1887

Chapter 8 : Primary, Secondary, and Tertiary Structures of tRNAs

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Primary, Secondary, and Tertiary Structures of tRNAs, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818333/9781555810733_Chap08-1.gif /docserver/preview/fulltext/10.1128/9781555818333/9781555810733_Chap08-2.gif

Abstract:

This chapter talks about primary, secondary, and tertiary structures of tRNAs. What is striking about the tRNA molecule is its extreme variability in primary and secondary structures. Every single invariant or semi-invariant position has numerous exceptions depending on the origin of the cell from which the tRNA is extracted. Several elements of the classical cloverleaf structure can altogether disappear, evidently as long as the amino acid and anticodon parts are maintained. Thus, the variable region, the D-arm, and the T-arm can be missing or severely amputated without apparent disfunctionality of the tRNA. This diversity at the sequence and 2D-structure levels must clearly manifest fest itself at the 3D-structure level also. This is discernible in some crystal structures and, especially, in recently modelled structures, although in the latter case one cannot reach the same degree of confidence. Nature has tinkered around every tertiary interaction responsible for maintaining the famous L-structure of tRNAs. The tRNA-like structures found at the 3' end of viral RNAs display some of the most extreme cases of divergence from canonical tRNA structure.

Citation: Dirheimer G, Keith G, Dumas P, Westhof E. 1995. Primary, Secondary, and Tertiary Structures of tRNAs, p 93-126. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch8

Key Concept Ranking

Murine leukemia virus
0.4717633
Turnip mosaic virus
0.43783888
Elongation Factor Tu
0.43228322
0.4717633
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1a
Figure 1a

Cloverleaf structure of tRNA with numbering of nucleotides according to Sprinzl et al. (176) and localization of most modified nucleotides as well as number of tRNAs (in parentheses) where these modified nucleotides have been found. The relationship of symbols to abbreviations and names commonly used is given in Fig. 1b .

Citation: Dirheimer G, Keith G, Dumas P, Westhof E. 1995. Primary, Secondary, and Tertiary Structures of tRNAs, p 93-126. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 1b
Figure 1b

Cloverleaf structure of tRNA with numbering of nucleotides according to Sprinzl et al. (176) and localization of most modified nucleotides as well as number of tRNAs (in parentheses) where these modified nucleotides have been found. The relationship of symbols to abbreviations and names commonly used is given below.

Citation: Dirheimer G, Keith G, Dumas P, Westhof E. 1995. Primary, Secondary, and Tertiary Structures of tRNAs, p 93-126. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Classical cloverleaf structure with numbering of nucleotides.

Citation: Dirheimer G, Keith G, Dumas P, Westhof E. 1995. Primary, Secondary, and Tertiary Structures of tRNAs, p 93-126. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Structure of Schizosaccharomyces pombe mit tRNA (deduced from gene).

Citation: Dirheimer G, Keith G, Dumas P, Westhof E. 1995. Primary, Secondary, and Tertiary Structures of tRNAs, p 93-126. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

(A) and (B) tRNAs deduced from genes.

Citation: Dirheimer G, Keith G, Dumas P, Westhof E. 1995. Primary, Secondary, and Tertiary Structures of tRNAs, p 93-126. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

Variant of classical -Levitt pair.

Citation: Dirheimer G, Keith G, Dumas P, Westhof E. 1995. Primary, Secondary, and Tertiary Structures of tRNAs, p 93-126. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6
Figure 6

Nematode mit tRNA genes shown in presumed secondary structural form of corresponding tRNAs. A: tRNA from corrected according to reference 142, with a TV replacement loop. B: tRNA from Caenorhabditis elegans with a D replacement loop. C: tRNA from .

Citation: Dirheimer G, Keith G, Dumas P, Westhof E. 1995. Primary, Secondary, and Tertiary Structures of tRNAs, p 93-126. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 7
Figure 7

Cloverleaf structures of animal mit tRNA and tRNA . Nucleotide sequences of the tRNAs from bovine and mosquito were determined at the RNA level, and those from other animals are deduced from their DNA sequences ( ).

Citation: Dirheimer G, Keith G, Dumas P, Westhof E. 1995. Primary, Secondary, and Tertiary Structures of tRNAs, p 93-126. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 8a
Figure 8a

Representation of all possible interactions between bases involving at least two H bonds. Some of the non-Watson-Crick interactions (b, c, g, k, 1, m, q, and r) were mentioned by Donohue as early as 1956 ( ). Interactions involving N3 of purines are not considered. A curved arrow on a covalent bond means that a symmetric configuration obtained by a 180° rotation around this bond must be considered. This simplification has not been used in the particular cases of the Watson-Crick (a and b) and Hoogsteen (e and f) pairing between A and U. It should be kept in mind that this figure is only schematic and is not intended to be exact regarding the angles of H bonds. Also, some of these interactions (e.g., s and t) are illustrated for completeness and may not ever be observed in real structures.

Citation: Dirheimer G, Keith G, Dumas P, Westhof E. 1995. Primary, Secondary, and Tertiary Structures of tRNAs, p 93-126. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 8b
Figure 8b

Representation of all possible interactions between bases involving at least two H bonds. Some of the non-Watson-Crick interactions (b, c, g, k, 1, m, q, and r) were mentioned by Donohue as early as 1956 ( ). Interactions involving N3 of purines are not considered. A curved arrow on a covalent bond means that a symmetric configuration obtained by a 180° rotation around this bond must be considered. This simplification has not been used in the particular cases of the Watson-Crick (a and b) and Hoogsteen (e and f) pairing between A and U. It should be kept in mind that this figure is only schematic and is not intended to be exact regarding the angles of H bonds. Also, some of these interactions (e.g., s and t) are illustrated for completeness and may not ever be observed in real structures.

Citation: Dirheimer G, Keith G, Dumas P, Westhof E. 1995. Primary, Secondary, and Tertiary Structures of tRNAs, p 93-126. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 9
Figure 9

Stereoviews for the comparison of interaction between T•C and D loops for elongator tRNAs (A) an eukaryotic initiator tRNAs (B).

Citation: Dirheimer G, Keith G, Dumas P, Westhof E. 1995. Primary, Secondary, and Tertiary Structures of tRNAs, p 93-126. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 10
Figure 10

Stereoviews for the comparison between anticodon loop (A) and TΨC loop (B). The residues that are excluded from the 3' end stacking in a TΨC loop (positions 59 and 60), as well as their counterpart in an anticodon loop (positions 37 and 38), are shown in heavy lines.

Citation: Dirheimer G, Keith G, Dumas P, Westhof E. 1995. Primary, Secondary, and Tertiary Structures of tRNAs, p 93-126. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 11
Figure 11

Stereoview showing the possible structure of yeast initiator anticodon loop as derived from x-ray study ( ). It should be recalled that these authors did not draw any firm conclusion regarding the unusual structure of this loop because there was an important crystalline disorder (see text).

Citation: Dirheimer G, Keith G, Dumas P, Westhof E. 1995. Primary, Secondary, and Tertiary Structures of tRNAs, p 93-126. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 12
Figure 12

Stereoviews illustrating the detailed molecular mechanism of the wobble as examined with option PUCK ( ) added in graphics program FRODO ( ). (A) The usual H bond between O2' (i) and O4' (i + 1) for the residues 34 and 35 (arrow) is absent because the distance between these two atoms is too great ( ). The lack of such an H bond allows the movement of residue 34 relative to the two other residues of the anticodon. The origin of this movement is analyzed in the next figure. (B) A crankshaft motion about the covalent bonds P-O5', O5'-C5', and C5'-C4' of residue 35 (thick bonds) can cause a dangling of residue 34, the first residue of the anticodon. This results in modification of the distance between it and the third residue of the codon. However, this distance tuning is accompanied by misorientation of the base of residue 34, which can be counterbalanced by modification of the phase of pseudorotation of its ribose. This results in a rotation of the base about an axis defined by O2'-O4' (thin segment and curved arrow), which is roughly parallel to the previous axis. The extreme positions of the bases shown in this figure result from a pseudorotation phase change between 0° and 40°. Finally, further tuning can be achieved through an analogous pseudorotation phase change for the last residue of the codon, which results in movement of its base in the plane, contrary to the previous movement out of the plane for residue 34 of the anticodon.

Citation: Dirheimer G, Keith G, Dumas P, Westhof E. 1995. Primary, Secondary, and Tertiary Structures of tRNAs, p 93-126. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 13
Figure 13

Stereoview showing the location of spermine molecule in major groove of acceptor stem of tRNAAsp ( ). The corresponding part of the Fourier difference map is shown and clearly reveals an elongated peak into which an elongated spermine molecule could be fitted. The two black spheres within the peak correspond to putative solvent molecules. In a Fourier difference map, the calculated electron density corresponding to the macromolecule (here the tRNA) has been subtracted from the total electron density. Such maps therefore allow the identification of solvent molecules (water, ions, spermine, etc.).

