Chapter 7 : Splicing of tRNA Precursors

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in

Splicing of tRNA Precursors, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818333/9781555810733_Chap07-1.gif /docserver/preview/fulltext/10.1128/9781555818333/9781555810733_Chap07-2.gif


This chapter reviews what is known about the mechanism of precursor tRNA splicing: (i) the tRNA substrates for the splicing reaction, (ii) the enzymes involved in removing the introns to form the mature tRNA, (iii) interactions between these enzymes and their tRNA substrates and cofactors, (iv) the organization of tRNA splicing in the nucleus, (v) the identity of splicing mutants that affect the enzymatic machinery, (vi) current knowledge about the differences and similarities of tRNA splicing in systems of various organisms, and (vii) the possible function of tRNA introns.

Citation: Westaway S, Abelson J. 1995. Splicing of tRNA Precursors, p 79-92. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch7

Key Concept Ranking

Transcription Start Site
Cellular Processes
Amino Acid Addition
Integral Membrane Proteins
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1
Figure 1

Structure of yeast pre-tRNAs. On the left is the consensus sequence of nine different yeast pre-tRNAs (66). O = unconserved sequences in the pre-tRNA; X = regions where there are variable numbers of nucleotides. On the right is a model for the tertiary structure of these pre-tRNAs based on the crystal structure of yeast tRNA (adapted from reference ).

Citation: Westaway S, Abelson J. 1995. Splicing of tRNA Precursors, p 79-92. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Mechanism for tRNA splicing in yeast, as described in text. Splice sites are indicated by small arrows, and the intron is shown in bold. The phosphate from exogenous GTP is indicated by a filled-in triangle and the endogenous phosphate by a filled circle. CPDase = cyclic phosphodiesterase; ASTase = adenylyl synthetase; 2′-PTase = 2′-phosphatase (taken with permission from reference ).

Citation: Westaway S, Abelson J. 1995. Splicing of tRNA Precursors, p 79-92. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Mechanism for removal of 2′-phosphate from spliced tRNA, as described in text. NAD = component I; ADP = adenosine diphosphate; and component II = phosphotransferase (adapted from reference , © 1993 AAAS).

Citation: Westaway S, Abelson J. 1995. Splicing of tRNA Precursors, p 79-92. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Model for tertiary structure of pre-tRNA based on crystal structure of yeast tRNA. Major domains of the mature tRNA are indicated, with the intervening sequence (IVS) shown in bold. The ruler indicates the measuring interaction of the endonuclease with the IVS and perhaps with a part of the mature domain (see text); the scissors indicate the 5′ and 3′ cleavage sites of the IVS (adapted from reference , © 1992 AAAS).

Citation: Westaway S, Abelson J. 1995. Splicing of tRNA Precursors, p 79-92. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

Spatial model for yeast pathway of pre-tRNA splicing complex formation in vivo. See text for details. (Reprinted with permission from reference . Copyright 1988, American Chemical Society.)

