Chapter 14 : Genetic Approaches to Understanding Pathogenicity

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in

Genetic Approaches to Understanding Pathogenicity, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818340/9781555810825_Chap14-1.gif /docserver/preview/fulltext/10.1128/9781555818340/9781555810825_Chap14-2.gif


This chapter presents selected examples of how genetic approaches have been used to identify virulence factors. The genetic approaches are based on five distinct concepts and assumptions about what might characterize virulence genes. The identification of -specific genes is based on the potential relationship between a pathogen-specific gene and the pathogenic phenotype. The biochemical and molecular functions of the gene products have remained elusive, but current speculations suggest that they may be involved in bacterial modulation of host immune cells. In summary, the comparison of strains with nonpathogenic strains or species has been a very useful approach to the identification of virulence genes. In many cases, the subsequent identification and mutagenesis of bacterial genes involved in putative virulence phenotypes have led to the identification of virulence genes. An alternative and more general approach has been to study in vitro systems in which species are able to survive interaction with primary or cultured macrophages. Examination of certain noninvasive mutants in animal infection models provides strong support for the importance of bacterial entry into intestinal cells. Bacterial binding and utilization of the enterochelin-iron complex is facilitated by Chr-TonB, an outer membrane receptor. Bacterial motility and chemotaxis require 50 different genes which encode chemical sensors, physical motors, directional switches, and components of the flagellar structure, as well as specific factors which export and assemble the flagellar structure. In fact, it has been speculated that motility and chemotaxis may be important for virulence.

Citation: Lee C. 1994. Genetic Approaches to Understanding Pathogenicity, p 215-234. In Miller V, Kaper J, Portnoy D, Isberg R (ed), Molecular Genetics of Bacterial Pathogenesis. ASM Press, Washington, DC. doi: 10.1128/9781555818340.ch14

Key Concept Ranking

Outer Membrane Proteins
Type 1 Fimbriae
Peyer's Patches
Urinary Tract Infections
Bacterial Virulence Factors
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