Citation: Dirheimer G, Keith G, Dumas P, Westhof E. 1995. Primary, Secondary, and Tertiary Structures of tRNAs, p 93-126. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 14
Figure 14

Schematic drawing of tertiary interactions in core of class I tRNAs. Broken lines indicate nonstandard base pairing. Classically, residues 45 and 46 of the variable loop form triple interactions with base pairs 10-25 and 13-22 in the deep and narrow groove of the D helix. Residue 46 is intercalated between residues 9 and 21, while residue 9 is intercalated between residues 45 and 46. Two other triples occur: one between residue 9 and base pair 12-23 and another between residue 21 and the trans-Hoogsteen U8-A14 base pair. The trans-Watson-Crick pair between R15 and Y48, known as the Levitt pair, is shown at the top. Drawing from Dock-Bregeon et al. ( ).

Citation: Dirheimer G, Keith G, Dumas P, Westhof E. 1995. Primary, Secondary, and Tertiary Structures of tRNAs, p 93-126. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 15
Figure 15

Schematic drawing for proposed tertiary interactions in core of class II tRNAs. Residue 45 interacts now with a residue in the variable helix and thus does not form a triple with base pair 12-23. Base pair 13-22 is unusual purine-purine pair. Drawing from Dock-Bregeon et al. ( ).

Citation: Dirheimer G, Keith G, Dumas P, Westhof E. 1995. Primary, Secondary, and Tertiary Structures of tRNAs, p 93-126. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 16
Figure 16

Schematic drawing for proposed tertiary interactions in prokaryotic selenocysteine-inserting tRNASec. Again, residue 45 pairs to form the start of the variable helix, but residue 9 cannot form a triple with 12-23. There is now a U14-A21 Watson-Crick pair extending the D helix, as well as a 15-20a pair. Residue 8 interacts with the Hoogsteen sites of residue 21. An unusual pyrimidine-pyrimidine interaction is suggested between residues 16 and 59 of the D and T loops. Residue 48 presents only stacking interaction on this figure, although a tertiary pair with base pair 15-20a cannot be excluded. Drawing from Baron et al. ( ).

Citation: Dirheimer G, Keith G, Dumas P, Westhof E. 1995. Primary, Secondary, and Tertiary Structures of tRNAs, p 93-126. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 17
Figure 17

Stereo view of model of selenocysteine-inserting tRNA as deduced from chemical and enzymatic mapping in solution (drawing after Sturchler et al. [ ]).