Citation: Westaway S, Abelson J. 1995. Splicing of tRNA Precursors, p 79-92. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Abelson, J. 1991. RNA splicing in yeast. HarveyLect. 85:142.
2. Abelson, J. 1992. Recognition of tRNA precursors: a role for the intron. Science 255:1390.>
3. Abelson, J. N.,, E. N. Brody,, S.-C. Cheng,, M. W. Clark,, P. R. Green,, G. Dalbadie-McFarland,, R.-J. Lin,, A. J. Newman,, E. M. Phizicky,, and U. Vijayraghavan. 1986. RNA splicing in yeast. Chemica Scripta 26B:127137.
4. Apostol, B. L.,, and C. L. Greer. 1991. Preferential binding of yeast tRNA ligase to pre-tRNA substrates. Nucleic Acids Res. 19:18531860.
5. Apostol, B. L.,, S. K. Westaway,, J. Abelson,, and C. L. Greer. 1991. Deletion analysis of a multifunctional yeast tRNA ligase polypeptide: identification of essential and dispensable functional domains. J. Biol. Chem. 266:74457455.
6. Baldi, M. I.,, E. Mattoccia,, E. Bufardeci,, S. Fabbri,, and G. P. Tocchini-Valentini. 1992. Participation of the intron in the reaction catalyzed by the Xenopus tRNA splicing endonuclease. Science 255:14041408.
7. Baldi, M. I.,, E. Mattoccia,, and G. P. Tocchini-Valentini. 1983. Role of RNA structure in splicing: excision of the intervening sequence in yeast tRNALeu3 is dependent on the formation of a D stem. Cell 35:109115.
8. Belford, H. G.,, S. K. Westaway,, J. Abelson,, and C. L. Greer. 1993. Multiple nucleotide cofactor use by yeast ligase in tRNA splicing: evidence for independent ATP- and GTP-binding sites. J. Biol. Chem. 268:24442450.
9. Berlin, M. Personal communication.
10. Björk, G. R.,, J. U. Ericson,, C. E. D. Gustafsson,, T. G. Hagervall,, Y. H. Jönsson,, and P. M. Wikström. 1987. Transfer RNA modification. Annu. Rev. Biochem. 56:263287.
11. Clark, M. W.,, and J. Abelson. 1987. The subnuclear localization of tRNA ligase in yeast. J. Cell Biol. 105:15151526.
12. Clegg, M. T.,, G. H. Learn,, and E. M. Golenberg,. 1991. Molecular evolution of chloroplast DNA, p. 135149. In R. K. Selander,, A. G. Clark,, and T. S. Whitman (ed.), Evolution at the Molecular Level. Sinauer Associates, Inc., Sunderland, Mass..
13. Culbertson, M. R.,, and M. Winey. 1989. Split tRNA genes and their products: a paradigm for the study of cell function and evolution. Yeast 5:405427.
14. Culver, G. M.,, S. M. McCraith,, M. Zillmann,, R. Kierzek,, N. Michaud,, R. D. LaReau,, D. H. Turner,, and E. M. Phi-zicky. 1993. An NAD derivative produced during transfer RNA splicing: ADP-ribose l"-2" cyclic phosphate. Science 261:206208.
15. Daniels, C. J.,, S. E. Douglas,, and W. F. Doolittle. 1986. Genes for transfer RNAs in Halobacterium volcanii. Syst. Appl. Microbiol. 7:2629.
16. Daniels, C. J.,, R. Gupta,, and W. F. Doolittle. 1985. Transcription and excision of a large intron in the tRNATrp gene of an Archaebacterium, Halobacterium volcanii. J. Biol. Chem. 260:31323134.
17. DeMarini, D. J.,, M. Winey,, D. Ursic,, F. Webb,, and M. R. Culbertson. 1992. SEN1, a positive effector of tRNA-splicing endonuclease in Saccharomyces cerevisiae. Mol. Cell. Biol. 12:21542164
18. DeRobertis, E. M.,, P. Black,, and K. Nishikura. 1981. Intranuclear location of the tRNA splicing enzymes. Cell 23: 8993.
19. Deutscher, M. P. 1984. Processing of tRNA in prokaryotes and eukaryotes. Cn'r. Rev. Biochem. 17:4571.
