796.
111. Zaniewski, R.,, and M. P. Deutscher. 1982. Genetic mapping of a mutation in Escherichia coli leading to a temperature- sensitive RNase D. Mol. Gen. Genet. 185:142147.
112. Zaniewski, R.,, E. Petkaitis,, and M. P. Deutscher. 1984. A multiple mutant of Escherichia coli lacking the exoribonucleases RNase II, RNase D and RNase BN. J. Biol. Chem. 259:1165111653.
113. Zhang, J.,, and M. P. Deutscher. 1988. Cloning, characterization and physiological consequences of overexpression of the Escherichia coli rnd gene encoding RNase D. J. Bacteriol. 170:522527.
114. Zhang, J.,, and M. P. Deutscher. 1988. Transfer RNA is a substrate for RNase D in vivo. J. Biol. Chem. 263:1790917912.
115. Zhang, J.,, and M. P. Deutscher. 1988. Escherichia coli RNase D: sequencing of the rnd structural gene and purification of the overexpressed protein. Nucleic Acids Res. 16:62656278.
116. Zhang, J.,, and M. P. Deutscher. 1989. Analysis of the upstream region of the Escherichia coli rnd gene encoding RNase D: evidence for translational regulation of a putative tRNA processing enzyme. J. Biol. Chem. 264:1822818233.
117. Zhang, J.,, and M. P. Deutscher. 1992. A uridine-rich sequence required for translation of prokaryotic mRNA. Proc. Natl. Acad. Sci. USA 89:26052609.
118. Zilhao, R.,, L. Camelo,, and C. M. Arraiano. 1993. DNA sequencing and expression of the gene rnb encoding Escherichia coli ribonuclease II. Mol. Microbiol. 8:4351.

Tables

Generic image for table
Table 1

exoribonucleases implicated in tRNA processing

Citation: Deutscher M. 1995. tRNA Processing Nucleases, p 52-65. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch5

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error