Citation: Dirheimer G, Keith G, Dumas P, Westhof E. 1995. Primary, Secondary, and Tertiary Structures of tRNAs, p 93-126. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818333.chap8
1. Altona, C.,, and M. Sundaralingam. 1972. Conformational analysis of the sugar ring in nucleosides and nucleotides: a new description using the concept of pseudorotation, J. Am. Chem. Soc. 94:82058212.
2. Amerein, B.,, R. Ripp,, and P. Dumas. 1987. PUCK: a realtime modification of sugar pucker on a PS300. J. Mol. Graphics 5:184189.
3. Andachi, Y.,, E. Yamao,, A. Muto,, and S. Osawa. 1989. Codon recognition patterns as deduced from sequences of the complete set of transfer RNA species in Mycoplasma capricolum. Resemblance to mitochondria. J. Mol. Biol. 209:3754.
4. Anderson, S.,, A. T. Bankier,, B. G. Barrell,, M. H. L. De Bruijn,, A. R. Coulson,, J. Drouin,, I. C. Eperon,, D. P. Nierlich,, B. A. Roe,, F. Sanger,, P. H. Schreier,, A. J. H. Smith,, R. Staden,, and I. G. Young. 1981. Sequence and organization of the human mitochondrial genome. Nature (London) 290:457465.
5. Anderson, S.,, M. H. L. De Bruijn,, A. R. Coulson,, I. C. Eperon,, F. Sanger,, and I. G. Young. 1982. Complete sequence of bovine mitochondrial DNA. Conserved features of the mammalian mitochondrial genome, J. Mol. Biol. 156:683717.
6. Arnott, S. 1971. The structure of transfer RNA. Prog. Biophys. Mol. Biol. 22:181213.
7. Balasubramanian, R.,, and P. Seetharamulu. 1983. A conformational rationale for the wobble behaviour of the first base of the anticodon triplet in tRNA. J. Theor, Biol. 10:7786.
8. Baron, C.,, E. Westhof,, A. Böck,, and R. Giegé. 1993. Solution structure of selenocysteine inserting tRNASec from Escherichia coli. Comparison with canonical tRNASer. J. Mol. Biol. 231:274292.
9. Basavappa, R.,, and P. B. Sigler. 1991. The 3 A crystal structure of yeast initiator tRNA: functional implications in initiator/elongator discrimination. EMBO J. 10:31053111.
10. Beier, H.,, M. C. Lee,, T. Sekiya,, Y. Kuchino,, and S. Nishimura. 1992. Two nucleotides next to the anticodon of cytoplasmic rat tRNAAsP are likely generated by RNA editing. Nucleic Acids Res. 20:26792683.
11. Bibb, M. J.,, R. A. Van Etten,, C. T. Wright,, M. W. Walberg,, and D. A. Clayton. 1981. Sequence and gene organization of mouse mitochondrial DNA. Cell 26:167180.
12. Biteau, N.,, C. Fremaux,, S. Hébrard,, M. Aigle,, and M. Crouzet. 1991. Sequence of tRNAAsn gene of Saccbaromyces cerevisiae. Nucleic Acids Res. 19:2778.
13. Blake, R. D.,, J. R. Fresco,, and R. Langridge. 1970. High-resolution X-ray diffraction by single crystals of mixtures of transfer ribonucleic acids. Nature (London) 225:3235.
14. Boer, P. H.,, and M. W. Gray. 1988. Transfer RNA genes and the genetic code in Chlamydomonas reinhardtii mitochondria. Curr. Genet. 14:583590.
15. Breitenberger, C. A.,, and U. L. RajBhandary. 1985. Some highlights of mitochondrial research based on analyses of Neurospora crassa mitochondrial DNA. Trends Biocbem. Sci. 10:478483.
16. Brennan, T.,, and M. Sundaralingam. 1976. Structure of transfer RNA molecules containing the long variable loop. Nucleic Acids Res. 3:32353251.
17. Brown, T. A.,, R. B. Waring,, C. Scazzochio,, and R. W. Davies. 1985. The Aspergillus nidulans mitochondrial genome. Curr. Genet. 9:113117.
18. Brown, W. M.,, E. M. Prager,, A. Wang,, and M. C. Wilson. 1982. Mitochondrial DNA sequences of primates: tempo and mode of evolution. J. Mol. Evol. 18:225239.
19. Cantatore, P.,, C. De Benedetto,, G. Gadaleta,, R. Gallerani,, A. M. Kroon,, M. Holtrop,, C. Lanave,, G. Pepe,, C. Quagliariello,, C. Saccone,, and E. Sbisa. 1982. The nucleotide sequences of several tRNA genes from rat mitochondria: common features and relatedness to homologous species. Nucleic Acids Res. 10:32793289.
20. Cantatore, P.,, M. Roberti,, G. Rainaldi,, M. N. Gadaleta,, and C. Saccone. 1989. The complete nucleotide sequence, gene organization, and genetic code of the mitochondrial genome of Paracentrotus lividus. J. Biol. Chem. 264:1096510975.
21. Cantatore, P.,, M. Roberti,, G. Rainaldi,, C. Saccone,, and M. N. Gadaleta. 1988. Clustering of tRNA genes in Paracentrotus lividus mitochondrial DNA. Curr. Genet. 13:9196.
22. Chang, Y. N.,, I. L. Pirtle,, and R. M. Pirtle. 1986. Nucleotide sequence and transcription of a human tRNA gene cluster with four genes. Gene 48:165174.
23. Clarck-Walker, G. D.,, C. R. McArthur,, and K. S. Sriprakash. 1985. Location of transcriptional signals and tRNA sequences in Torulopsis glabrata mitochondrial DNA. EMBO J. 4:465473.
24. Clark, B. F. C.,, B. P. Doctor,, K. C. Holmes,, A. Klug,, K. A. Marcker,, S. J. Morris,, and H. H. Paradies. 1968. Crystallisation of transfer RNA. Nature (London) 219:12221224.
25. Clary, D. O.,, and D. R. Wolstenholme. 1987. Drosophila mitochondrial DNA: conserved sequences in the A+T-rich region and supporting evidence for a secondary structure model of the small ribosomal RNA. J. Mol. Evol. 25:116125.
26. Cooley, L.,, B. Appel,, and D. Soil. 1982. Post-transcriptional nucleotide addition is responsible for the formation of the 5'-terminus of histidine tRNA. Proc. Natl. Acad. Sci. USA 79:64756479.
27. Cramer, E.,, F. von der Haar,, W. Saenger,, and E. Schlimme. 1968. Einkristalle von phenylalaninspezifischer transfer-ribonucleinsaure. Angew. Chem. 80:969970.
28. Cramer, E.,, F. von der Haar,, W. Saenger,, and E. Schlimme. 1968. On the conformation of tRNA. Proc. Natl. Acad. Sci. USA 61:13841391.
29. Crick, F. H. C. 1966. Codon-anticodon pairing: the wobble hypothesis. J. Mol. Biol. 19:548555.
30. De Bièvre, C.,, and B. Dujon. 1992. Mitochondrial DNA sequence analysis of the cytochrome oxidase subunit I and II genes, the ATPase gene, the NADH dehydrogenase ND4L and ND5 gene complex, and the glutaminyl-, methionyl-, and arginyl-tRNA genes from Trichophyton rubrum. Curr. Genet. 22:229234.
31. De Bruijn, M. H. L.,, and A. Klug. 1983. A model for the tertiary structure of mammalian mitochondrial transfer RNAs lacking the entire "dihydrouridine" loop and stem. EMBOJ. 2:13091321.
32. Desai, S. M.,, J. Vaughan,, and S. B. Weiss. 1986. Identification and location of nine T5 bacteriophage tRNA genes by DNA sequence analysis. Nucleic Acids Res. 14:41974205.
33. Desgres, J.,, G. Keith,, K. C. Kuo,, and C. W. Gehrke. 1989. Presence of phosphorylated O-ribosyl-adenosine in TO-stem of yeast methionine initiator tRNA. Nucleic Acids Res. 17:856882.
34. Dewey, R. E.,, C. S. Levings,, and D. H. Timothy. 1986. Novel recombinations in the maize mitochondrial genome produce a unique transcriptional unit in the Texas male sterile cytoplasm. Cell 44:439449.
35. Dietrich, A.,, J. H. Weil,, and L. Maréchal-Drouard. 1992. Nuclear-encoded transfer RNAs in plant mitochondria. Annu. Rev. Cell Biol. 8:115131.
36. Digby, T. J.,, M. W. Gray,, and C. B. Lazier. 1992. Rainbow trout mitochondrial DNA: sequence and structural characteristics of the non-coding control region and flanking tRNA genes. Gene 113:197204.
37. Dinouël, N.,, F. Sor,, and H. Fukuhara. 1992. Nucleotide sequence of transfer RNA genes from the linear mitochondrial DNA of the yeast Williopsis surakii and Pichia pijperi. Nucleic Acids Res. 20:3509.
38. Dirheimer, G.,, G. Keith,, A.-P. Sibler,, and R. P. Martin,. 1979. The primary structure of tRNAs and their rare nucleosides, p. 1941. In P. R. Schimmel,, D. Soil,, and J. N. Abelson (ed.), Transfer RNA: Structure Properties and Recognition. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
39. Dirheimer, G.,, and R. P. Martin. 1990. Mitochondrial tRNAs: structure, modified nucleosides and codon reading patterns. J. Chromatogr. Library. 45:197264.
40. Dock, A. C.,, B. Lorber,, D. Moras,, G. Pixa,, J. C. Thierry,, and R. Giegé. 1984. Crystallization of transfer ribonucleic acids. Biochimie. 66:179201.
41. Dock-Bregeon, A. C.,, A. Garcia,, R. Giegé,, and D. Moras. 1990. The contacts of yeast tRNAs" with seryl-tRNA synthetase studied by postprinting experiments. Eur. J. Biochem. 188:283290.
42. Dock-Bregeon, A. C.,, E. Westhof,, R. Giegé,, and D. Moras. 1989. Solution structure of a tRNA with a large variable region: yeast tRNASer. J. Mol. Biol. 206:707722.
43. Donohue, J. 1956. Hydrogen-bonded helical configurations of polynucleotides. Proc. Natl. Acad. Sci. USA 42:6065.
44. Dube, S. K.,, and K. A. Marcker. 1969. The nucleotide sequence of N-formyl-methionyl-tRNA. Partial digestion with pancreatic RNase and Tl RNase and derivation of the total primary structure. Eur. J. Biochem. 8:256.