20. Dron, M.,, C. Hartmann,, A. Rode,, and M. Sevignac. 1985. Gene conversion as a mechanism for divergence of a chloroplast tRNA gene inserted in the mitochondrial genome of Brassica oleracea. Nucleic Acids Res. 13:86038610.
21. Evrard, J.-L.,, M. Kuntz,, N. A. Straus,, and J.-H. Weil. 1988. A class-I intron in a cyanelle tRNA gene from Cyanophora paradoxal phylogenetic relationship between cyanelles and plant chloroplasts. Gene 71:115122.
22. Filipowicz, W.,, and A. J. Shatkin. 1983. Origin of splice junction phosphate in tRNAs processed by HeLa cell extract. Cell 32:547557.
23. Filipowicz, W.,, and O. Vicente. 1990. RNA 3'-terminal phosphate cyclase from HeLa cells. Methods Enzymol. 181:499510.
24. Gandini-Attardi, D.,, I. Margarit,, and G. P. Tocchini-Valen-tini. 1985. Structural alterations in mutant precursors of the yeast tRNALeu3 gene which behave as defective substrates for a highly purified splicing endonuclease. EMBO J. 4:32893297.
25. Gegenheimer, P.,, H.-J. Gabius,, C. L. Peebles,, and J. Abelson. 1983. An RNA ligase from wheat germ which participates in transfer RNA splicing in vitro. J. Biol. Chem. 258:83658373.
26. Goodman, H. M.,, M. V. Olson,, and B. D. Hall. 1977. Nucleotide sequence of a mutant eukaryotic gene: the yeast tyrosine-inserting ochre suppressor SUP4-o. Proc. Natl. Acad. Sci. USA 74:54535457.
27. Green, M. R. 1991. Biochemical mechanisms of constitutive and regulated pre-mRNA splicing. Annu. Rev. Cell Biol. 7:559599.
28. Greer, C. Personal communication.
29. Greer, C. L. 1986. Assembly of a tRNA splicing complex: evidence for concerted excision and joining steps in splicing in vitro. Mol. Cell. Biol. 6:635644.
30. Greer, C. L.,, B. Javor,, and J. Abelson. 1983. RNA ligase in bacteria: formation of a 2',5' linkage by an E. coli extract. Cell 33:899906.
31. Greer, C. L.,, C. L. Peebles,, P. Gegenheimer,, and J. Abelson. 1983. Mechanism of action of a yeast RNA ligase in tRNA splicing. Cell 32:537546.
32. Greer, C. L.,, D. Soil,, and I. Willis. 1987. Substrate recognition and identification of splice sites by the tRNA-splicing endonuclease and ligase from Saccharomyces cerevisiae. Mol. Cell. Biol. 7:7684.
33. Guthrie, C.,, and J. Abelson,. 1982. Organization and expression of tRNA genes in Saccharomyces cerevisiae, p. 487528. In N. Strathern,, E. W. Jones,, and J. R. Broach (ed.), The Molecular Biology of the Yeast Saccharomyces: Metabolism and Gene Expression. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y..
34. Harwell, L. H. 1967. Macromolecule synthesis in temperature-sensitive mutants of yeast. J. Bacteriol. 93:16621670.
35. Ho, C. K.,, and J. Abelson. 1988. Testing for intron function in the essential Saccharomyces cerevisiae tRNASerUCG gene. J. Mol. Biol. 202:667672.
36. Ho, C. K.,, R. Rauhut,, U. Vijayraghavan,, and J. Abelson. 1990. Accumulation of pre-tRNA splicing 2/3' intermediates in a Saccharomyces cerevisiae mutant. EMBO J. 9:12451252.
37. Hopper, A. K.,, E. Banks,, and V. Evangelidis. 1978. A yeast mutant which accumulates precursor tRNAs. Cell 14:211219.
38. Johnson, P. E.,, and J. Abelson. 1983. The yeast tRNATyr gene intron is essential for correct modification of its tRNA product. Nature (London) 302:681687.