1. Alpuche Aranda, C. M.,, J. A. Swanson,, W. P. Loomis,, and S. I. Miller. 1992. Salmonella typhimurium activates virulence gene transcription within acidified macrophage phagosomes. Proc. Natl. Acad. Sci. USA 89:1007910083.
2. Altmeyer, R. M.,, J. K. McNern,, J. C. Bossio,, I. Rosenshine,, B. B. Finlay,, and J. E. Galán. 1993. Cloning and molecular characterization of a gene involved in Salmonella adherence and invasion of cultured epithelial cells. Mol. Microbiol. 7:8998.
3. Bajaj, V.,, and C. A. Lee. Unpublished data.
4. Behlau, I.,, and S. I. Miller. 1993. A PhoP-repressed gene promotes Salmonella typhimurium invasion of epithelial cells. J. Bacterio!. 175:44754484.
5. Benjamin, W. H., Jr.,, C. L. Turnbough, Jr.,, B. S. Posey,, and D. E. Briles. 1985. The ability of Salmonella typhimurium to produce the siderophore enterobactin is not a virulence factor in mouse typhoid. Infect. Immun. 50:392397.
6. Benjamin, W. H., Jr.,, J. Yother,, P. Hall,, and D. E. Briles. 1991. The Salmonella typhimurium locus mviA regulates virulence in Itys but not Ityr mice: functional mviA results in avirulence; mutation (nonfunctional) mviA results in virulence. J. Exp. Med. 174:10731083.
7. Bette, J.,, and B. B. Finlay. 1992. Identification of Salmonella typhimurium invasiveness loci. Can. J. Microbiol. 38:852857.
8. Bliska, J. B.,, J. E. Galán,, and S. Falkow. 1993. Signal transduction in the mammalian cell during bacterial attachment and entry. Cell 73:903920.
9. Buchmeier, N. A.,, C. J. Lipps,, M. Y. So,, and F. Heffron. 1993. Recombination-deficient mutants of Salmonella typhimurium are avirulent and sensitive to the oxidative burst of macrophages. Mol. Microbiol. 7:933936.
10. Carter, P. B.,, and F. M. Collins. 1974. The route of enteric infection in normal mice. J. Exp. Med. 139:11891203.
11. Collins, F. M. 1969. Effect of specific immune mouse serum on the growth of Salmonella enteritidis in nonvaccinated mice challenged by various routes. J. Bacteriol. 97:667675.
12. Curtiss, R., III,, and S. M. Kelly. 1987. Salmonella typhimurium deletion mutants lacking adenylate cyclase and cyclic AMP receptor protein are avirulent and immunogenic. Infect. Immun. 55: 30353043.
13. Dormán, C. J.,, S. Chatfield,, C. F. Higgins,, C. Hayward,, and G. Dougan. 1989. Characterization of porin and ompR mutants of a virulent strain of Salmonella typhimurium: ompR mutants are attenuated in vivo. Infect. Immun. 57:21362140.
14. Elsinghorst, E. A. Personal communication.
15. Elsinghorst, E. A.,, L. S. Baron,, and D. J. Kopecko. 1989. Penetration of human intestinal epithelial cells by Salmonella: molecular cloning and expression of Salmonella typhi invasion determinants in Escherichia coli. Proc. Natl. Acad. Sci. USA 86:51735177.
16. Falkow, S. 1988. Molecular Koch's postulates applied to microbial pathogenicity. Rev. Infect. Dis. 10:S274S276.
17. Fields, P. I.,, E. A. Groisman,, and F. Heffron. 1989. A Salmonella locus that controls resistance to microbicidal proteins from phagocytic cells. Science 243:10591062.
18. Fields, P. I.,, R. V. Swanson,, C. G. Haidaris,, and F. Heffron. 1986. Mutants of Salmonella typhimurium that cannot survive within the macrophage are avirulent. Proc. Natl. Acad. Sci. USA 83: 51895193.
19. Finlay, B. B.,, M. N. Starnbach,, >C. L. Francis,, B. A. Stocker,, S. Chatfield,, G. Dougan,, and S. Falkow. 1988. Identification and characterization of TnphoA mutants of Salmonella that are unable to pass through a polarized MDCK epithelial cell monolayer. Mol. Microbiol. 2:757766.
20. Fitte, R. 1985. Development of a DNA-DNA hybridization test for the presence of Salmonella in foods. Food Technol. 39:95102.
21. Galán, J. E.,, and R. Curtiss III. 1989. Cloning and molecular characterization of genes whose products allow Salmonella typhimurium to penetrate tissue culture cells. Proc. Natl. Acad. Sci. USA 86:63836387.
22. Galán, J. E.,, and R. Curtiss III. 1990. Expression of Salmonella typhimurium genes required for invasion is regulated by changes in DNA supercoiling. Infect. Immun. 58:18791885.
23. Groisman, E. A.,, E. Chiao,, C. J. Lipps,, and F. Heffron. 1989. Salmonella typhimurium phoP virulence gene is a transcriptional regulator. Proc. Natl. Acad. Sci. USA 86:70777081.
24. Groisman, E. A.,, and F. Heffron. Personal communication.
25. Groisman, E. A.,, and H. Ochman. 1993. Cognate gene clusters govern invasion of host epithelial cells by Salmonella typhimurium and Shigella flexneri. EMBO J. 12:37793787.
26. Groisman, E. A.,, C. Parra-Lopez,, M. Salcedo,, C. J. Lipps,, and F. Heffron. 1992. Resistance to host antimicrobial peptides is necessary for Salmonella virulence. Proc. Natl. Acad. Sci. USA 89:1193911943.
27. Groisman, E. A.,, M. A. Sturmoski,, F. R. Solomon,, R. Lin,, and H. Ochman. 1993. Molecular, functional, and evolutionary analysis of sequences specific to Salmonella. Proc. Natl. Acad. Sci. USA 90:10331037.