45. Dumas, P. 1986. Affinement cristallographique et étude structurale de TARN de transfert de levure spécifique de l'acide aspartique. Ph.D. dissertation. Université Louis Pasteur, Strasbourg, France.
46. Dumas, P.,, D. Moras,, C. Florentz,, R. Giegé,, P. Verlaan,, A. van Belkum,, and C. W. A. Pleij. 1987. 3-D graphies modelling of the tRNA-like 3'-end of Turnip Yellow Mosaic Virus RNA: structural and functional implications, J. Biomol. Struc. Dyn. 4:707728.
47. Ebel, J. P., 1973. Structure tridimensionnelle des acides ribonucléiques de transfert, p. 301326. In C. Sadron (éd.), Dynamic Aspects of Conformation Changes in Biological Macromolecules. D. Reidel Publishing Co. Dordrecht, Holland.
48. Ehresmann, C.,, R. Baudin,, M. Mougel,, P. Romby,, J. P. Ebel,, and B. Ehresmann. 1987. Probing the structure of RNAs in solution. Nucleic Acids Res. 15:91099116.
49. Fejes, E.,, Masters, B. S.,, McCarty, D. M.,, and Hauswirth W. W. 1988. Sequence and transcriptional analysis of a chloro-plast insert in the mitochondrial genome of Zea mays. Curr. Genet. 13:509515.
50. Feldmann, H. 1976. Arrangement of transfer-RNA genes in yeast. Nucleic Acids Res. 3:23792386.
51. Fresco, J. R.,, R. D. Blake,, and R. Langridge. 1968. Crystallization of transfer ribonucleic acids from unfractionated mixtures. Nature (London) 220:12851287.
52. Fujii, H.,, T. Shimada,, Y. Goto,, and T. Okazaki. 1988. Cloning of the mitochondrial genome of Rana catesbeiana and the nucleotide sequences of the ND2 and five tRNA genes. J. Biochem. 103:474481.
53. Fuller, W.,, and A. Hodgson. 1967. Conformation of the anticodon loop in tRNA. Nature (London) 21:817821.
54. Gadaleta, G.,, G. Pepe,, G. de Candia,, C. Quagliariello,, E. Sbisà,, and C. Saccone. 1989. The complete nucleotide sequence of the Rattus norvegicus mitochondrial genome: cryptic signals revealed by comparative analysis between vertebrates, J. Mol. Evol. 28:497516.
55. Gangloff, J.,, G. Keith,, and G. Dirheimer. 1971. Structure of aspartate tRNA from brewer's yeast. Nature New Biol. 230:125126.
56. Garey, J.,, and D. R. Wolstenholme. 1989. Platyhelminth mitochondrial DNA: evidence for early evolutionary origin of a tRNASer/AGN that contains a dihydrouridine arm replacement loop, and a serine-specifying AGA and AGG codons. J. Mol. Evol. 28:374387.
57. Giegé, R.,, D. Moras,, and J. C. Thierry. 1977. Yeast tRNAAsP: a new high resolution X-ray diffracting crystal form of a transfer RNA. J. Mol. Biol. 115:9196.
58. Gilbert, T. L.,, J. R. Brown,, P. J. CHara,, N. E. Buroker,, A. T. Beckenbach,, and M. J. Smith. 1988. Sequence of tRNAThr and tRNAPro from white sturgeon [Acipenser transmontanus) mitochondria. Nucleic Acids Res. 16:11825.
59. Goddard, J. P. 1977. The structures and functions of transfer RNA. Prog. Biophys. Mol. Biol. 32:233308.
60. Grawunder U.,, A. Schôn,, and M. Sprinzl. 1992. Sequence and base modifications of two phenylalanine-tRNAs from Thermus thermophilus HB8. Nucleic Acids Res. 20:137.
61. Gray, M. W.,, and P. H. Boer. 1988. Organization and expression of algae {Chlamydomonas reinhardii) mitochondrial DNA. Phil. Trans. R. Soc. London B319:135147.
62. Green, A. G.,, L. Maréchal,, J. H. Weil,, and P. Guillemaut. 1987. A Phaseolus vulgaris mitochondrial tRNALeu is identical to its cytoplasmic counterpart: sequencing and in vivo transcription of the gene corresponding to the cytoplasmic tRNALeu. Plant Mol. Biol. 10:1319.
63. Green, J. C.,, I. Sohel,, and B. S. Void. 1990. The discovery of new intron-containing human tRNA genes using the polymerase chain reaction, J Biol. Chem. 265:1213912142.
64. Grosjean, H.,, R. J. Cedergreen,, and M. McKay. 1982. Structure in tRNA data. Biochimie 64:387397.
65. Gupta, R. 1984. Halobacterium volcanii tRNAs. Identification of 41 tRNAs covering all amino acids, and the sequences of 33 class I tRNAs. J. Biol. Chem. 259:94619471.
66. Haas, E. S.,, J. W. Brown,, C. J. Daniels,, and J. N. Reeve. 1990. Genes encoding the 7S RNA and tRNASer are linked to one of the two rRNA operons in the genome of the extreme thermophilic archaebacterium Methanothermus fer-vidus. Gene 90:5159.
67. Hampel, A.,, M. Labanauskas,, R. G. Connors,, L. Kirkegard,, U. L. RajBhandary,, P. B. Sigler,, and R. M. Bock. 1968. Single crystals of transfer RNA from formylmethionine and phenylalanine transfer RNAs. Science 162:13841387.
68. Hancock, K.,, and S. L. Hajduk. 1990. The mitochondrial tRNAs of Trypanosoma brucei are nuclear encoded. J. Biol. Chem. 265:1920819215.
69. Harada, R.,, G. G. Peters,, and J. E. Dahlberg. 1979. The primer tRNA for Moloney murine leukemia virus DNA synthesis. Nucleotide sequence and aminoacylation of tRNAPro. J. Biol. Chem. 254:1097910985.
70. Hatlen, L.,, and G. Attardi. 1971. Proportion of the HeLa cell genome complementary to transfer RNA and 5S RNA. J. Mol. Biol. 56:535553.
71. Haucke, H. R.,, and G. Gellissen. 1988. Different mitochondrial gene orders among insects: exchanged tRNA gene positions in the COII/COIII region between an orthopteran and a dipterian species. Curr. Genet. 14:471476.
72. Heckman, J. E.,, B. Alzner-DeWeerd,, and U. L. RajBhandary. 1979. Interesting and unusual features in the sequence of Neurospora crassa mitochondrial tyrosine transfer tRNA. Proc. Natl. Acad. Sci. USA 76:717721.
73. Heckman, J. E.,, L. I. Hecker,, S. D. Schwartzbach,, W. E. Barnett,, B. Baumstark,, and U. L. RajBhandary. 1978. Structure and function of initiator methionine tRNA from mitochondria of Neurospora crassa. Cell 13:8395.
74. Heckman, J. E.,, J. Sarnoff,, B. Alzner-De Weerd,, S. Yin,, and U. L. RajBhandary. 1980. Novel features in the genetic code and codon reading patterns in Neurospora crassa mitochondria based on sequences of six mitochondrial tRNAs. Proc. Natl. Acad. Sci. USA 77:31513163.
75. Hegedus D. D.,, T. A. Pfeifer,, J. M. MacPherson,, and G. G. Khachatourians. 1991. Cloning and analysis of five mitochondrial tRNA-encoding genes from the fungi Beauveria bassiana. Gene 109:149154.
76. Heinonen, T. Y. K.,, M. N. Share,, P. G. Young,, and M. W. Gray. 1987. Rearranged coding segments separated by a transfer RNA gene specify the two parts of a discontinuous large subunit ribosomal RNA in Tetrahymena pyriformis mitochondria, J. Biol. Chem. 25:28792887.
77. Helk, B.,, and M. Sprinzl. 1985. Interaction of unfolded tRNA with the 3'-terminal region of E. coli 16S ribosomal RNA. Nucleic Acids Res. 13:62836298.
78. Hendrickson, W. A.,, and J. H. Konnert,. 1980. Stereo-chemical restrained crystallographic least-squares refinement of macromolecule structures, p. 4357. In R. Sri-nivasan (ed.), Biomolecular Structure, Function, Conformation and Evolution., vol. 1. Pergamon Press, Oxford.
79. Himeno, H.,, H. Masaki,, T. Kawai,, T. Ohta,, I. Kumagai,, K. Miura,, and K. Watanabe. 1987. Unusual genetic codes and a novel gene structure for tRNAScr/AGY in starfish mitochondrial DNA. Gene 56:219230.
80. Hingerty, B.,, R. S. Brown,, and A. Jack. 1978. Further refinement of the structure of yeast tRNA^e. J. Mol. Biol. 124:523534.
81. Hiratsuka, J.,, H. Shimada,, R. Whittier,, T. Ishibashi,, M. Sakamoto,, M. Mori,, C. Kondo,, Y. Honji,, C. R. Sun,, B. Y. Men,, Y. Q. Li,, A. Kanno,, Y. Nishizawa,, A. Hirai,, K. Shin-ozaki,, and M. Sugiura. 1989. The complete sequence of rice Oriza sativa chloroplast genome: intermolecular recombination between distinct tRNA genes accounts for a major plas-tid DNA inversion during the evolution of the cereals. Mol. Gen. Genet. 217:185194.
82. Hoffmann, R. J.,, J. L. Boore,, and W. M. Brown. 1992. A novel mitochondrial genome organization for the blue mussel Mytilus edulis. Genetics 131:397412.
83. Hofmann, J.,, G. Schumann,, G. Borschet,, R. Gosseringer,, M. Bach,, W. M. Bertling,, R. Marschalek,, and T. Dingermann. 1991. Transfer RNA genes from Dictyostelium dis-coideum are frequently associated with repetitive elements and contain consensus boxes in their 5'- and 3'-flanking regions. J. Mol. Biol. 222:537552.
84. Holbrook, S. R.,, C. Cheong,, I. Tinoco, Jr.,, and S.-H. Kim. 1991. Crystal structure of an RNA double helix incorporating a track of non-Watson-Crick base pairs. Nature (London) 353:579581.
85. Holbrook, S. R.,, J. L. Sussman,, R. W. Warrant,, and S. H. Kim. 1978. Crystal structure of yeast phenylalanine transfer RNA. II. Structural features and functional implications. J. Mol. Biol. 123:631660.
86. Holley, R. W.,, J. Apgar,, G. A. Everett,, J. T. Madison,, J. T. Marquisee,, S. H. Merril,, J. R. Penswick,, and A. Zamir. 1965. Structure of a ribonucleic acid. Science 147:14621465.
