1887

Chapter 7 : Splicing of tRNA Precursors

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Splicing of tRNA Precursors, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818333/9781555810733_Chap07-1.gif /docserver/preview/fulltext/10.1128/9781555818333/9781555810733_Chap07-2.gif

Abstract:

This chapter reviews what is known about the mechanism of precursor tRNA splicing: (i) the tRNA substrates for the splicing reaction, (ii) the enzymes involved in removing the introns to form the mature tRNA, (iii) interactions between these enzymes and their tRNA substrates and cofactors, (iv) the organization of tRNA splicing in the nucleus, (v) the identity of splicing mutants that affect the enzymatic machinery, (vi) current knowledge about the differences and similarities of tRNA splicing in systems of various organisms, and (vii) the possible function of tRNA introns.

Citation: Westaway S, Abelson J. 1995. Splicing of tRNA Precursors, p 79-92. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch7

Key Concept Ranking

Transcription Start Site
0.6634366
Cellular Processes
0.46074158
Amino Acid Addition
0.44402984
Integral Membrane Proteins
0.41743863
0.6634366
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Structure of yeast pre-tRNAs. On the left is the consensus sequence of nine different yeast pre-tRNAs (66). O = unconserved sequences in the pre-tRNA; X = regions where there are variable numbers of nucleotides. On the right is a model for the tertiary structure of these pre-tRNAs based on the crystal structure of yeast tRNA (adapted from reference ).

Citation: Westaway S, Abelson J. 1995. Splicing of tRNA Precursors, p 79-92. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Mechanism for tRNA splicing in yeast, as described in text. Splice sites are indicated by small arrows, and the intron is shown in bold. The phosphate from exogenous GTP is indicated by a filled-in triangle and the endogenous phosphate by a filled circle. CPDase = cyclic phosphodiesterase; ASTase = adenylyl synthetase; 2′-PTase = 2′-phosphatase (taken with permission from reference ).

Citation: Westaway S, Abelson J. 1995. Splicing of tRNA Precursors, p 79-92. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Mechanism for removal of 2′-phosphate from spliced tRNA, as described in text. NAD = component I; ADP = adenosine diphosphate; and component II = phosphotransferase (adapted from reference , © 1993 AAAS).

Citation: Westaway S, Abelson J. 1995. Splicing of tRNA Precursors, p 79-92. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Model for tertiary structure of pre-tRNA based on crystal structure of yeast tRNA. Major domains of the mature tRNA are indicated, with the intervening sequence (IVS) shown in bold. The ruler indicates the measuring interaction of the endonuclease with the IVS and perhaps with a part of the mature domain (see text); the scissors indicate the 5′ and 3′ cleavage sites of the IVS (adapted from reference , © 1992 AAAS).

Citation: Westaway S, Abelson J. 1995. Splicing of tRNA Precursors, p 79-92. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

Spatial model for yeast pathway of pre-tRNA splicing complex formation in vivo. See text for details. (Reprinted with permission from reference . Copyright 1988, American Chemical Society.)