39. Kaine, B. P. 1987. Intron-containing tRNA genes of Sulfolobus solfataricus. J. Mol. Evol. 25:248254.
40. Kaine, B. P.,, R. Gupta,, and C. R. Woese. 1983. Putative introns in tRNA genes of prokaryotes. Proc. Natl. Acad. Sci. USA 80:33093312.
41. Kikuchi, Y.,, K. Tyc,, W. Filipowicz,, H. L. Sanger,, and H. J. Gross. 1982. Circularization of linear viroid RNA via 2'-phosphomonoester, 3', 5'-phosphodiester bonds by a novel type of RNA ligase from wheat germ and Chlamydomonas. Nucleic Acids Res. 10:75217529.
42. Kjems, J.,, H. Leffers,, T. Olesen,, and R. A. Garrett. 1989. A unique tRNA intron in the variable loop of the extreme ther-mophile Thermofilum pendens and its possible evolutionary implications. J. Biol. Chem. 264:1783417837.
43. Knapp, G.,, J. S. Beckmann,, P. F. Johnson,, S. A. Fuhrman,, and J. Abelson. 1978. Transcription and processing of intervening sequences in yeast tRNA genes. Cell 14:221236.
44. Knapp, G.,, R. C. Ogden,, C. L. Peebles,, and J. Abelson. 1979. Splicing of yeast tRNA precursors: structure of the reaction intermediates. Cell 18:3745.
45. Kolman, C.,, and D. Soli. 1993. SPL1-1, a Saccharomyces cerevisiae mutation affecting tRNA splicing. J. Bacteriol. 175:14331442.
46. Konarska, M.,, W. Filipowicz,, H. Domdey,, and H. J. Gross. 1981. Formation of a 2'-phosphomonoester, 3',5'-phospho-diester linkage by a novel RNA ligase in wheat germ. Nature (London) 293:112116.
47. Konarska, M.,, W. Filipowicz,, and H. J. Gross. 1982. RNA ligation via 2'-phosphomonoester, 3', 5'-phosphodiester linkage: requirement of 2',3'-cyclic phosphate termini and involvement of a 5'-hydroxyl polynucleotide kinase. Proc. Natl. Acad. Sci. USA 79:14741478.
48. Kuhsel, M. G.,, R. Strickland,, and J. D. Palmer. 1990. An ancient group I intron shared by eubacteria and chloroplasts. Science 250:15701573.
49. Laski, F. A.,, A. Z. Fire,, U. L. RajBhandary,, and P. Sharp. 1983. Characterization of tRNA precursor splicing in mammalian extracts. J. Biol. Chem. 258:1197411980.
50. Learn, G. H., Jr.,, J. S. Shore,, G. R. Furnier,, G. Zurawski,, and M. T. Clegg. 1992. Constraints on the evolution of plastid introns: the group II intron in the gene encoding tRNAValUAC. Mol. Biol. Evol. 9:856871.
51. Lee, M.-C.,, and G. Knapp. 1985. Transfer RNA splicing in Saccharomyces cerevisiae; secondary and tertiary structures of the substrates.J. Biol. Chem. 260:31083115.
52. Leeds, P.,, S. W. Peltz,, A. Jacobson,, and M. R. Culbertson. 1991. The product of the yeast UPF1 gene is required for rapid turnover of mRNAs containing a premature translational termination codon. Genes Dev. 12:23032314.
53. Ma, D. P.,, and J. Doebley. 1986. Nucleotide sequence of the split tRNAleu(UAA) gene from Sorghum bicolor chloroplasts. Gene 43:169174.
54. MacPherson, J. M.,, and K. L. Roy. 1986. Two human tyrosine tRNA genes contain introns. Gene 42:101106.
55. Mathison, L.,, Winey, M.,, Soref, C.,, Culbertson, M. R.,, and Knapp, G. 1989. Mutations in the anticodon stem affect removal of introns from pre-tRNA in Saccharomyces cerevisiae. Mol. Cell. Biol. 9:42204228.
56. Mattoccia, E.,, I. M. Baldi,, D. Gandini-Attardi,, S. Ciafrè,, and G. P. Tocchini-Valentini. 1988. Site selection by the tRNA splicing endonuclease of Xenopus laevis. Cell 55:731738.
