1887

Chapter 27 : Coordinate Regulation of Virulence in Bordetella pertussis Mediated by the vir (bvg) Locus

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Coordinate Regulation of Virulence in Bordetella pertussis Mediated by the vir (bvg) Locus, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818340/9781555810825_Chap27-1.gif /docserver/preview/fulltext/10.1128/9781555818340/9781555810825_Chap27-2.gif

Abstract:

Leslie and Gardner reported in 1931 that could grow in any of four different phases (phases I to IV). These phases were distinguished by colony morphology, hemolysis, and antigenic profile. Subsequent reports differed on the exact number and nature of the phases of . By 1983 the biochemical characterization of had defined several virulence-associated proteins. Pertussis toxin, perceived to be one of the most important, had been purified, characterized biochemically, and shown to be an ADP-ribosylating toxin with host GTP-binding proteins as cellular targets. Filamentous hemagglutinin (FHA), believed to be important in the specific adherence that demonstrates to the ciliated epithelium, had also been purified. It was also known that made fimbriae and a novel toxin, the extracytoplasmic adenylate cyclase toxin. The original DNA sequence predicted the presence of three fevg-encoded polypeptides, two of which shared significant sequence similarity with a large family of bacterial regulatory proteins commonly called "two-component" systems. The and operons are distinguished from other -regulated genes by their ability to respond to the presence of BvgA and BvgS in . The gene products function as transcriptional activators that control the expression of several loci, including the structural gene for an alternative sigma factor, sigma F. Sigma F then activates late genes which include the flagellin locus. is the first-characterized example of an auxiliary regulatory locus within the regulon.

Citation: Stibitz S, Miller J. 1994. Coordinate Regulation of Virulence in Bordetella pertussis Mediated by the vir (bvg) Locus, p 407-422. In Miller V, Kaper J, Portnoy D, Isberg R (ed), Molecular Genetics of Bacterial Pathogenesis. ASM Press, Washington, DC. doi: 10.1128/9781555818340.ch27

Key Concept Ranking

Bacterial Proteins
0.5962293
Transcription Start Site
0.5873189
Adenylate Cyclase Toxin
0.54545456
0.5962293
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Features of the BvgA and BvgS proteins. The portion of BvgS between the two hydrophobic transmembrane sequences (TM) is located in the periplasm, while the remainder of BvgS and BvgA are cytoplasmic. The conserved histidine (H) and ATP-binding motif present in transmitter modules are indicated along with the conserved aspartate residues (D) found in receiver modules. The BvgS linker is the site at which signal-insensitive mutations map. The alanine- and proline-rich sequences (A/P #1, A/P #2) connecting the transmitter, receiver, and C-terminal domains are likely to be confor-mationally flexible, allowing interdomain interactions. The C-terminal region of BvgA contains a helix-turn-helix (HTH) motif, aa, amino acids.

Citation: Stibitz S, Miller J. 1994. Coordinate Regulation of Virulence in Bordetella pertussis Mediated by the vir (bvg) Locus, p 407-422. In Miller V, Kaper J, Portnoy D, Isberg R (ed), Molecular Genetics of Bacterial Pathogenesis. ASM Press, Washington, DC. doi: 10.1128/9781555818340.ch27
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Model for the BvgS-BvgA phosphorylation cascade. The linker (L), transmitter (T), receiver (R), and C-terminal (C) domains of BvgS are indicated, it is proposed that BvgS autophosphorylates at the conserved histidine (H) of the transmitter. Phosphorylation of the conserved aspartate (D) in the BvgS receiver is then required for phosphotransfer to the receiver of BvgA. Phosphorylated BvgA is then able to activate or repress regulated promoters. HTH, helix-turn-helix motif; CM, cytoplasmic membrane. Adapted from reference .