Citation: Westaway S, Abelson J. 1995. Splicing of tRNA Precursors, p 79-92. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818333.chap7
1. Abelson, J. 1991. RNA splicing in yeast. HarveyLect. 85: 1 42.
2. Abelson, J. 1992. Recognition of tRNA precursors: a role for the intron. Science 255: 1390.>
3. Abelson, J. N.,, E. N. Brody,, S.-C. Cheng,, M. W. Clark,, P. R. Green,, G. Dalbadie-McFarland,, R.-J. Lin,, A. J. Newman,, E. M. Phizicky,, and U. Vijayraghavan. 1986. RNA splicing in yeast. Chemica Scripta 26B: 127 137.
4. Apostol, B. L.,, and C. L. Greer. 1991. Preferential binding of yeast tRNA ligase to pre-tRNA substrates. Nucleic Acids Res. 19: 1853 1860.
5. Apostol, B. L.,, S. K. Westaway,, J. Abelson,, and C. L. Greer. 1991. Deletion analysis of a multifunctional yeast tRNA ligase polypeptide: identification of essential and dispensable functional domains. J. Biol. Chem. 266: 7445 7455.
6. Baldi, M. I.,, E. Mattoccia,, E. Bufardeci,, S. Fabbri,, and G. P. Tocchini-Valentini. 1992. Participation of the intron in the reaction catalyzed by the Xenopus tRNA splicing endonuclease. Science 255: 1404 1408.
7. Baldi, M. I.,, E. Mattoccia,, and G. P. Tocchini-Valentini. 1983. Role of RNA structure in splicing: excision of the intervening sequence in yeast tRNA Leu3 is dependent on the formation of a D stem. Cell 35: 109 115.
8. Belford, H. G.,, S. K. Westaway,, J. Abelson,, and C. L. Greer. 1993. Multiple nucleotide cofactor use by yeast ligase in tRNA splicing: evidence for independent ATP- and GTP-binding sites. J. Biol. Chem. 268: 2444 2450.
9. Berlin, M. Personal communication.
10. Björk, G. R.,, J. U. Ericson,, C. E. D. Gustafsson,, T. G. Hagervall,, Y. H. Jönsson,, and P. M. Wikström. 1987. Transfer RNA modification. Annu. Rev. Biochem. 56: 263 287.
11. Clark, M. W.,, and J. Abelson. 1987. The subnuclear localization of tRNA ligase in yeast. J. Cell Biol. 105: 1515 1526.
12. Clegg, M. T.,, G. H. Learn,, and E. M. Golenberg,. 1991. Molecular evolution of chloroplast DNA, p. 135 149. In R. K. Selander,, A. G. Clark,, and T. S. Whitman (ed.), Evolution at the Molecular Level. Sinauer Associates, Inc., Sunderland, Mass..
13. Culbertson, M. R.,, and M. Winey. 1989. Split tRNA genes and their products: a paradigm for the study of cell function and evolution. Yeast 5: 405 427.
14. Culver, G. M.,, S. M. McCraith,, M. Zillmann,, R. Kierzek,, N. Michaud,, R. D. LaReau,, D. H. Turner,, and E. M. Phi-zicky. 1993. An NAD derivative produced during transfer RNA splicing: ADP-ribose l"-2" cyclic phosphate. Science 261: 206 208.
15. Daniels, C. J.,, S. E. Douglas,, and W. F. Doolittle. 1986. Genes for transfer RNAs in Halobacterium volcanii. Syst. Appl. Microbiol. 7: 26 29.
16. Daniels, C. J.,, R. Gupta,, and W. F. Doolittle. 1985. Transcription and excision of a large intron in the tRNA Trp gene of an Archaebacterium, Halobacterium volcanii. J. Biol. Chem. 260: 3132 3134.
17. DeMarini, D. J.,, M. Winey,, D. Ursic,, F. Webb,, and M. R. Culbertson. 1992. SEN1, a positive effector of tRNA-splicing endonuclease in Saccharomyces cerevisiae. Mol. Cell. Biol. 12: 2154 2164
18. DeRobertis, E. M.,, P. Black,, and K. Nishikura. 1981. Intranuclear location of the tRNA splicing enzymes. Cell 23: 89 93.
19. Deutscher, M. P. 1984. Processing of tRNA in prokaryotes and eukaryotes. Cn'r. Rev. Biochem. 17: 45 71.