57. McCraith, S. M.,, and E. M. Phizicky. 1990. A highly specific phosphatase from Saccharomyces cerevisiae implicated in tRNA splicing. Mol. Cell. Biol. 10:10491055.
58. McCraith, S. M.,, and E. M. Phizicky. 1991. An enzyme from Saccharomyces cerevisiae uses NAD+ to transfer the splice junction 2'-phosphate from ligated tRNA to an acceptor molecule. J. Biol. Chem. 266:1198611992.
59. Melton, D. A.,, E. M. DeRobertis,, and R. Cortese. 1980. Order and intracellular location of the events involved in the maturation of a spliced tRNA. Nature (London) 284: 143148.
60. Miao, E.,, and J. Abelson. 1993. Yeast tRNA-splicing endonuclease cleaves precursor tRNA in a random pathway. J. Biol. Chem. 268:672677.
61. Michel, R.,, K. Umesono,, and H. Ozeki. 1989. Comparative and functional anatomy of group II catalytic introns—a review. Gene 82:530.
62. Nishikura, K.,, and E. M. DeRobertis. 1981. RNA processing in microinjected Xenopus oocytes: sequential addition of base modifications in a spliced transfer RNA. J. Mol. Biol. 145:405420.
63. O'Connor, J. P.,, and C. L. Peebles. 1991. In vivo pre-tRNA processing in Saccharomyces cerevisiae. Mol. Cell. Biol. 11:425439.
64. Oda, K.,, K. Yamato,, E. Ohta,, Y. Nakamura,, M. Takemura,, N. Nozato,, K. Akashi,, and K. Ohyama. 1992. Transfer RNA genes in the mitochondrial genome from a liverwort, Marchantia polymorpha: the absence of chloroplast-like tRNAs. Nucleic Acids Res. 20:37733777.
65. O'FarreU, P. Z.,, B. Burdell,, P. Valenzuela,, W. J. Rutter,, and H. M. Goodman. 1978. Structure and processing of yeast precursor tRNAs containing intervening sequences. Nature (London) 274:438445.
66. Ogden, R. C.,, M.-C. Lee,, and G. Knapp. 1984. Transfer RNA splicing in Saccharomyces cerevisiae: defining the substrates. Nucleic Acids Res. 12:93679382.
67. Pearson, D.,, I. Willis,, H. Hottinger,, J. Bell,, A. Kumar,, U. Leupold,, and D. Soil. 1985. Mutations preventing expression of sup3 tRNASer nonsense suppressors of Schizosac-charomyces pomhe. Mol. Cell. Biol. 5:808815.
68. Peebles, C. L.,, P. Gegenheimer,, and J. Abelson. 1983. Precise excision of intervening sequences from precursor tRNAs by a membrane-associated yeast endonuclease. Cell 32:525536.
69. Peebles, C. L.,, R. C. Ogden,, G. Knapp,, and J. Abelson. 1979. Splicing of yeast tRNA precursors: a two-stage reaction. Cell 18:2735.
70. Phizicky, E. M.,, S. A. Consaul,, K. W. Nehrke,, and J. Abelson. 1992. Yeast tRNA ligase mutants are nonviable and accumulate tRNA splicing intermediates, J. Biol. Chem. 267:45774582.
71. Phizicky, E. M.,, and C. L. Greer. 1993. Pre-tRNA splicing: variation on a theme or exception to the rule? Trends Bio-chem. Sci. 18:3134.
72. Phizicky, E. M.,, R. C. Schwartz,, and J. Abelson. 1986. Saccharomyces cerevisiae tRNA ligase. J. Biol. Chem. 261:29782986.
73. Rauhut, R.,, P. R. Green,, and J. Abelson. 1990. Yeast tRNA-splicing endonuclease is a heterotrimeric enzyme. J. Biol. Chem. 265:1818018184.
74. Reinhold-Hurek, B.,, and D. A. Shub. 1992. Self-splicing introns in tRNA genes of widely divergent bacteria. Nature (London) 357:173176.
75. Reyes, V. M.,, and J. Abelson. 1988. Substrate recognition and splice site determination in yeast tRNA splicing. Cell 55:719730.