28. Gulig, P. A.,, H. Danbara,, D. G. Guiney,, A. J. Lax,, F. Norel,, and M. Rhen. 1993. Molecular analysis of spv virulence genes of the salmonella virulence plasmids. Mol. Microbiol. 7:825830.
29. Gulig, P. A.,, and T. J. Doyle. 1993. The Salmonella typhimurium virulence plamid increases the growth rate of salmonellae in mice. Infect. Immun. 61:504511.
30. Jones, B. D.,, and S. Falkow. Personal communication.
31. Jones, B. D.,, C. A. Lee,, and S. Falkow. 1992. Invasion of Salmonella typhimurium is affected by the direction of flagellar rotation. Infect. Immun. 60:24752480.
32. Lee, C. A., and S. Falkow. 1990. The ability of Salmonella to enter mammalian cells is affected by bacterial growth state. Proc. Natl. Acad. Sci. USA 87:43044308.
33. Lee, C. A.,, B. D. Jones,, and S. Falkow. 1992. Identification of a Salmonella typhimurium invasion locus by selection for hyperinvasive mutants. Proc. Natl. Acad. Sci. USA 89:18471851.
34. Litwin, C. M.,, and S. B. Calderwood. 1993. Role of iron in regulation of virulence genes. Clin. Microbiol. Rev. 6:137149.
35. Lockman, H. A.,, and R. Curtiss III. 1990. Salmonella typhimurium mutants lacking flagella or motility remain virulent in BALB/c mice. Infect. Immun. 58:137143.
36. Lockman, H. A.,, and R. Curtiss III. 1992. Virulence of non-type 1-fimbriated and nonfimbriated nonflagellated Salmonella typhimurium mutants in murine typhoid fever. Infect. Immun. 60: 491496.
37. Macnab, R. M. 1992. Genetics and biogenesis of bacterial flagella. Annu. Rev. Genet. 26:131158.
38. Mahan, M. J.,, J. M. Slauch,, and J. J. Mekalanos. 1993. Selection of bacterial virulence genes that are specifically induced in host tissues. Science 259:686688.
39. Mekalanos, J. J. 1992. Environmental signals controlling the expression of virulence determinants in bacteria. J. Bacteriol. 174:17.
40. Miller, L.,, D. Maskell,, C. Hormaeche,, K. Johnson,, D. Pickard,, and G. Dougan. 1989. Isolation of orally attenuated Salmonella typhimurium following TnphoA mutagenesis. Infect. Immun. 57: 27582763.
41. Miller, S. I.,, A. M. Kukral,, and J. J. Mekalanos. 1989. A two component regulatory system (phoP and phoQ) controls Salmonella typhimurium virulence. Proc. Natl. Acad. Sci. USA 86:50545058.
42. Miller, S. I.,, and J. J. Mekalanos. 1990. Constitutive expression of the PhoP regulon attenuates Salmonella virulence and survival within macrophages. J. Bacteriol. 172:24852490.
43. Miller, S. I.,, W. S. Pulkkinen,, M. E. Selsted,, and J. J. Mekalanos. 1990. Characterization of defensin resistance phenotypes associated with mutations in the phoP virulence regulon of Salmonella typhimurium. Infect. Immun. 58:37063710.
44. Miller, V. M.,, K. B. Beer,, W. P. Loomis,, J. A. Olson,, and S. I. Miller. 1992. An unusual pagC--ln-phoA mutation leads to an invasion- and virulence-defective phenotype in Salmonellae. Infect. Immun. 60:37633770.
45. Mills, D. M.,, and C. A. Lee. Unpublished data.
46. Pace, J.,, M. J. Hayman,, and J. E. Galán. 1993. Signal transduction and invasion of epithelial cells by S. typhimurium. Cell 72:505514.
47. Pulkkinen, W. S.,, and S. I. Miller. 1991. A Salmonella typhimurium virulence protein is similar to a Yersinia enterocolitica invasion protein and a bacteriophage lambda outer membrane protein. J. Bacteriol. 173:8693.
48. Sampson, B. A.,, and E. C. Gotschlich. 1992. Elimination of the vitamin B12 uptake or synthesis pathway does not diminish the virulence of Escherichia coli Kl or Salmonella typhimurium in three model systems. Infect. Immun. 60:35183522.
49. Siitonen, A.,, and M. Nurminen. 1992. Bacterial motility is a colonization factor in experimental urinary tract infection. Infect. Immun. 60:39183920.
50. Sinai, A. P.,, and P. M. Bavoil. 1993. Hyper-invasive mutants define a novel pho-regulated invasion pathway in Escherichia coli. Mol. Microbiol. 10:11251137.
51. Stocker, B. A. D.,, and P. H. Mäkëla. 1986. Genetic determination of bacterial virulence, with special reference to Salmonella. Curr. Top. Microbiol. Immunol. 124:149172.
52. Stone, B. J.,, C. M. Garcia,, J. L. Badger,, T. Hassett,, R. I. F. Smith,, and V. L. Miller. 1992. Identification of novel loci affecting entry of Salmonella enteritidis into eukaryotic cells. J. Bacteriol. 174:39453952.
53. Straus, D.,, and F. M. Ausubel. 1990. Genomic substraction for cloning DNA corresponding to deletion mutations. Proc. Natl. Acad. Sci. USA 87:18891893.
54. Takeuchi, A. 1967. Electron microscope studies of experimental Salmonella infection. I. Penetration into the intestinal epithelium by Salmonella typhimurium. Am. J. Pathol. 50:109136.
55. Vidal, S. M.,, D. Malo,, K. Vogan,, E. Skamene,, and P. Gros. 1993. Natural resistance to infection with intracellular parasites: isolation of a candidate for Beg. Cell 73:469485.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error