20. Dron, M.,, C. Hartmann,, A. Rode,, and M. Sevignac. 1985. Gene conversion as a mechanism for divergence of a chloroplast tRNA gene inserted in the mitochondrial genome of Brassica oleracea. Nucleic Acids Res. 13: 8603 8610.
21. Evrard, J.-L.,, M. Kuntz,, N. A. Straus,, and J.-H. Weil. 1988. A class-I intron in a cyanelle tRNA gene from Cyanophora paradoxal phylogenetic relationship between cyanelles and plant chloroplasts. Gene 71: 115 122.
22. Filipowicz, W.,, and A. J. Shatkin. 1983. Origin of splice junction phosphate in tRNAs processed by HeLa cell extract. Cell 32: 547 557.
23. Filipowicz, W.,, and O. Vicente. 1990. RNA 3'-terminal phosphate cyclase from HeLa cells. Methods Enzymol. 181: 499 510.
24. Gandini-Attardi, D.,, I. Margarit,, and G. P. Tocchini-Valen-tini. 1985. Structural alterations in mutant precursors of the yeast tRNA Leu3 gene which behave as defective substrates for a highly purified splicing endonuclease. EMBO J. 4: 3289 3297.
25. Gegenheimer, P.,, H.-J. Gabius,, C. L. Peebles,, and J. Abelson. 1983. An RNA ligase from wheat germ which participates in transfer RNA splicing in vitro. J. Biol. Chem. 258: 8365 8373.
26. Goodman, H. M.,, M. V. Olson,, and B. D. Hall. 1977. Nucleotide sequence of a mutant eukaryotic gene: the yeast tyrosine-inserting ochre suppressor SUP4-o. Proc. Natl. Acad. Sci. USA 74: 5453 5457.
27. Green, M. R. 1991. Biochemical mechanisms of constitutive and regulated pre-mRNA splicing. Annu. Rev. Cell Biol. 7: 559 599.
28. Greer, C. Personal communication.
29. Greer, C. L. 1986. Assembly of a tRNA splicing complex: evidence for concerted excision and joining steps in splicing in vitro. Mol. Cell. Biol. 6: 635 644.
30. Greer, C. L.,, B. Javor,, and J. Abelson. 1983. RNA ligase in bacteria: formation of a 2',5' linkage by an E. coli extract. Cell 33: 899 906.
31. Greer, C. L.,, C. L. Peebles,, P. Gegenheimer,, and J. Abelson. 1983. Mechanism of action of a yeast RNA ligase in tRNA splicing. Cell 32: 537 546.
32. Greer, C. L.,, D. Soil,, and I. Willis. 1987. Substrate recognition and identification of splice sites by the tRNA-splicing endonuclease and ligase from Saccharomyces cerevisiae. Mol. Cell. Biol. 7: 76 84.
33. Guthrie, C.,, and J. Abelson,. 1982. Organization and expression of tRNA genes in Saccharomyces cerevisiae, p. 487 528. In N. Strathern,, E. W. Jones,, and J. R. Broach (ed.), The Molecular Biology of the Yeast Saccharomyces: Metabolism and Gene Expression. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y..
34. Harwell, L. H. 1967. Macromolecule synthesis in temperature-sensitive mutants of yeast. J. Bacteriol. 93: 1662 1670.
35. Ho, C. K.,, and J. Abelson. 1988. Testing for intron function in the essential Saccharomyces cerevisiae tRNA SerUCG gene. J. Mol. Biol. 202: 667 672.
36. Ho, C. K.,, R. Rauhut,, U. Vijayraghavan,, and J. Abelson. 1990. Accumulation of pre-tRNA splicing 2/3' intermediates in a Saccharomyces cerevisiae mutant. EMBO J. 9: 1245 1252.
37. Hopper, A. K.,, E. Banks,, and V. Evangelidis. 1978. A yeast mutant which accumulates precursor tRNAs. Cell 14: 211 219.
38. Johnson, P. E.,, and J. Abelson. 1983. The yeast tRNA Tyr gene intron is essential for correct modification of its tRNA product. Nature (London) 302: 681 687.