87. Hou, Y. M.,, and P. Schimmel. 1992. Novel tRNAs that are active in E. coli. Biochemistry 31:41574160.
88.Ichikawa, X, and M. Sundaralingam. 1972. X-ray diffraction study of a new crystal form of yeast phenylalanine tRNA. Nature New Biol. 236:174175.
89. Jack, A.,, J. E. Ladner,, and A. Klug. 1976. Crystallographic refinement of yeast phenylalanine transfer RNA at 2.5 A resolution.J. Mol. Biol. 108:619649.
90. Jack, A.,, and M. Levitt. 1978. Refinement of large structures by simultaneous minimization of energy and R-factor. Acta Crystallogr. A34:931935.
91. Jacobs, H. T.,, S. Asakawa,, T. Araki,, K. Miura,, M. J. Smith,, and K. Watanabe. 1989. Conserved tRNA gene cluster in starfish mitochondrial DNA. Curr. Genet. 15:193206.
92. Jain, S.,, G. Zon,, and M. Sundaralingam. 1989. Base only binding of spermine in the deep groove of the A-DNA octa-mer d(GTGTACAC). Biochemistry 8:360364.
93. Jarsch, M.,, and A. Bock. 1983. DNA sequence of the 16S rRNA/23S rRNA intercistronic spacer of two rDNA operons of the archaebacterium Methanococcus vannielii. Nucleic Acids Res. 11:75377544.
94. Johansen, S.,, P. H. Guddal,, and T. Johansen. 1990. Organization of the mitochondrial genome of Atlantic cod, Gadus morhua. Nucleic Acids Res. 18:411419.
95. Jones, T. A. 1978. A graphics model building and refinement system for macromolecules. J. Appl. Cryst. 11:268278.
96. Joyce, P. B. M.,, and M. W. Gray. 1989. Chloroplast like transfer RNA genes expressed in wheat mitochondria. Nucleic Acids Res. 17:54615476.
96a. Keith, G. Unpublished data.
97. Keith, G. 1990. Nucleic acid chromatographic isolation and sequence methods. J. Chromatogr. Library 45:A103A141.
98. Keith, G.,, J. Desgres,, P. Pochart,, T. Heyman,, K. C. Kuo,, and C. W. Gehrke. 1990. Eukaryotic tRNAsPr°: primary structure of the anticodon loop: presence of 5-carbamoyl-methyluridine or inosine as the first nucleoside of the anticodon. Biochim. Biophys. Acta 1049:255260.
99. Keith, G.,, and G. Dirheimer. 1980. Reinvestigation of the primary structure of brewer's yeast tRNA-WS. Biochem. Biophys. Res. Commun. 92:116119.
100. Keith, G.,, and G. Dirheimer. 1987. Evidence for the existence of an expressed minor variant tRNAph,: in yeast. Biochem. Biophys. Res. Commun. 142:183187.
101. Keith, G.,, J. P. Ebel,, and G. Dirheimer. 1974. The primary structure of two mammalian tRNAsphe: identity of calf liver and rabbit liver tRNAsphe. FEBS Lett. 48:5052.
102. Keith, G.,, G. Pixa,, C. Fix,, and G. Dirheimer. 1983. Primary structure of three tRNAs from brewer's yeast tRNAPro/2, tRNAH'*/1 and tRNAHis/2. Biochimie 65:661672.
103. Kiesewetter, S.,, G. Ott,, and M. Sprinzl. 1990. The role of modified purine 64 in initiator/elongator discrimination of tRNAM" from yeast and wheat germ. Nucleic Acids Res. 18:46774682.
104. Kim, S. H. 1975. Symmetry recognition hypothesis model for tRNA binding to aminoacyl-tRNA synthetase. Nature (London)256:679681.
105. Kim, S. H. 1981. Transfer RNA: crystal structures. Top. Mol. Structural Biol. 1:83112.
106. Kim, S. H.,, G. J. Quickley,, F. L. Suddath,, A. McPherson,, D. Sneden,, J. J. Kim,, J. Weinzierl,, and A. Rich. 1973. Three-dimensional structure of yeast phenylalanine transfer RNA: folding of the polynucleotide chain. Science 179:285288.
107. Kim, S. H.,, G. Quigley,, F. L. Suddath,, and A. Rich. 1971. High resolution X-ray diffraction patterns of crystalline transfer RNA that show helical regions. Proc. Natl. Acad. Sci. USA 68:841845.
108. Kim, S. H.,, and A. Rich. 1968. Single crystals of transfer RNA: an X-ray diffraction study. Science 162:13811384.
109. Kochel, H. G.,, C. M. Lazarus,, N. Basak,, and H. Kuntzel. 1981. Mitochondrial tRNA gene clusters in Aspergillus nidulans. Organization and nucleotide sequence. Cell 23:625633.
110. Komine, Y. T.,, T. Adachi,, H. Inokuchi,, and H. Ozaki. 1990. Genomic organization and physical mapping of the transfer RNA genes in E. coli K12. J. Mol. Biol. 212:579598.
111. Kseszenko, V. N.,, M. G. Shlyapnikov,, V. G. Azbarov,, O. Garcia,, V. M. Kryukov,, and A. A. Bayev. 1987. Nucleotide sequence of the bacteriophage T5 DNA containing a distal part of tRNA gene region. Nucleic Acids Res. 15:54805481.
112. Ladner, J. E.,, J. T. Finch,, A. Klug,, and B. F. C. Clark. 1972. High-resolution X-ray diffraction studies on a pure species of transfer RNA. J. Mol. Biol. 72:99101.
113. Ladner, J. E.,, A. Jack,, J. D. Robertus,, R. S. Brown,, D. Rhodes,, B. F. C. Clark,, and A. Klug. 1975. Structure of yeast phenylalanine transfer RNA at 2.5 A resolution. Proc. Natl. Acad. Sci. USA 72:44144418.
114. Lang, B. F. Unpublished data.
115. Lang, B. F. 1984. The mitochondrial genome of the fission yeast Schizosaccharomyces pombe: highly homologous introns are inserted at the same position of the otherwise less conserved coxl genes in Schizosaccharomyces pombe and Aspergillus nidulans. EMBO J. 3:21292136.
116. Lang, B. E.,, F. Ahne,, and L. Bonen. 1985. The mitochondrial genome of the fission yeast Schizosaccharomyces pombe. The cytochrome b gene has an intron closely related to the first two introns in the Saccharomyces cerevisiae coxl gene J. Mol. Biol. 184:353366.
117. Lang, B. F.,, F. Ahne,, S. Distler,, A. Trinkel,, F. Kaudewitz,, and K. Wolf,. 1983. Sequence of the mitochondrial DNA, arrangement of genes and processing of their transcripts in Schizosaccharomyces pombe, p. 313329. In R. J. Schwe-yen,, K. Wolf,, and F. Kaudewitz (ed.), Mitochondria 83. Walter de Gruyter & Co., Berlin.
118. Lang, B. E.,, R. Cedergren,, and M. W. Gray. 1987. The mitochondrial genome of the fission yeast, Schizosaccharomyces pombe. Sequence of the large-subunit ribosomal RNA gene, comparison of potential secondary structure in fungal mitochondrial LSU rRNAs and evolutionary considerations. Eur. J. Biochem. 169:527537.
119. Lang, B. E.,, A. P. Sibler,, G. Dirheimer,, and R. P. Martin. 1985. Mitochondrial tRNAs, translation code and codon recognition in Schizosaccharomyces pombe, p. 201. In International Research, Rosa Marina, Italy. (Abstract book).
120. Leinfelder, W.,, E. Zehelein,, M. A. Mandrand-Berthelot,, and A. Bock. 1988. Gene for a novel tRNA species that accepts L-serine and co-translationally inserts selenocysteine. Nature (London)331:723725.
121. Levitt, M. 1969. Detailed molecular model for transfer ribonucleic acid. Nature (London) 224:759763.
122. Lin, K. L.,, and P. F. Agris. 1980. Alterations in tRNA isoac-cepting species during erythroid differentiation of the Friend leukemia cell. Nucleic Acids Res. 8:34673480.
123. Makaroff, C. A.,, and J. D. Palmer. 1987. Extensive mitochondrial transcription of the Brassica campestris mitochondrial genome. Nucleic Acids Res. 15:51415156.
124. Marechal-Drouard, L.,, P. Guillemaut,, A. Cosset,, M. Arbogast,, F. Weber,, J. H. Weil,, and A. Dietrich. 1990. Transfer RNAs of potato (Solanum tuberosum) mitochondria have different genetic origins. Nucleic Acids Res. 18:36893696.
125. Marechal-Drouard, L.,, M. Kuntz,, and J. H. Weil,. 1991. tRNAs and tRNA genes of plastids, p. 169189. In I. K. Vasil, and L. Bogorad (ed.), Cell Culture and Somatic Cell Genetics of Plants. The Molecular Biology of Plastids. Academic Press Inc., San Diego/New York.
126. Marechal-Drouard, L.,, J. H. Weil,, and A. Dietrich. 1993. Transfer RNAs and transfer RNA genes in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 44:1332.
127. Marechal-Drouard, L.,, J. H. Weil,, and P. Guillemaut. 1988. Import of several tRNAs from the cytoplasm into the mitochondria in bean Phaseolus vulgaris. Nucleic Acids Res. 16:47774788.
128. Martin, R. P.,, J. M. Schneller,, A. J. C. Stahl,, and G. Dirheimer. 1979. Import of nuclear DNA-coded lysine accepting tRNA (anticodon CUU) into yeast mitochondria. Biochemistry 18:46004604.
129. Massardo, D. R. 1991. Nucleotide sequence of the genes encoding tRNAHis, tRNAPro and tRNAGln in the mitochondrial genome of Schizosaccharomyces pombe strain EF1. Nucleic Acids Res. 18:6429.
130. McCIoskey, J. A.,, and S. Nishimura. 1977. Modified nucleosides in transfer RNA. Acc. Chem. Res. 10:403410.
131. McCue, L. A.,, J. Kwak,, M. J. Babcock,, and K. E. Kendrick. 1992. Molecular analysis of sporulation in Streptomyces griseus. Gen. 115:173179.
132. Michaelis, G.,, C. Vahrenholz,, and E. Pratje. 1990. Mitochondrial DNA of Chlamydomonas reinhardtii: the gene for apocytochrome b and the complete functional map of the 15.8 kb DNA. Mol. Gen. Genet. 223:211216.
133. Moras, D.,, and M. Bergdoll. 1988. Packing and molecular interactions in tRNA crystals. J. Crystal Growth 90:283294.