Citation: Stibitz S, Miller J. 1994. Coordinate Regulation of Virulence in Bordetella pertussis Mediated by the vir (bvg) Locus, p 407-422. In Miller V, Kaper J, Portnoy D, Isberg R (ed), Molecular Genetics of Bacterial Pathogenesis. ASM Press, Washington, DC. doi: 10.1128/9781555818340.ch27
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Model for the regulation of ( ). Transcription of the operon initiates in the Bvg phase from the promoter. In the Bvg+ phase, BvgA (A) is able to direct RNA polymerase (RNAP) to activate transcription of the operons at the and promoters. Relative levels of transcription are represented by arrow thickness. Locations of inverted and direct repeats in the and intergenic regions are illustrated by small numbered arrows, and the sequences of these repeats are given at the bottom of the figure. Sites of BvgA-dependent protection from DNase I digestion are indicated by the hatched rectangles ( ).

Citation: Stibitz S, Miller J. 1994. Coordinate Regulation of Virulence in Bordetella pertussis Mediated by the vir (bvg) Locus, p 407-422. In Miller V, Kaper J, Portnoy D, Isberg R (ed), Molecular Genetics of Bacterial Pathogenesis. ASM Press, Washington, DC. doi: 10.1128/9781555818340.ch27
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

BvgAS-mediated biphasic alteration of and In the Bvg phase, both species express a variety of adhesins and toxins encoded by -activated genes and operons. In the Bvg- phase, which results from modulation or null mutations in the locus, -activated virulence factors are no longer expressed and loci and flagellar genes are induced.