39. Kaine, B. P. 1987. Intron-containing tRNA genes of Sulfolobus solfataricus. J. Mol. Evol. 25: 248 254.
40. Kaine, B. P.,, R. Gupta,, and C. R. Woese. 1983. Putative introns in tRNA genes of prokaryotes. Proc. Natl. Acad. Sci. USA 80: 3309 3312.
41. Kikuchi, Y.,, K. Tyc,, W. Filipowicz,, H. L. Sanger,, and H. J. Gross. 1982. Circularization of linear viroid RNA via 2'-phosphomonoester, 3', 5'-phosphodiester bonds by a novel type of RNA ligase from wheat germ and Chlamydomonas. Nucleic Acids Res. 10: 7521 7529.
42. Kjems, J.,, H. Leffers,, T. Olesen,, and R. A. Garrett. 1989. A unique tRNA intron in the variable loop of the extreme ther-mophile Thermofilum pendens and its possible evolutionary implications. J. Biol. Chem. 264: 17834 17837.
43. Knapp, G.,, J. S. Beckmann,, P. F. Johnson,, S. A. Fuhrman,, and J. Abelson. 1978. Transcription and processing of intervening sequences in yeast tRNA genes. Cell 14: 221 236.
44. Knapp, G.,, R. C. Ogden,, C. L. Peebles,, and J. Abelson. 1979. Splicing of yeast tRNA precursors: structure of the reaction intermediates. Cell 18: 37 45.
45. Kolman, C.,, and D. Soli. 1993. SPL1-1, a Saccharomyces cerevisiae mutation affecting tRNA splicing. J. Bacteriol. 175: 1433 1442.
46. Konarska, M.,, W. Filipowicz,, H. Domdey,, and H. J. Gross. 1981. Formation of a 2'-phosphomonoester, 3',5'-phospho-diester linkage by a novel RNA ligase in wheat germ. Nature (London) 293: 112 116.
47. Konarska, M.,, W. Filipowicz,, and H. J. Gross. 1982. RNA ligation via 2'-phosphomonoester, 3', 5'-phosphodiester linkage: requirement of 2',3'-cyclic phosphate termini and involvement of a 5'-hydroxyl polynucleotide kinase. Proc. Natl. Acad. Sci. USA 79: 1474 1478.
48. Kuhsel, M. G.,, R. Strickland,, and J. D. Palmer. 1990. An ancient group I intron shared by eubacteria and chloroplasts. Science 250: 1570 1573.
49. Laski, F. A.,, A. Z. Fire,, U. L. RajBhandary,, and P. Sharp. 1983. Characterization of tRNA precursor splicing in mammalian extracts. J. Biol. Chem. 258: 11974 11980.
50. Learn, G. H., Jr.,, J. S. Shore,, G. R. Furnier,, G. Zurawski,, and M. T. Clegg. 1992. Constraints on the evolution of plastid introns: the group II intron in the gene encoding tRNA ValUAC. Mol. Biol. Evol. 9: 856 871.
51. Lee, M.-C.,, and G. Knapp. 1985. Transfer RNA splicing in Saccharomyces cerevisiae; secondary and tertiary structures of the substrates. J. Biol. Chem. 260: 3108 3115.
52. Leeds, P.,, S. W. Peltz,, A. Jacobson,, and M. R. Culbertson. 1991. The product of the yeast UPF1 gene is required for rapid turnover of mRNAs containing a premature translational termination codon. Genes Dev. 12: 2303 2314.
53. Ma, D. P.,, and J. Doebley. 1986. Nucleotide sequence of the split tRNA leu(UAA) gene from Sorghum bicolor chloroplasts. Gene 43: 169 174.
54. MacPherson, J. M.,, and K. L. Roy. 1986. Two human tyrosine tRNA genes contain introns. Gene 42: 101 106.
55. Mathison, L.,, Winey, M.,, Soref, C.,, Culbertson, M. R.,, and Knapp, G. 1989. Mutations in the anticodon stem affect removal of introns from pre-tRNA in Saccharomyces cerevisiae. Mol. Cell. Biol. 9: 4220 4228.
56. Mattoccia, E.,, I. M. Baldi,, D. Gandini-Attardi,, S. Ciafrè,, and G. P. Tocchini-Valentini. 1988. Site selection by the tRNA splicing endonuclease of Xenopus laevis. Cell 55: 731 738.
