Chapter 16 : Cell Biology of Salmonella Pathogenesis

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Cell Biology of Salmonella Pathogenesis, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818340/9781555810825_Chap16-1.gif /docserver/preview/fulltext/10.1128/9781555818340/9781555810825_Chap16-2.gif


species are masters at subverting various host processes for their own use. The interactions that occur between species and host cells are complex. They have been studied more extensively with nonphagocytic cells such as epithelial cells than with macrophages, although some of the processes are common between these two cell types. For the review in this chapter, the author has concentrated on the events that occur in the host cell rather than to focus on the bacterial genes that mediate these events. Study of the cell biology of these interactions has revealed several interesting processes and provided new tools for the study of eukaryotic cell function. It has recently been shown that species trigger extensive membrane ruffling and macropinocytosis in macrophages and enter into a spacious phagosome. Bacterial invasins appear to significantly enhance uptake into phagocytic cells such as macrophages, since noninvasive mutants have decreased levels of invasion into cultured macrophages. One recurring theme about all of these exploitations of host cell function is that the bacteria achieve the desired effect by "nonconventional" mechanisms, as viewed by cell biologists. The advancement of this field is heavily dependent on other fields, especially cell biology. In addition, further characterization of the bacterial products that are involved in the various stages of infection will enhance the cell biology studies.

Citation: Finlay B. 1994. Cell Biology of Salmonella Pathogenesis, p 249-261. In Miller V, Kaper J, Portnoy D, Isberg R (ed), Molecular Genetics of Bacterial Pathogenesis. ASM Press, Washington, DC. doi: 10.1128/9781555818340.ch16
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1
Figure 1

Transmission electron micrograph of entering polarized Caco-2 human intestinal epithelial cells. Note the microvillus distortions and the bacterium localized within membrane-bound inclusions. Bar, 1 μm.

Citation: Finlay B. 1994. Cell Biology of Salmonella Pathogenesis, p 249-261. In Miller V, Kaper J, Portnoy D, Isberg R (ed), Molecular Genetics of Bacterial Pathogenesis. ASM Press, Washington, DC. doi: 10.1128/9781555818340.ch16
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

triggers capping of host membrane proteins in HeLa cells. (A) Phase-contrast micrograph of invading HeLa cells after 30 min. (В) Corresponding fluorescent micrograph after staining with antibodies to the cell surface-associated marker, the class I major histocompatibility complex. Note the capped localization of this marker corresponding to the area of bacterial invasion. Bar, 10 μm.

Citation: Finlay B. 1994. Cell Biology of Salmonella Pathogenesis, p 249-261. In Miller V, Kaper J, Portnoy D, Isberg R (ed), Molecular Genetics of Bacterial Pathogenesis. ASM Press, Washington, DC. doi: 10.1128/9781555818340.ch16
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Fluorescent confocal micrograph of filamentous structures in HeLa epithelial cells infected with . Cells were infected for 6 h and then fixed and labeled with antibodies to a lysosomal glycoprotein (Igp) (A) or anti- lipopolysaccharide (B). Note the blebs associated with the filamentous structures distal to intracellular bacteria. Bar, 10 μm.