134. Moras, D.,, M. B. Comarmond,, J. Fisher,, R. Weiss,, J. C. Thierry,, J. P. Ebel,, and R. Giege. 1980. Crystal structure of yeast tRNAAsp. Nature (London) 288:669674.
135. Moras, D.,, A. C. Dock,, P. Dumas,, E. Westhof,, P. Romby,, J. P. Ebel,, and R. Giege. 1986. Anticodon-anticodon interaction induces conformational changes in tRNA: yeast tRNAAsp, a model for tRNA-mRNA recognition. Proc. Natl. Acad. Sci. USA 83:932936.
136. Morden, C. W.,, K. H. Wolfe,, C. W. de Pamphilis,, and J. D. Palmer. 1991. Plastid translation and transcription genes in a non-photosynthetic plant: intact, missing and pseudogenes. EMBO J. 10:32813288.
137. Muto, A.,, Y. Andachi,, H. Yuzama,, F. Yamao,, and S. Osawa. 1990. The organization and evolution of transfer RNA genes in Mycoplasma capricolum. Nucleic Acids Res. 18:50375043.
138. Netzker, R.,, H. G. Kochel,, N. Basak,, and H. Kiintzel. 1982. Nucleotide sequence of Aspergillus nidulans mitochondrial genes coding for ATPase subunit 6, cytochrome oxidase sub-unit 3, several unidentified proteins, four tRNAs and Lr-RNA. Nucleic Acids Res. 10:47834794.
139. Oda, K.,, K. Yamato,, E. Ohta,, M. Nakemura,, N. Nozato,, K. Akashi,, T. Kanegae,, Y. Ogura,, T. Kohchi,, and K. Ohyama. 1992. Gene organization deduced from the complete sequence of liverwort Marchantía polymorpha mitochondrial DNA: a primitive form for plant mitochondrial genome. J. Mol. Biol. 223:17.
140. Ohyama, K.,, H. Fukuzawa,, T. Koschi,, H. Shirai,, T. Sano,, S. Sano,, K. Umesono,, Y. Shiki,, M. Takeuchi,, Z. Chang,, S. Aota,, H. Inokuchi,, and H. Ozeki. 1986. Chloroplast gene organization deduced from complete sequence of liverwort Marchantía polymorpha chloroplast DNA. Nature (London) 322:572574.
141. Okamoto, J.,, K. Suzuki,, and K. Yoshida. 1992. Nucleotide sequences of ten mitochondrial tRNA genes in yeast Hansenula wingei. Nucleic Acids Res. 20:2373.
142. Okimoto, R.,, and D. R. Wolstenholme. 1990. A set of tRNAs that lack the Tψ C arm or the dihydrouridine arm: towards a minimal tRNA adaptor. EMBO J. 9:34053411.
143. Oliver, S. G., et al. 1992. The complete DNA sequence of yeast chromosome III. Nature (London) 357:3846.
144. O'Mahony, D.,, B. H. Mims,, S. Thompson,, E. J. Murgola,, and J. E Atkins. 1989. Glycine tRNA mutants with normal anticodon loop size cause -1 frameshifting. Proc. Natl. Acad. Sci. USA 86:79797983.
145. Osawa, S.,, T. H. Jukes,, K. Watanabe,, and A. Muto. 1992. Recent evidence for evolution of the genetic code. Microbiol. Rev. 56:229264.
146. Pflugrath, J. W.,, M. A. Saper,, and F. Quiocho. 1983. Molecular modelling with the PS300: a new generation graphics display system. J. Mol. Graphics 1:5354.
147. Piper, P. W.,, and B. F. C. Clark. 1974. Primary structure of a mouse myeloma cell initiator tRNA. Nature (London) 247:516518.
148. Pixa, G.,, G. Dirheimer,, and G. Keith. 1983. Sequence of tRNALeu from Bacillus stearothermophilus. Biochem. Biophys. Res. Commun. 112:578585.
149. Pritchard, A. E.,, J. J. Seilhamer,, R. Mahalingam,, C. L. Sable,, S. E. Venuti,, and D. J. Cummings. 1990. Nucleotide sequence of the mitochondrial genome of Paramecium. Nucleic Acids Res. 18:173180.
150. Quigley, G. J.,, N. C. Seeman,, A. H. Wang,, F. L. Suddath,, and A. Rich. 1975. Yeast phenylalanine tRNA: atomic coordinates and torsion angles. Nucleic Acids Res. 2:23292339.
151. Rietveld, K.,, R. V. Poelgeest,, C. W. A. Pleij,, J. H. V. Boom,, and L. Bosch. 1982. The tRNA-like structure at the 3' terminus of turnip yellow mosaic virus RNA: differences and similarities with canonical tRNA. Nucleic Acids Res. 10:19291946.
152. Roberts, R. J. 1974. Staphylococcal transfer ribonucleic acids. II. Sequence analysis of isoaccepting glycine transfer ribonucleic acids LA and IB from Staphylococcus epidermidis Texas 26. J. Biol. Chem. 249:47874796.
153. Robertus, J. D.,, J. E. Ladner,, J. T. F. D. Rhodes,, R. S. Brown,, B. F. C. Clark,, and A. Mug. 1974. Structure of yeast phenylalanine tRNA at 3' resolution. Nature (London) 250:546551.
154. Roe, B. A.,, M. P. I. S. Anandaraj,, L. S. Y. Chia,, E. Randerath,, R. C. Gupta,, and K. Randerath. 1975. Sequence studies on tRNAphe from human placenta: comparison with known sequences of tRNAPhe from other normal mammalian tissues. Biochem. Biophys. Res. Commun. 66:10971104.
155. Roe, B. A.,, D.-P. Ma,, R. K. Wilson,, and J. F.-H. Wong. 1985. The complete nucleotide sequence of the Xenopus laevis mitochondrial genome. J. Biol. Chem. 260:97599774.
156. Roe, B. A.,, J. F.-H. Wong,, E. Y. Chen,, and P. A. Armstrong,. 1981. Sequence analysis of mammalian mitochondrial tRNAs, p. 167176. In A. G. Watson (ed.), Recombinant DNA. Proceedings of the Third Cleveland Symposium on Macromolecules. Elsevier, Amsterdam.
157. Romby, P.,, P. Carbon,, E. Westhof,, C. Ehresmann,, J. P. Ebel,, B. Ehresmann,, and R. Giegé. 1987. Importance of conserved residues for the conformation of the T-loop in tRNAs. J. Biomol. Struct. Dyn. 5:669687.
158. Romby, P.,, D. Moras,, M. Bergdoll,, P. Dumas,, V. V. Vlassov,, E. Westhof,, J. P. Ebel,, and R. Giegé. 1985. Yeast tRNAAsP tertiary structure in solution and areas of interaction of the tRNA with aspartyl-tRNA synthetase: a comparative study of the yeast phenylalanine system by phosphate alkylation experiments with ethylnitrosourea. J. Mol. Biol. 184:455471.
159. Rossmann, M. G. R., 1972. In M. G. R. Rossmann (ed.), The Molecular Replacement Method. Gordon and Breach, New York.
160. Ruff, M.,, S. Krishnaswamy,, M. Boeglin,, A. Poterszman,, A. Mitschler,, A. Podjarny,, B. Rees,, J. C. Thierry,, and D. Moras. 1991. Class II aminoacyl tRNA synthetases: crystal structure of yeast aspartyl-tRNA synthetase complexed with tRNAAsp. Science 25:16821689.
161. Saenger, W. 1984. tRNA: a treasury of stereochemical information, p. 331339. In Principles of Nucleic Acid Structure. Springer Verlag, Berlin.
162. Sångare, A.,, J. H. Weil,, J. M. Grienenberger,, C. Fauron,, and D. Lonsdale. 1990. Localization and organization of tRNA genes on the mitochondrial genomes of fertile and male sterile lines of maize. Mol. Gen. Genet. 223:224232.
163. Schevitz, R. W.,, N. Krishnamachari,, J. Hughes,, J. Rosa,, M. Pasek,, G. Cornick,, M. A. Navia,, and P. B. Sigler,. 1975. The crystal structure of yeast tRNAfMet. A map of an initiator tRNA at 6 A resolution, p. 8599. In M. Sundaralingam, and S. T. Rao (ed.), Structure and Conformation of Nucleic Acids and Protein Nucleic Acid Interactions. University Park Press, Baltimore.
164. Schevitz, R. W.,, A. D. Podjarny,, N. Krishnamachari,, J. J. Hughes,, and P. B. Sigler. 1979. Crystal structure of a eukaryotic initiator tRNA. Nature (London) 278:188190.
165. Schmidt, O.,, J. Mao,, R. Ogden,, J. Beckmann,, H. Dakano,, J. Abelson,, and D. Soil. 1980. Dimeric tRNA precursors in yeast. Nature (London) 287:750752.
166. Schnare, M. N.,, T. Y. K. Heinonen,, P. G. Young,, and M. W. Gray. 1985. Phenylalanine and tyrosine tRNAs encoded by Tetrahymena pyriformis mitochondrial DNA: primary sequence, posttranscriptional modifications and gene localization. Curr. Genet. 9:389393.
167. Schulman, L. H.,, and M. O. Her. 1973. Recognition of altered E. coli formylmethionine transfer RNA by bacterial T factor. Biochem. Biophys. Res. Commun. 51:275282.
168. Seilhamer, J. J.,, and D. J. Cummings. 1981. Structure and sequence of the mitochondrial 20S rRNA and tRNATyr gene of Paramecium primaurelia. Nucleic Acids Res. 9:63916406.
169. Seilhamer, J. J.,, and D. J. Cummings. 1982. Altered genetic code in Paramecium mitochondria: possible evolutionary trends. Mol. Gen. Genet. 187:236239.
170. Seong, B. L.,, and U. L. RajBhandary. 1987. E. coli tRNAfMet: mutations in GGG:CCC sequence conserved in anticodon stem of initiator tRNAs affect initiation of protein synthesis and conformation of anticodon-loop. Proc. Natl. Acad. Sci. USA 84:334338.
171. Seufert, W.,, and S. Jentsch. 1991. Nucleotide sequence of two tRNAArs-tRNA^p tandem gene linked to duplicated UBC genes in Saccharomyces cerevisiae. Nucleic Acids Res. 18:1638.
172. Shinozaki, K.,, M. Ohme,, M. Tanaka,, T. Wakasugi,, K. Yamaguchi-Shinozaki,, C. Ohto,, K. Torazawa,, B. Y. Meng,, M. Sugita,, H. Deno,, T. Kamogashira,, K. Yamada,, J. Kusuda,, F. Takaiwa,, A. Kato,, N. Tohdoh,, H. Shimida,, and M. Sugiura. 1986. The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression. EMBO J. 5:20432049.
173. Simpson, A. M.,, Y. Suyama,, H. Dewes,, D. A. Campbell,, and L. Simpson. 1989. Kinetoplastid mitochondria contain functional tRNAs which are encoded in nuclear DNA and also contain small minicircle and maxicircle transcripts of unknown function. Nucleic Acids Res. 17:54275445.