Citation: Stibitz S, Miller J. 1994. Coordinate Regulation of Virulence in Bordetella pertussis Mediated by the vir (bvg) Locus, p 407-422. In Miller V, Kaper J, Portnoy D, Isberg R (ed), Molecular Genetics of Bacterial Pathogenesis. ASM Press, Washington, DC. doi: 10.1128/9781555818340.ch27
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818340.chap27
1. Agiato Foster, L. A.,, P. C. Giardina,, M. Wang,, B. J. Akerley,, J. F. Miller,, and D. W. Dyer. 1994. Siderophore biosynthesis in Bordetella bronchiseptica is controlled by the bvg regulon, abstr. D-178, p. 127. Abstr. 94th Gen. Meet. Am. Soc. Microbiol. 1994. American Society for Microbiology, Washington, D.C..
2. Akerley, B. J.,, and J. F. Miller. 1993. Flagellin transcription in Bordetella bronchiseptica is regulated by the BvgAS virulence control system. J. Bacteriol. 175:34683479.
3. Akerley, B. J.,, and J. F. Miller. Unpublished data.
4. Akerley, B. J.,, D. M. Monack,, S. Falkow,, and J. F. Miller. 1992. The bvgAS locus negatively controls motility and synthesis of flagella in Bordetella bronchiseptica. J. Bacteriol. 174:980990.
5. Arico, B.,, J. F. Miller,, C. Roy,, S. Stibitz,, D. Monack,, S. Falkow,, R. Gross,, and R. Rappuoli. 1989. Sequences required for expression of Bordetella pertussis virulence factors share homology with prokaryotic signal transduction proteins. Proc. Natl. Acad. Sci. USA 86:66716675.
6. Barry, E. M.,, A. A. Weiss,, I. E. Ehrmann,, M. C. Gray,, E. L. Hewlett,, and M. S. Goodwin. 1991. Bordetella pertussis adenylate cyclase toxin and hemolytic activities require a second gene, cyaC, for activation. J. Bacteriol. 173:720726.
7. Beattie, D. T.,, S. Knapp,, and J. J. Mekalanos. 1990. Evidence that modulation requires sequences downstream of the promoters of two vi'r-repressed genes of Bordetella pertussis. J. Bacteriol. 172: 69977004.
8. Beattie, D. T.,, M. J. Mahan,, and J. J. Mekalanos. 1993. Repressor binding to a regulatory site in the DNA coding sequence is sufficient to confer transcriptional regulation of the vir-repressed genes (vrg genes) in Bordetella pertussis. J. Bacteriol. 175:519527.
9. Beattie, D. T.,, R. Shahin,, and J. J. Mekalanos. 1992. A v/r-repressed gene of Bordetella pertussis is required for virulence. Infect. Immun. 60:571577.
10. Blom, J.,, G. A. Hansen,, and F. M. Poulsen. 1983. Morphology of cells and hemagglutinogens of Bordetella species: resolution of substructural units in fimbriae of Bordetella pertussis. Infect Immun. 42:308317.
11. Bordet, J.,, and O. Gengou. 1906. Le microbe de la Coqueluche. Ann. Inst. Pasteur 20:731741.
12. Carbonetti, N. H.,, N. Khelef,, N. Guiso,, and R. Gross. 1993. A phase variant of Bordetella pertussis with a mutation in a new locus involved in the regulation of pertussis toxin and adenylate cyclase toxin expression. J. Bacteriol. 175:66796688.
13. Chang, C.-H.,, and S. C. Winans. 1992. Functional roles assigned to the periplasmic, linker, and receiver domains of the Agrobacterium tumefaciens VirA protein. J. Bacteriol. 174:70337039.
14. Confer, D. L., and J. W. Eaton. 1982. Phagocyte impotence caused by an invasive bacterial adenylate cyclase. Science 217:948950.
15. Cowell, J. L.,, Y. Sato,, H. Sato,, B. An der Lan,, and C. R. Manclark,. 1982. Separation, purification, and properties of the filamentous hemagglutinin and the leukocytosis promoting factor-hemaggluti-nin from Bordetella pertussis, p. 371379. In J. B. Robbins,, J. C. Hill,, and J. C. Sadoff (ed.), Bacterial Vaccines. Thieme-Stratton Inc., New York.
16. Glaser, P.,, H. Sakamoto,, J. Bellalou,, A. UUmann,, and A. Danchin. 1988. Secretion of cyclolysin, the calmodulin-sensitive adenylate cyclase-haemolysin bifunctional protein of Bordetella pertussis. EMBO J. 7:39974004.
17. Goyard, S.,, and A. Ullmann. 1991. Analysis of Bordetella pertussis cya operon regulation by use of cya-lac fusions. FEMS Microbiol. Lett. 77:251256.