57. McCraith, S. M.,, and E. M. Phizicky. 1990. A highly specific phosphatase from Saccharomyces cerevisiae implicated in tRNA splicing. Mol. Cell. Biol. 10: 1049 1055.
58. McCraith, S. M.,, and E. M. Phizicky. 1991. An enzyme from Saccharomyces cerevisiae uses NAD+ to transfer the splice junction 2'-phosphate from ligated tRNA to an acceptor molecule. J. Biol. Chem. 266: 11986 11992.
59. Melton, D. A.,, E. M. DeRobertis,, and R. Cortese. 1980. Order and intracellular location of the events involved in the maturation of a spliced tRNA. Nature (London) 284: 143 148.
60. Miao, E.,, and J. Abelson. 1993. Yeast tRNA-splicing endonuclease cleaves precursor tRNA in a random pathway. J. Biol. Chem. 268: 672 677.
61. Michel, R.,, K. Umesono,, and H. Ozeki. 1989. Comparative and functional anatomy of group II catalytic introns—a review. Gene 82: 5 30.
62. Nishikura, K.,, and E. M. DeRobertis. 1981. RNA processing in microinjected Xenopus oocytes: sequential addition of base modifications in a spliced transfer RNA. J. Mol. Biol. 145: 405 420.
63. O'Connor, J. P.,, and C. L. Peebles. 1991. In vivo pre-tRNA processing in Saccharomyces cerevisiae. Mol. Cell. Biol. 11: 425 439.
64. Oda, K.,, K. Yamato,, E. Ohta,, Y. Nakamura,, M. Takemura,, N. Nozato,, K. Akashi,, and K. Ohyama. 1992. Transfer RNA genes in the mitochondrial genome from a liverwort, Marchantia polymorpha: the absence of chloroplast-like tRNAs. Nucleic Acids Res. 20: 3773 3777.
65. O'FarreU, P. Z.,, B. Burdell,, P. Valenzuela,, W. J. Rutter,, and H. M. Goodman. 1978. Structure and processing of yeast precursor tRNAs containing intervening sequences. Nature (London) 274: 438 445.
66. Ogden, R. C.,, M.-C. Lee,, and G. Knapp. 1984. Transfer RNA splicing in Saccharomyces cerevisiae: defining the substrates. Nucleic Acids Res. 12: 9367 9382.
67. Pearson, D.,, I. Willis,, H. Hottinger,, J. Bell,, A. Kumar,, U. Leupold,, and D. Soil. 1985. Mutations preventing expression of sup3 tRNA Ser nonsense suppressors of Schizosac-charomyces pomhe. Mol. Cell. Biol. 5: 808 815.
68. Peebles, C. L.,, P. Gegenheimer,, and J. Abelson. 1983. Precise excision of intervening sequences from precursor tRNAs by a membrane-associated yeast endonuclease. Cell 32: 525 536.
69. Peebles, C. L.,, R. C. Ogden,, G. Knapp,, and J. Abelson. 1979. Splicing of yeast tRNA precursors: a two-stage reaction. Cell 18: 27 35.
70. Phizicky, E. M.,, S. A. Consaul,, K. W. Nehrke,, and J. Abelson. 1992. Yeast tRNA ligase mutants are nonviable and accumulate tRNA splicing intermediates, J. Biol. Chem. 267: 4577 4582.
71. Phizicky, E. M.,, and C. L. Greer. 1993. Pre-tRNA splicing: variation on a theme or exception to the rule? Trends Bio-chem. Sci. 18: 31 34.
72. Phizicky, E. M.,, R. C. Schwartz,, and J. Abelson. 1986. Saccharomyces cerevisiae tRNA ligase. J. Biol. Chem. 261: 2978 2986.
73. Rauhut, R.,, P. R. Green,, and J. Abelson. 1990. Yeast tRNA-splicing endonuclease is a heterotrimeric enzyme. J. Biol. Chem. 265: 18180 18184.
74. Reinhold-Hurek, B.,, and D. A. Shub. 1992. Self-splicing introns in tRNA genes of widely divergent bacteria. Nature (London) 357: 173 176.
75. Reyes, V. M.,, and J. Abelson. 1988. Substrate recognition and splice site determination in yeast tRNA splicing. Cell 55: 719 730.