76. Schneider, A.,, K. P. McNally,, and N. Agabian. 1993. Splicing and 3'-processing of the tyrosine tRNA of Trypanosoma brucei.J. Biol. Chem. 268:2186821874.
77. Schwartz, R..,, C. L. Greer,, P. Gegenheimer,, and J. Abelson. 1983. Enzymatic mechanism of an RNA ligase from wheat germ. ƒ. Biol. Chem. 258:83748383.
78. Shapero, M. H.,, and C. L. Greer. 1991. Conformational transition required for efficient splicing of transcripts from hybrid 1 promoter yeast tRNA gene fusion. Biochemistry 30:64656475.
79. Shapero, M. H.,, and C. L. Greer. 1992. Exon sequence and structure requirements for tRNA splicing in Saccharomyces cerevisiae. Biochemistry 31:23592367.
80. Shen, W.-C.,, D. Selvakumar,, D. R. Stanford,, and A. K. Hopper. 1993. The Saccharomyces cerevisiae LOS1 gene involved in pre-tRNA splicing encodes a nuclear protein that behaves as a component of the nuclear matrix. J. Biol. Chem. 268:1943619444.
81. Shub, D. A. 1991. The antiquity of group I introns. Curr. Opin. Genet. Dev. 1:4784841.
82. Sprinzl, M.,, T. Hartmann,, E. Meissner,, J. Moll,, and T. Vor-derwiilbecke. 1987. Compilation of tRNA sequences and sequences of tRNA genes. Nucleic Acids Res. Suppl. 15:r53r188.
83. Strobel, M. C.,, and J. Abelson. 1986. Effect of intron mutations on processing and function of Saccharomyces cerevisiae SUPS3 tRNA in vitro and in vivo. Mol. Cell. Biol. 6:26632673.
84. Strobel, M. C.,, and J. Abelson. 1986. Intron mutations affect splicing of Saccharomyces cerevisiae SUPS3 precursor tRNA. Mol. Cell. Biol. 6:26742683.
85. Stucka, R.,, and H. Feldman. 1988. Structure of a Saccharomyces cerevisiae gene encoding minor (AGY)tRNASer. Nucleic Acids Res. 16:3583.
86. Swerdlow, H., and Guthrie, C. 1984. Structure of intron-containing tRNA precursors. J. Biol. Chem. 259: 51975207.
87. Szekely, E.,, H. G. Belford,, and C. L. Greer. 1988. Intron sequence and structure requirements for tRNA splicing in Saccharomyces cerevisiae. J. Biol. Chem. 263:1383913847.
88. Tanner, N. K.,, M. M. Hanna,, and J. Abelson J. 1988. Binding interactions between yeast tRNA ligase and a precursor transfer ribonucleic acid containing two photoreactive uridine analogs. Biochemistry 27:88528861.
89. Thøgersen, H. C.,, H. R. Morris,, K. N. Rand,, and M. J. Gait. 1985. Location of the adenylylation site in T4 RNA ligase. Eur. J. Biochem. 147:325329.
90. Thompson, L. D.,, and C. J. Daniels. 1988. A tRNATrp intron endonuclease from Halobacterium volcanii. J. Biol. Chem. 263:1795117959.
91. Tyc, K.,, Y. Kikuchi,, M. Konarska,, W. Filipowicz,, and H. J. Gross. 1983. Ligation of endogenous tRNA 3' half molecules to their corresponding 5' halves via 2'-phospho-monoester, 3',5'- phosphodiester bonds in extracts of Chlamydomonas. EMBO J. 2:605610.
92. Umesono, K.,, H. Inokuchi,, Y. Shiki,, M. Takeuchi,, Z. Chang,, H. Fukuzawa,, T. Kohchi,, H. Shirai,, K. Ohyama,, and H. Ozeki. 1988. Structure and organization of Marchantía polymorpha chloroplast genome. II. Gene organization of the large single copy region from rps'12 to atpB. J. Mol. Biol. 203:299331.
93. Valenzuela, R.,, A. Venegas,, F. Weinberg,, R. Bishop,, and W. J. Rutter. 1978. Structure of yeast phenylalanine-tRNA genes: an intervening DNA segment within the region coding for the tRNA. Proc. Natl. Acad. Sci. USA 75:190194.