Citation: Finlay B. 1994. Cell Biology of Salmonella Pathogenesis, p 249-261. In Miller V, Kaper J, Portnoy D, Isberg R (ed), Molecular Genetics of Bacterial Pathogenesis. ASM Press, Washington, DC. doi: 10.1128/9781555818340.ch16
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Abshire, K. Z.,, and F. C. Neidhardt. 1993. Growth rate paradox of Salmonella typhimurium within host macrophages. J. Bacteriol. 175:37443748.
2. Alpuche-Aranda, C. M.,, E. L. Racoonsin,, J. A. Swanson,, and S. I. Miller. 1994. Salmonella stimulate macrophage macropinocytosis and persist within spacious phagosomes. J. Exp. Med. 179: 601608.
3. Alpuche-Aranda, C. M.,, J. A. Swanson,, W. P. Loomis,, and S. I. Miller. 1992. Salmonella typhimurium activates virulence gene transcription within acidified macrophage phagosomes. Proc. Natl. Acad. Sci. USA 89:1007910083.
4. Betts, J.,, and B. B. Finley. 1992. Identification of Salmonella typhimurium invasiveness loci. Can. J. Microbiol. 38:852857.
5. Bliska, J. B.,, J. E. Galan,, and S. Falkow. 1993. Signal transduction in the mammalian cell during bacterial attachment and entry. Cell 73:903920.
6. Buchmeier, N. A., and F. Heffron. 1989. Intracellular survival of wild-type Salmonella typhimurium and macrophage-sensitive mutants in diverse populations of macrophages. Infect. Immun. 57:17.
7. Buchmeier, N. A.,, and F. Heffron. 1991. Inhibition of macrophage phagosome-lysosome fusion by Salmonella typhimurium. Infect. Immun. 59:22322238.
8. Buchmeier, N. A.,, C. J. Lipps,, M. Y. So,, and F. Heffron. 1993. Recombination-deficient mutants of Salmonella typhimurium are avirulent and sensitive to the oxidative burst of macrophages. Mol. Microbiol. 7:933936.
9. Carrol, M. E.,, P. S. Jackett,, V. R. Aber,, and D. B. Lowrie. 1979. Phagolysosome formation, cyclic adenosine 3',5'-monophosphate and the fate of Salmonella typhimurium within mouse peritoneal macrophages. J. Gen. Microbiol. 110:421429.
10. Conlan, J. W.,, and R. J. North. 1992. Early pathogenesis of infection in the liver with the facultative intracellular bacteria Listeria monocytogenes, Francisella tularensis, and Salmonella typhimurium involves lysis of infected hepatocytes by leukocyte. Infect. Immun. 60:51645171.
11. Fields, P. I.,, E. A. Groisman,, and F. Heffron. 1989. A Salmonella locus that controls resistance to microbicidal proteins from phagocytic cells. Science 243:10591062.
12. Fields, P. I.,, R. V. Swanson,, C. G. Haidaris,, and F. Heffron. 1986. Mutants of Salmonella typhimurium that cannot survive within the macrophage are avirulent. Proc. Natl. Acad. Sci. USA 83: 51895193.
13. Finlay, B. B. Molecular and cellular mechanisms oí Salmonella pathogenesis. Curr. Top. Microbiol., in press.
14. Finlay, B. B.,, and S. Falkow. 1988. Comparison of the invasion strategies used by Salmonella cholerae-suis, Shigella flexneri, and Yersinia enterocolitica to enter cultured animal cells: endosóme acidification is not required for bacterial invasion or intracellular replication. Biochimie 70: 10891099.
15. Finlay, B. B.,, and S. Falkow. 1990. Salmonella interactions with polarized human intestinal Caco-2 epithelial cells. J. Infect. Dis. 162:10961106.
16. Finlay, B. B.,, J. Fry,, E. P. Rock,, and S. Falkow. 1989. Passage of Salmonella through polarized epithelial cells: role of the host and bacterium. J. Cell Sci. ll(Suppl.):99107.
17. Finlay, B. B.,, B. Gumbiner,, and S. Falkow. 1988. Penetration of Salmonella through a polarized Madin-Darby canine kidney epithelial cell monolayer. J. Cell Biol. 107:221230.
18. Finlay, B. B.,, S. Ruschkowski,, and S. Dedhar. 1991. Cytoskeletal rearrangements accompanying Salmonella entry into epithelial cells. J. Cell Sci. 99:283296.
19. Finlay, B. B.,, M. N. Starnbach,, C. L. Francis,, B. A. D. Stocker,, S. Chatfield,, G. Dougan,, and S. Falkow. 1988. Identification and characterization of TnphoA mutants of Salmonella that are unable to pass through a polarized MDCK epithelial cell monolayer. Mol. Microbiol. 2:757766.
20. Francis, C. L.,, T. A. Ryan,, B. D. Jones,, S. J. Smith,, and S. Falkow. 1993. Ruffles induced by Salmonella and other stimuli direct macropinocytosis of bacteria. Nature (London) 364:639642.
21. Francis, C. L.,, M. N. Starnbach,, and S. Falkow. 1992. Morphological and cytoskeletal changes in epithelial cells occur immediately upon interaction with Salmonella typhimurium grown under low-oxygen conditions. Mol. Microbiol. 6:30773087.
22. Gahring, L. C.,, F. Heffron,, B. B. Finlay,, and S. Falkow. 1990. Invasion and replication oí Salmonella typhimurium in animal cells. Infect. Immun. 58:443448.
23. Galán, J. E.,, and R. Curtiss III. 1989. Cloning and molecular characterization of genes whose products allow Salmonella typhimurium to penetrate tissue culture cells. Proc. Natl. Acad. Sci. USA 86:63836387.