174. Simsek, M.,, U. L. RajBhandary,, M. Boisnard,, and G. Petrissant. 1974. Nucleotide sequence of rabbit liver and sheep mammary gland cytoplasmic initiator tRNAs. Nature (London) 247:518520.
175. Smith, M. J.,, D. K. Banfield,, K. Doteval,, S. Gorski,, and D. J. Kowbel. 1990. Nucleotide sequence of nine protein-coding genes and 22 tRNAs in the mitochondrial DNA of the sea star Pisasterochraceus. J. Mol. Evol. 31:195204.
176. Sprinzl, M.,, N. Dank,, S. Nock,, and A. Schon. 1991. Compilation of tRNA sequences and sequences of tRNA genes. Nucleic Acids Res. 19(Suppl.):21272771.
177. Sprinzl, M.,, T. Hartmann,, J. Weber,, J. Blank,, and R. Zeidler. 1989. Compilation of tRNA sequences and sequences of tRNA genes. Nucleic Acids Res. 17:1172.
178. Stern, D. B.,, and D. M. Lonsdale. 1982. Mitochondrial and chloroplast genomes of maize have a 12-kilobase DNA sequence in common. Nature (London) 299:698702.
179. Stout, C. D.,, H. Mizuno,, J. Rubin,, T. Brennan,, S. T. Rao,, and M. Sundaralingam. 1976. Atomic coordinates and molecular conformation of yeast phenylalanine tRNA: an independent investigation. Nucleic Acids Res. 3:11111123.
180. Stout, C. D.,, J. Rubin,, T. Brennan,, S. T. Rao,, R. K. McMullan,, and M. Sundaralingam,. 1975. Vector space search studies of E. coli arginine tRNA structure at 6 A and preparation of heavy atom derivatives, p. 5969. In M. Sundaralingam, and S. T. Rao (ed.), Structure and Conformation of Nucleic Acids and Protein Nucleic Acid Interactions. University Park Press, Baltimore.
181. Sturchler, C.,, E. Westhof,, P. Carbon,, and A. Krol. 1993. Unique secondary and tertiary structural features of the eukaryotic selenocysteine tRNASec. Nucleic Acids Res. 21:10731079.
182. Suddath, F. L.,, G. J. Quigley,, A. McPherson,, D. Sneden,, J. J. Kim,, S. H. Kim,, and A. Rich. 1974. Three-dimensional structure of yeast phenylalanine transfer RNA at 3 A resolution. Nature (London) 248:2024.
183. Sugiura, M. 1992. The chloroplast genome. Plant Mol. Biol. 19:149168.
184. Sundaralingam, M., 1973. The concept of a conforma-tionally "rigid" nucleotide and its significance in polynucleotide conformational analysis, p. 417. In E. D. Bergmann, and B. Pullman (ed.), Conformation of Biological Molecules and Polymers. The Jerusalem Symposia on Quantum Chemistry and Biochemistry, vol. V. The Israel Academy of Sciences and Humanities, Jerusalem. procedure for macromolecular structures using constrained and restrained parameters. Acta Crystallogr. A33:800804.
186. Sussman, J. L.,, S. R. Holbrook,, R. W. Warrant,, G. M. Church,, and S. H. Kim. 1978. Crystal structure of yeast phenylalanine transfer RNA. I. Crystallographic refinement. J. Mol. Biol. 123:607630.
187. Sussman, J. L.,, and S. H. Kim. 1976. Three-dimensional structure of a transfer RNA in two crystal forms. Science 192:853858.
188. Suyama, Y. 1985. Nucleotide sequences of three tRNA genes encoded in Tetrahymena mitochondrial DNA. Nucleic Acids Res. 13:32733284.
189. Suyama, Y. 1986. Two dimensional polyacrylamide gel electrophoresis analysis of Tetrahymena mitochondrial tRNA. Curr. Genet. 10:411420.
190. Teeter, M. M.,, G. J. Quigley,, and A. Rich,. 1980. Metal ions and transfer RNA, p. 145177. In T. G. Spiro (ed.), Nucleic Acid-Metal Ion Interactions, vol. 1. John Wiley, New York.
191. Thomas, W. K.,, and A. T. Beckenbach. 1989. Variation in salmonid mitochondrial DNA: evolutionary constraints and mechanism of substitution. J. Mol. Evol. 29:233245.
192. Ueda, T.,, T. Ohta,, and K. Watanabe. 1985. Large scale isolation and some' properties of AGY-specific serine tRNA from bovine heart mitochondria. J. Biochem. Japan 98:12751284.
193. Ueda, Y.,, I. Kumagai,, and K. Miura. 1992. The effects of a unique D-loop structure of a minor tRNA{ftfA from Streptomyces on its structural sility and amino acid accepting activity. Nucleic Acids Res. 20:39113917.
194. Uhlenbeck, O. C.,, J. Bailer,, and P. Doty. 1970. Complementary oligonucleotide binding to the anticodon loop of fMet-transfer RNA. Nature (London) 225:508510.
195. Vlassov, V. V.,, R. Giege,, and J. P. Ebel. 1981. Tertiary structure of tRNAs in solution monitored by phosphodiester modification with ethylnitrosourea. Eur. J. Biochem. 11:5159.
196. Wakao, H.,, P. Romby,, E. Westhof,, S. Laalami,, M. Grun-berg-Manago,, J. P. Ebel,, C. Ehresmann,, and B. Ehresmann. 1989. The solution structure of the Escherichia coli initiator tRNA and its interactions with initiation factor 2 and the ribosomal 30S subunit. J. Biol. Chem. 264:2036320371.
197. Watson, J. D.,, and F. H. C. Crick. 1953. Molecular structure of nucleic acids. Nature (London) 17:737738.
198. Weber-Lotfi, E.,, L. Marechal-Drouard,, O. Folkerts,, M. Hanson,, and J. M. Grienenberger. 1993. Localization of tRNA genes of the Petunia hybrida 3704 mitochondrial genome. Plant Mol. Biol. 21:403407.
199. Weill, D.,, and T. Heyman. 1990. Nucleotide sequence of two proline tRNA (AGG and CGG) genes from chicken. Nucleic Acids Res. 18:6134.
200. Weissenbach, J.,, I. Kiraly,, and G. Dirheimer. 1977. Structure primaire des tRNAThr/la et lb de levure de biere. Biochimie 59:381391.
201. Weisshaar, M.,, R. Ahmadian,, M. Sprinzl,, M. Satoh,, A. Kushiro,, and K. Tomita. 1992. Sequences of four tRNA genes adjacent to the tuf2 gene of Thermus thermophilus. Nucleic Acids Res. 18:1902.
202. Westhof, E.,, P. Dumas,, and D. Moras. 1983. Loop stereochemistry and dynamics in transfer RNA. J. Biomol. Struct. Dyn. 1:337355.
203. Westhof, E.,, P. Dumas,, and D. Moras. 1985. Crystallographic refinement of yeast aspartic acid transfer RNA. J. Mol. Biol. 184:119145.
204. Westhof, E.,, P. Dumas,, and D. Moras. 1988. Restrained refinement of two crystalline forms of yeast aspartic acid and phenylalanine tRNA crystals. Acta Crystallogr. A44:112123.
205. Westhof, E.,, P. Dumas,, and D. Moras. 1988. Hydration of transfer RNA molecules: a crystallographic study. Biochimie 70:145165.
206. Westhof, E.,, P. Romby,, C. Ehresmann,, and B. Ehresmann,. 1990. Computer-aided structural biochemistry of ribonucleic acids, p. 399409. In D. L. Beveridge, and R. Lavery (ed.), Theoretical Biochemistry and Molecular Biophysics. Adenine Press, New York.
207. Westhof, E.,, and M. Sundaralingam. 1986. Restrained refinement of the monoclinic form of yeast phenylalanine transfer RNA. Temperature factors and dynamics, coordinated waters and base-pair propeller twist angles. Biochemistry 25:48684878.
208. Wolfe, K. H.,, C. W. Morden,, S. C. Ems,, and J. D. Palmer. 1992. Rapid evolution of the plastid translational apparatus in a non-photosynthetic plant: loss or accelerated sequence evolution of tRNA and ribosomal protein genes. J. Mol. Evol. 35:304317.
209. Wolstenholme, D. R.,, J. L. MacFarlane,, R. Okimoto,, D. O. Clary,, and J. A. Wahleithner. 1987. Bizarre tRNAs inferred from DNA sequences of mitochondrial genomes of nematode worms. Proc. Natl. Acad. Sci. USA 84:13241328.
210. Woo, N. H.,, B. A. Roe,, and A. Rich. 1980. Three-dimensional structure of E. coli initiator tRNAfmet. Nature (London) 286:346351.
211. Wood, L.,, N. Hatzenbuhler,, R. Peterson,, and G. Vogeli. 1991. Isolation of a mouse genomic clone containing four tRNACy'-encoding genes. Gene 98:249252.
212. Wrede, P.,, N. H. Woo,, and A. Rich. 1979. Initiator tRNAs have a unique anticodon loop conformation. Proc. Natl. Acad. Sci. USA 76:32893293.
213. Wright, H. X.,, P. C. Manor,, K. Beurling,, R. L. Karpel,, and J. R. Fresco,. 1979. The structure of Baker's yeast tRNA01'', p. 145160. In P. R. Schimmel,, D. Soil,, and J. N. Abelson (ed.), Transfer RNA: Structure, Properties, and Recognition. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
214. Yin, S.,, J. Burke,, D. D. Chang,, K. S. Browning,, J. Heckman,, B. Alzner-DeWeerd,, M. J. Potter,, and U. L. RajBhandary,. 1982. Neurospora crassa mitochondrial tRNAs and rRNAs: Structure, gene organization and DNA sequences, p. 361373. In P. Slonimski,, P. Borst,, and G. Attardi (ed.), Mitochondrial Genes. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
215. Yokogawa, X.,, Y. Watanabe,, Y. Kumazawa,, X. Ueda,, I. Hirao,, K. Miura,, and K. Watanabe. 1992. A novel clo-verleaf structure found in mammalian mitochondrial tRNAWUCN. Nucleic Acids Res. 19:61016105.
216. Zachau, H. G.,, D. Dutting,, and H. Feldmann. 1966. The structures of two serine transfer ribonucleic acids. Hoppe-Seyler's Z. Physiol. Chem. 347:212235.