94. van Tol, H.,, N. Stange,, H. J. Gross,, and H. Beier. 1987. A human and a plant intron-containing tRNATyr gene are both transcribed in a HeLa cell extract but spliced along different pathways. EMBO J. 6:3541.
95. Vijayraghavan, U.,, M. Company,, and J. Abelson. 1989. Isolation and characterization of pre-mRNA splicing mutants of Saccharomyces cerevisiae. Genes Dev. 3:12061216.
96. Westaway, S. K. 1993. Structure and function of yeast tRNA ligase. Ph.D. thesis. California Institute of Technology.
97. Westaway, S. K.,, H. G. Belford,, B. L. Apostol,, J. Abelson,, and C. L. Greer. 1993. Novel activity of a yeast ligase deletion polypeptide. J. Biol. Chem. 268:24352443.
98. Westaway, S. K.,, E. M. Phizicky,, and J. Abelson. 1988. Structure and function of the yeast tRNA ligase gene. J. Biol. Chem. 263:31713176.
99. Wich, G.,, W. Leinfelder,, and A. Böck. 1987. Genes for stable RNA in the extreme thermophile Thermoproteus tenax: introns and transcription signals. EMBO J. 6:523528.
100. Willis, I.,, H. Hottinger,, D. Pearson,, V. Chisholm,, U. Leupold,, and D. Soli. 1984. Mutations affecting excision of the intron from a eukaryotic dimeric tRNA precursor. EMBO J. 3:15731580.
101. Winey, M.,, and M. R. Culbertson. 1988. Mutations affecting the tRNA-splicing endonuclease activity of Saccharomyces cerevisiae. Genetics 118:609617.
102. Winey, M.,, M. D. Mendenhall,, C. M. Cummins,, and M. R. Culbertson. 1986. Splicing of a yeast proline tRNA containing a novel suppressor mutation in the anticodon stem. J. Mol. Biol. 192:4963.
103. Wintz, H.,, J.-M. Grienenberger,, J. H. Weil,, and D. M. Lonsdale. 1988. Location and nucleotide sequence of two tRNA genes and a tRNA pseudo-gene in the maize mitochondrial genome: evidence for the transcription of a chloroplast gene in mitochondria. Curr. Genet. 13:247254.
104. Xu, M.-Q.,, S. D. Kathe,, H. Goodrich-Blair,, S. A. Nierzwicki-Bauer,, and D. A. Shub. 1990. Bacterial origin of a chloroplast intron: conserved self-splicing group I introns in cyanobacteria. Science 250:15661570.
105. Xu, Q.,, E. M. Phizicky,, C. L. Greer,, and J. N. Abelson. 1990. Purification of yeast transfer RNA ligase. Methods Enzymol. 181:463471.
106. Xu, Q.,, D. Teplow,, T. D. Lee,, and J. Abelson. 1990. Domain structure in yeast tRNA ligase. Biochemistry 29:61326138.
107. Zillmann, M.,, M. A. Gorovsky,, and E. M. Phizicky. 1991. Conserved mechanism of tRNA splicing in eukaryotes. Mol. Cell. Biol. 11:54105416.
108. Zillmann, M.,, M. A. Gorovsky,, and E. M. Phizicky. 1992. HeLa cells contain a 2'-phosphate-specific phosphotransferase similar to a yeast enzyme implicated in tRNA splicing. J. Biol. Chem. 267:1028910294.


Generic image for table
Table 1

List of yeast tRNA precursors containing introns

RNAs are identified by the unmodified sequence of their anticodons. ND = not determined.

Citation: Westaway S, Abelson J. 1995. Splicing of tRNA Precursors, p 79-92. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch7
Generic image for table
Table 2

Yeast tRNA splicing components

NA = not applicable; ND = not determined.

Citation: Westaway S, Abelson J. 1995. Splicing of tRNA Precursors, p 79-92. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch7

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error