24. Galan, J. E.,, C. Ginocchio,, and P. Costeas. 1992. Molecular and functional characterization of the Salmonella invasion gene invA: homology of InvA to members of a new protein family. J. Bacteriol. 174:43384349.
25. Galan, J. E.,, J. Pace,, and M. J. Hayman. 1992. Involvement of the epidermal growth factor receptor in the invasion of cultured mammalian cells by Salmonella typhimurium. Nature (London) 357: 588589.
26. Garcia del Portillo, F.,, J. W. Foster,, M. E. Maguire,, and B. B. Finlay. 1992. Characterization of the micro-environment of Salmonella typhimurium-containing vacuoles within MDCK epithelial cells. Mol. Microbiol. 6:32893297.
27. Garcia-del Portillo, F.,, M. G. Pucciarelli,, W. A. Jefferies,, and B. B. Finlay. Salmonella typhimurium induces selective aggregation and internalization of host cell surface proteins during invasion of epithelial cells. J. Cell Sci., in press.
28. Garcia del Portillo, F.,, M. B. Zwick,, K. Y. Leung,, and B. B. Finlay. 1993. Salmonella induces the formation of filamentous structures containing lysosomal membrane glycoproteins in epithelial cells. Proc. Natl. Acad. Sci. USA 90:1054410548.
29. Ginocchio, C.,, J. Pace,, and J. E. Galan. 1992. Identification and molecular characterization of a Salmonella typhimurium gene involved in triggering the internalization of salmonellae into cultured epithelial cells. Proc. Natl. Acad. Sci. USA 89:59765980.
30. Groisman, E. A.,, and H. Ochman. 1993. Cognate gene clusters govern invasion of host epithelial cells by Salmonella typhimurium and Shigella flexneri. EMBO J. 10:37793787.
31. Ishibashi, Y.,, and T. Arai. 1990. Specific inhibition of phagosome-lysosome fusion in murine macrophages mediated by Salmonella typhimurium infection. FEMS Microbiol. Immunol. 2: 3543.
32. Ishibashi, Y.,, K. Nobuta,, and T. Arai. 1992. Mutant of Salmonella typhimurium lacking the inhibitory function for phagosome-lysosome fusion in murine macrophages. Microb. Pathog. 13: 317323.
33. Jones, B. D.,, H. F. Paterson,, A. Hall,, and S. Falkow. 1993. Salmonella typhimurium induces membrane ruffling by a growth factor-receptor-independent mechanism. Proc. Natl. Acad. Sci. USA 90:1039010394.
34. Kihlstrom, E.,, and L. Nilsson. 1977. Endocytosis of Salmonella typhimurium 395 MS and MR10 by HeLa cells. Acta Pathol. Microbiol. Scand. Sect. B. 85:322328.
35. Kohbata, S.,, H. Yokoyama,, and E. Yabuuchi. 1986. Cytopathogenic effect of Salmonella typhi GIFU 10007 on M cells of murine ileal Peyer's patches in ligated ileal loops: an ultrastructural study. Microbiol. Immunol. 30:12251237.
36. Leung, K. Y.,, and B. B. Finlay. 1991. Intracellular replication is essential for the virulence of Salmonella typhimurium. Proc. Natl. Acad. Sci. USA 88:1147011474.
37. Libby, S. J.,, W. Goebel,, A. Ludwig,, N. Buchmeier,, F. Bowe,, F. C. Fang,, D. G. Guiney,, J. G. Songer,, and F. Heffron. 1994. A cytolysin encoded by Salmonella is required for survival within macrophages. Proc. Natl. Acad. Sci. USA 91:489493.
38. Miller, S. I. 1991. PhoP/PhoQ: macrophage-specific modulators of Salmonella virulence? Mol. Microbiol. 5:20732078.
39. Miller, S. I.,, A. M. Kukral,, and J. J. Mekalanos. 1989. A two-component regulatory system (phoP phoQ) controls Salmonella typhimurium virulence. Proc. Natl. Acad. Sci. USA 86:50545058.
40. Pace, J.,, M. J. Hayman,, and J. E. Galan. 1993. Signal transduction and invasion of epithelial cells by S. typhimurium. Cell 72:505514.
41. Popiel, I.,, and P. C. Turnbull. 1985. Passage of Salmonella enteritidis and Salmonella thompson through chick ileocecal mucosa. Infect. Immun. 47:786792.
42. Rosenshine, I.,, V. Duronio,, and B. B. Finlay. 1992. Tyrosine protein kinase inhibitors block invasin-promoted bacterial uptake by epithelial cells. Infect. Immun. 60:22112217.
43. Rosenshine, I.,, and B. B. Finlay. 1993. Exploitation of host signal transduction pathways and cytoskeletal functions by invasive bacteria. Bioessays 15:1724.
44. Ruschkowski, S.,, I. Rosenshine,, and B. B. Finlay. 1992. Salmonella typhimurium induces an inositol phosphate flux in infected epithelial cells. FEMS Microbiol. Lett. 95:121126.
45. Stinavage, P. S.,, L. E. Martin,, and J. K. Spitznagel. 1990. A 59 kilodalton outer membrane protein of Salmonella typhimurium protects against oxidative intraleukocytic killing due to human neutrophils. Mol. Microbiol. 4:283293.
46. Takeuchi, A. 1967. Electron microscope studies of experimental Salmonella infection. I. Penetration into the intestinal epithelium by Salmonella typhimurium. Am. J. Pathol. 50:109136.
47. Van Gijsegem, F.,, S. Genin,, and C. Boucher. 1993. Conservation of secretion pathways for pathogenicity determinants of plant and animal bacteria. Trends Microbiol. 1:175180.
48. Yokoyama, H.,, M. Ikedo,, S. Kohbata,, T. Ezaki,, and E. Yabuuchi. 1987. An ultrastructural study of HeLa cell invasion with Salmonella typhi GIFU 10007. Microbiol. Immunol. 31:111.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error