18. Gross, R.,, N. H. Carbonetti,, R. Rossi,, and R. Rappuoli. 1992. Functional analysis of the pertussis toxin promoter. Res. Microbiol. 143:671681.
19. Gross, R.,, and R. Rappuoli. 1988. Positive regulation of pertussis toxin expression. Proc. Natl. Acad. Sci. USA 85:39133917.
20. Hrabak, E. M.,, and D. K. Willis. 1992. The lemA gene required for pathogenicity of Pseudomonas syringae pv. syringae on bean is a member of a family of two-component regulators. J. Bacteriol. 174:30113020.
21. Huh, Y. J.,, and A. A. Weiss. 1991. A 23-kilodalton protein, distinct from BvgA, expresses by virulent Bordetella pertussis binds to the promoter region of v/r-regulated genes. Infect. Immun. 59:23892395.
22. Iuchi, S.,, Z. Matsuda,, T. Fujiwara,, and E. C. C. Lin. 1990. The arcB gene of Escherichia coli encodes a sensor-regulator protein for anaerobic repression of the arc modulon. Mol. Microbiol. 4:715727.
23. Kasuga, T.,, Y. Nakase,, and K. Ukishima. 1953. Studies on Haemophilus pertussis. Part I. Antigen structure of H. pertussis and its phases. Kitasato Arch. Exp. Med. 26:121134.
24. Katada, T.,, and M. Ui. 1982. Direct modification of the membrane adenylate cyclase system by islet-activating protein due to ADP-ribosylation of a membrane protein. Proc. Natl. Acad. Sci. USA 79:31293133.
25. Knapp, S.,, and J. J. Mekalanos. 1988. Two trans-acting regulatory genes (vir and mod) control antigenic modulation in Bordetella pertussis. J. Bacteriol. 170:50595066.
26. Lacey, B. W. 1960. Antigenic modulation of Bordetella pertussis. J. Hyg. 31:423434.
27. Laoide, B. M.,, and A. Ullmann. 1990. Virulence dependent and independent regulation of the Bordetella pertussis cya operon. EMBO J. 9:9991005.
28. Leslie, P. H.,, and A. D. Gardner. 1931. The phases of Haemophilus pertussis. J. Hyg. 31:423434.
29. Livey, I.,, C. J. Duggleby,, and A. Robinson. 1987. Cloning and nucleotide sequence analysis of the serotype 2 fimbrial subunit gene of Bordetella pertussis. Mol. Microbiol. 1:203209.
30. Locht, C.,, M.-C. Geoffroy,, and G. Renauld. 1992. Common accessory genes for the Bordetella pertussis filamentous hemagglutinin and fimbriae share sequence similarities with the papC and papD gene families. EMBO J. 11:31753183.
31. Locht, C.,, and J. M. Keith. 1986. Pertussis toxin gene: nucleotide sequence and genetic organization. Science 232:12581264.
32.. McCleary, W. R.,, and D. R. Zusman. 1990. FrzE of Myxococcus xanthus is homologous to both CheA and CheY of Salmonella typimurium. Proc. Natl. Acad. Sci. USA 87:58985902.
33. Miller, J. F.,, S. A. Johnson,, W. J. Black,, D. T. Beattie,, J. J. Mekalanos,, and S. Falkow. 1992. Constitutive sensory transduction mutations in the Bordetella pertussis bvgS gene. J. Bacteriol. 174:970979.
34. Miller, J. F.,, C. R. Roy,, and S. Falkow. 1989. Analysis of Bordetella pertussis virulence gene regulation by use of transcriptional fusions in Escherichia coli. J. Bacteriol. 171:63456348.
35. Miller, J. F.,, C. R. Roy,, and S. Falkow,. 1991. Regulation of fhaB, bvg, and ptx transcription in E. coli: a comparative analysis, p. 217224. In C. R. Manclark (ed.), Proceedings of the Sixth International Symposium on Pertussis. U.S. Department of Health and Human Services, Bethesda, Md..
36. Monack, D. M.,, B. Arico,, R. Rappuoli,, and S. Falkow. 1989. Phase variants of Bordetella bronchiseptica arise by spontaneous deletions in the vir locus. Mol. Microbiol. 3:17191728.
37. Mooi, F. R.,, A. terAvest,, and H. G. J. van der Heide. 1990. Structure of the Bordetella pertussis gene coding for the serotype 3 fimbrial subunit. FEMS Microbiol. Lett. 55:285289.
38. Moreno-Lopez, M. 1952. El género Bordetella. Microbiol. Esp. 5:177181.
39. Nicosia, A.,, M. Perugini,, C. Franzini,, M. C. Casagli,, M. G. Borri,, G. Antoni,, M. Almoni,, P. Neri,, G. Ratti,, and R. Rappuoli. 1986. Cloning and sequencing of the pertussis toxin genes: operon structure and gene duplication. Proc. Natl. Acad. Sci. USA 83:46314635.