Tables

Generic image for table
Table 1

Invariant and semi-invariant nucleotides in different organisms

Asterisks indicate one or two exceptions to the invariant and semi-invariant nucleotides. Exceptions are as follows. H. volcanii: position 15, A in Gly (UCC); position 16, A in Phe (GAA) and no nucleotide in Ala (GGC); position 21, U in lie (GAU); position 32, A in Pro (GGG); position 48, U in Gly (UCC); position 52, * in one Lys (UUU) and C in Tyr (GUA); position 59, G in Met (CAU); position 60, in Met (CAU). M. capripolum: position 10, C in Ser (GCU and UGA); position 11, A in Arg (ICG) and fMet (CAU); position 21, G in Leu (CAA, UAA, and UAG); position 22, U in Asp (GUC); position 24, U in Arg (ICG) and fMet (CAU); position 25, G in Ser (GCU and UGA); position 26, U in Gly (UCC) and Val (UAC). B. subtilis: position 11, G in Leu (CAG) and A in fMet (CAU); position 21, G in Leu (UAA, CAG and CAA); position 24, C in Leu (CAG) and U in fMet (CAU); position 26, U in Asn (GUU) and C in Gly (UCC); position 32, A in Leu (CAG) and in Thr (GGU); position 62, U in Gly (UCC) and Tyr GUA). E. coli: position 11, A in fMet (CAU); position 21, G in Leu (CAG, GAG, UAG, UAA, and CAA); position 24, U in fMet (CAU); position 26, C in Gly (UCC) and in His (GUG); position 32, A in Ala (GGC) and Pro (GGG); position 48, G in Cys (CGA). S. cerevisiae (mitochondria): position 8, A in Pro (UGG); position 10, U in His (GUG) and Tyr (GUA); position 11, A in Gin (UUG) and G in Gly (UCC); position 12, G in Leu (UAA) and Metj (CAU); position 14, U in Cys (GCA) and in Ser (GCU); position 18, A in Asp (GUC); position 24, U in Gin (UUG) and C in Gly (UCC); position 25, A in His (GUG) and Try (GUA); position 26, U in Cys (GCA) and no nucleotide in Ser (GCU); position 33, C in Glu (UUC); position 54, G in Asp (GUC). S. cerevisiae (cytoplasm): position 16, A in Pro (IGG); position 52, U in Phe (GAA) and C in Tyr (GUA); position 54, A in Met( (CAU); position 56, G in Metj (CAU); position 60, A in Metj (CAU); position 62, A in Phe (GAA) and Tyr (GUA). D. discoideum (mitochondria): position 10, A in Met (CAU); position 16, A in Ala (AGC) and G in Met (CAU); position 20, A in Arg (ACG and UCU); position 24, C in Leu (UAA); position 25, U in Trp (CCA) and Met CAU); position 26, U in Glu (UUC) and C in Gin (UUG); position 48, A in Ala (AGC); position 52, U in Thr (CGU); position 54, A in Arg (UCU) and Met (CAU); position 57, A in Trp (CCA); position 62, A in Thr (CGU). Plant (cytoplasm): position 15, U in Ala (UGC) from Arabidopsis thaliana; position 22, U in Val (AAC) from A. thaliana and Lupinus luteus and Pro (UGG) from Phaseolus vulgaris and Pro (AGG) from L. luteus; position 26, U in Pro (AGG) from L. luteus and Pro (UGG and AGG) from P. vulgaris; position 33, C in Meti (CAU); position 48, A in tRNAAla (UGC) from A. thaliana; position 54, A in Mets (CAU) from wheat germ, L. luteus, and P. vulgaris; position 57, C in mutant of Phe (GAA) from A. thaliana; position 60, A in Met; (CAU) from wheat germ, L. luteus, and P. vulgaris and Val (AAC) from A. thaliana and L. luteus. Mammals (cytoplasm): position 9, C in mouse His (GUC); position 10, A in mouse, bovine, and human HeLa cell Ser (UCA) and in bovine Ser (CCA); position 14, U in mouse and human HeLa cell Ser (UCA) and in bovine Ser (CCA); position 15, C in mouse and human HeLa cell Ser (UCA) and in bovine Ser (CCA); position 21, G in mouse and human HeLa cell Ser (UCA) and U in bovine Ser (NCA), C in bovine Ser (CCA), and U in bovine Ser (NCA); position 33, C in all animal Mets (CAU); position 48, G in mouse, bovine , and human HeLa cell Ser (UCA) and in bovine Ser (CCA); position 52, U in one out of four human Cys (GCA), U in bovine liver Trp (CUG); position 54, A in all animal Metj (CAU); position 57, U in one out of two human Metj (CAU); position 60, A in all Met; and in Val; position 61, U in 1 out of 4 human Cys (GCA).

Citation: Dirheimer G, Keith G, Dumas P, Westhof E. 1995. Primary, Secondary, and Tertiary Structures of tRNAs, p 93-126. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch8

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error