76. Schneider, A.,, K. P. McNally,, and N. Agabian. 1993. Splicing and 3'-processing of the tyrosine tRNA of Trypanosoma brucei. J. Biol. Chem. 268: 21868 21874.
77. Schwartz, R..,, C. L. Greer,, P. Gegenheimer,, and J. Abelson. 1983. Enzymatic mechanism of an RNA ligase from wheat germ. ƒ. Biol. Chem. 258: 8374 8383.
78. Shapero, M. H.,, and C. L. Greer. 1991. Conformational transition required for efficient splicing of transcripts from hybrid 1 promoter yeast tRNA gene fusion. Biochemistry 30: 6465 6475.
79. Shapero, M. H.,, and C. L. Greer. 1992. Exon sequence and structure requirements for tRNA splicing in Saccharomyces cerevisiae. Biochemistry 31: 2359 2367.
80. Shen, W.-C.,, D. Selvakumar,, D. R. Stanford,, and A. K. Hopper. 1993. The Saccharomyces cerevisiae LOS1 gene involved in pre-tRNA splicing encodes a nuclear protein that behaves as a component of the nuclear matrix. J. Biol. Chem. 268: 19436 19444.
81. Shub, D. A. 1991. The antiquity of group I introns. Curr. Opin. Genet. Dev. 1: 478 4841.
82. Sprinzl, M.,, T. Hartmann,, E. Meissner,, J. Moll,, and T. Vor-derwiilbecke. 1987. Compilation of tRNA sequences and sequences of tRNA genes. Nucleic Acids Res. Suppl. 15: r53 r188.
83. Strobel, M. C.,, and J. Abelson. 1986. Effect of intron mutations on processing and function of Saccharomyces cerevisiae SUPS3 tRNA in vitro and in vivo. Mol. Cell. Biol. 6: 2663 2673.
84. Strobel, M. C.,, and J. Abelson. 1986. Intron mutations affect splicing of Saccharomyces cerevisiae SUPS3 precursor tRNA. Mol. Cell. Biol. 6: 2674 2683.
85. Stucka, R.,, and H. Feldman. 1988. Structure of a Saccharomyces cerevisiae gene encoding minor (AGY)tRNA Ser. Nucleic Acids Res. 16: 3583.
86. Swerdlow, H., and Guthrie, C. 1984. Structure of intron-containing tRNA precursors. J. Biol. Chem. 259: 5197 5207.
87. Szekely, E.,, H. G. Belford,, and C. L. Greer. 1988. Intron sequence and structure requirements for tRNA splicing in Saccharomyces cerevisiae. J. Biol. Chem. 263: 13839 13847.
88. Tanner, N. K.,, M. M. Hanna,, and J. Abelson J. 1988. Binding interactions between yeast tRNA ligase and a precursor transfer ribonucleic acid containing two photoreactive uridine analogs. Biochemistry 27: 8852 8861.
89. Thøgersen, H. C.,, H. R. Morris,, K. N. Rand,, and M. J. Gait. 1985. Location of the adenylylation site in T4 RNA ligase. Eur. J. Biochem. 147: 325 329.
90. Thompson, L. D.,, and C. J. Daniels. 1988. A tRNA Trp intron endonuclease from Halobacterium volcanii. J. Biol. Chem. 263: 17951 17959.
91. Tyc, K.,, Y. Kikuchi,, M. Konarska,, W. Filipowicz,, and H. J. Gross. 1983. Ligation of endogenous tRNA 3' half molecules to their corresponding 5' halves via 2'-phospho-monoester, 3',5'- phosphodiester bonds in extracts of Chlamydomonas. EMBO J. 2: 605 610.
92. Umesono, K.,, H. Inokuchi,, Y. Shiki,, M. Takeuchi,, Z. Chang,, H. Fukuzawa,, T. Kohchi,, H. Shirai,, K. Ohyama,, and H. Ozeki. 1988. Structure and organization of Marchantía polymorpha chloroplast genome. II. Gene organization of the large single copy region from rps'12 to atpB. J. Mol. Biol. 203: 299 331.
93. Valenzuela, R.,, A. Venegas,, F. Weinberg,, R. Bishop,, and W. J. Rutter. 1978. Structure of yeast phenylalanine-tRNA genes: an intervening DNA segment within the region coding for the tRNA. Proc. Natl. Acad. Sci. USA 75: 190 194.