40. Parkinson, J. S.,, and E. C. Kofoid. 1992. Communication modules in bacterial signaling proteins. Anna. Rev. Genet. 26:71112.
41. Pedroni, P.,, B. Riboli,, F. de Ferra,, G. Grandi,, S. Toma,, B. Arico,, and R. Rappuoli. 1988. Cloning of a novel pilin-like gene from Bordetella pertussis: homology to the fim.2 gene. Mol. Microbiol. 2:539543.
42. Roy, C. R.,, and S. Falkow. 1991. Identification of Bordetella pertussis regulatory sequences required for transcriptional activation of the fhaB gene and autoregulation of the bvgAS operon. J. Bacteriol. 173:23852392.
43. Roy, C. R.,, J. F. Miller,, and S. Falkow. 1989. The bvgA gene of Bordetella pertussis encodes a transcriptional activator required for coordinate regulation of several virulence genes. J. Bacteriol. 171:63386344.
44. Roy, C. R.,, J. F. Miller,, and S. Falkow. 1990. Autogenous regulation of the bvgABC operon of the bacterial pathogen Bordetella pertussis. Proc. Natl. Acad. Sci. USA 87:37633767.
45. Scarlato, V. Unpublished data.
46. Scarlato, V.,, B. Arico,, and R. Rappuoli. 1993. DNA topology affects transcriptional regulation of the pertussis toxin gene of Bordetella pertussis in Escherichia coli and in vitro. J. Bacteriol. 175: 47644771.
47. Scarlato, V.,, A. Prugnola,, B. Arico,, and R. Rappuoli. 1990. Positive transcriptional feedback at the bvg locus controls expression of virulence factors in Bordetella pertussis. Proc. Natl. Acad. Sci. USA 87:67536757.
48. Stibitz, S. Submitted for publication.
49. Stibitz, S. Submitted for publication.
50. Stibitz, S. Unpublished data.
51. Stibitz, S.,, W. Aaronson,, D. Monack,, and S. Falkow. 1989. Phase-variation in Bordetella pertussis by frameshift mutation in a gene for a novel two-component system. Nature (London) 338:226229.
52. Stibitz, S.,, and N. Carbonetti. Unpublished data.
53. Stibitz, S.,, A. A. Weiss,, and S. Falkow. 1988. Genetic analysis of a region of the Bordetella pertussis chromosome encoding filamentous hemagglutinin and the pleiotropic regulatory locus vir. J. Bacteriol. 170:29042913.
54. Stibitz, S.,, and M.-S. Yang. 1991. Subcellular localization and immunological detection of proteins encoded by the vir locus of Bordetella pertussis. J. Bacteriol. 173:42884296.
55. Tamura, M.,, K. Nogimori,, S. Murai,, M. Yajima,, K. Ito,, T. Katada,, M. Ui,, and S. Ishii. 1982. Subunit structure of islet-activating protein, pertussis toxin, in conformity with the A-B model. Biochemistry 21:55165522.
56. Uhl, M. A.,, and J. F. Miller. 1994. Autophosphorylation and phosphotransfer in the Bordetella pertussis BvgAS signal transduction cascade. Proc. Natl. Acad. Sci. USA 91:11631167.
57. Weiss, A. A.,, and S. Falkow. 1984. Genetic analysis of phase change in Bordetella pertussis. Infect. Immun. 43:263269.
58. Weiss, A. A.,, E. L. Hewlett,, G. A. Meyers,, and S. Falkow. 1983. Tn5-induced mutations affecting virulence factors of Bordetella pertussis. Infect. Immun. 42:3341.
59. Weiss, A. A.,, E. L. Hewlett,, G. A. Myers,, and S. Falkow. 1984. Pertussis toxin and extracytoplasmic adenylate cyclase as virulence factors of Bordetella pertussis. J. Infect. Dis. 150:219222.
60. Willems, R.,, A. Paul,, H. G. van der Heide,, A. R. ter Avest,, and F. R. Mooi. 1990. Fimbrial phase variation in Bordetella pertussis: a novel mechanism for transcriptional regulation. EMBO J. 9: 28032809.
61. Willems, R. J. L.,, H. G. J. vanderHeide,, and F. R. Mooi. 1992. Characterization of a Bordetella pertussis fimbrial gene cluster which is located directly downstream of the filamentous haemagglut-inin gene. Mol. Microbiol. 6:26612671.
62.Wumen. 1228. Wumen's verse on the 16th koan of the Wumenguan "Putting on a formal vestment at the sound of a bell." (In T. Cleary [translation and commentary]. 1993. No Barrier: Unlocking the Zen Koan. Bantam Books, New York.).

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error