94. van Tol, H.,, N. Stange,, H. J. Gross,, and H. Beier. 1987. A human and a plant intron-containing tRNA Tyr gene are both transcribed in a HeLa cell extract but spliced along different pathways. EMBO J. 6: 35 41.
95. Vijayraghavan, U.,, M. Company,, and J. Abelson. 1989. Isolation and characterization of pre-mRNA splicing mutants of Saccharomyces cerevisiae. Genes Dev. 3: 1206 1216.
96. Westaway, S. K. 1993. Structure and function of yeast tRNA ligase. Ph.D. thesis. California Institute of Technology.
97. Westaway, S. K.,, H. G. Belford,, B. L. Apostol,, J. Abelson,, and C. L. Greer. 1993. Novel activity of a yeast ligase deletion polypeptide. J. Biol. Chem. 268: 2435 2443.
98. Westaway, S. K.,, E. M. Phizicky,, and J. Abelson. 1988. Structure and function of the yeast tRNA ligase gene. J. Biol. Chem. 263: 3171 3176.
99. Wich, G.,, W. Leinfelder,, and A. Böck. 1987. Genes for stable RNA in the extreme thermophile Thermoproteus tenax: introns and transcription signals. EMBO J. 6: 523 528.
100. Willis, I.,, H. Hottinger,, D. Pearson,, V. Chisholm,, U. Leupold,, and D. Soli. 1984. Mutations affecting excision of the intron from a eukaryotic dimeric tRNA precursor. EMBO J. 3: 1573 1580.
101. Winey, M.,, and M. R. Culbertson. 1988. Mutations affecting the tRNA-splicing endonuclease activity of Saccharomyces cerevisiae. Genetics 118: 609 617.
102. Winey, M.,, M. D. Mendenhall,, C. M. Cummins,, and M. R. Culbertson. 1986. Splicing of a yeast proline tRNA containing a novel suppressor mutation in the anticodon stem. J. Mol. Biol. 192: 49 63.
103. Wintz, H.,, J.-M. Grienenberger,, J. H. Weil,, and D. M. Lonsdale. 1988. Location and nucleotide sequence of two tRNA genes and a tRNA pseudo-gene in the maize mitochondrial genome: evidence for the transcription of a chloroplast gene in mitochondria. Curr. Genet. 13: 247 254.
104. Xu, M.-Q.,, S. D. Kathe,, H. Goodrich-Blair,, S. A. Nierzwicki-Bauer,, and D. A. Shub. 1990. Bacterial origin of a chloroplast intron: conserved self-splicing group I introns in cyanobacteria. Science 250: 1566 1570.
105. Xu, Q.,, E. M. Phizicky,, C. L. Greer,, and J. N. Abelson. 1990. Purification of yeast transfer RNA ligase. Methods Enzymol. 181: 463 471.
106. Xu, Q.,, D. Teplow,, T. D. Lee,, and J. Abelson. 1990. Domain structure in yeast tRNA ligase. Biochemistry 29: 6132 6138.
107. Zillmann, M.,, M. A. Gorovsky,, and E. M. Phizicky. 1991. Conserved mechanism of tRNA splicing in eukaryotes. Mol. Cell. Biol. 11: 5410 5416.
108. Zillmann, M.,, M. A. Gorovsky,, and E. M. Phizicky. 1992. HeLa cells contain a 2'-phosphate-specific phosphotransferase similar to a yeast enzyme implicated in tRNA splicing. J. Biol. Chem. 267: 10289 10294.

Tables

Generic image for table
Table 1

List of yeast tRNA precursors containing introns

RNAs are identified by the unmodified sequence of their anticodons. ND = not determined.

Citation: Westaway S, Abelson J. 1995. Splicing of tRNA Precursors, p 79-92. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch7
Generic image for table
Table 2

Yeast tRNA splicing components

NA = not applicable; ND = not determined.

Citation: Westaway S, Abelson J. 1995. Splicing of tRNA Precursors, p 79-92. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch7

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error