1887

Chapter 28 : Methylation-Dependent and Lrp-Dependent Fimbrial Gene Regulation in Escherichia coli

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Methylation-Dependent and Lrp-Dependent Fimbrial Gene Regulation in Escherichia coli, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818340/9781555810825_Chap28-1.gif /docserver/preview/fulltext/10.1128/9781555818340/9781555810825_Chap28-2.gif

Abstract:

The majority of bacterial pathogens and opportunists colonize the mucosal surfaces of their hosts by expressing specific adhesins that bind to host target receptors. Many urinary tract isolates, in particular those that cause kidney infections, contain multiple pyelonephritis-associated pili () operons, each of which is capable of expressing and assembling cell surface fimbriae. Lrp is a regulatory protein that exerts global control over as many as 50 genes in . In some cases, such as , switching, and pilin transcription, Lrp is a positive regulator. In other cases, such as , , and , Lrp acts negatively. Analysis of mutations within regulatory DNA that allow transcription of in the absence of Papl indicates that Papl does not interact with DNA. The regulation of gene expression is complex and involves a variety of factors including Lrp, Dam, CRP, Papl, PapB, and possibly H-NS. In addition, RimJ, the N-terminal acetylase of ribosomal protein S5, may play a role in thermoregulation. As a member of the Lrp regulon, Pap fimbrial regulation is tied to cellular metabolism, although it is not leucine responsive. Under the CRP regulon, Pap fimbrial expression is shut down when rich carbon sources such as glucose are present.

Citation: Low D. 1994. Methylation-Dependent and Lrp-Dependent Fimbrial Gene Regulation in Escherichia coli, p 423-436. In Miller V, Kaper J, Portnoy D, Isberg R (ed), Molecular Genetics of Bacterial Pathogenesis. ASM Press, Washington, DC. doi: 10.1128/9781555818340.ch28

Key Concept Ranking

Gene Expression and Regulation
1.0270822
Type 1 Fimbriae
0.5291601
Transcription Start Site
0.5057696
Aliphatic Amino Acids
0.49982846
Gene Expression
0.46971837
Gene Regulation
0.42957148
DNA
0.42339417
1.0270822
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Methy lation patterns of Pap phase on and phase off cells. The square at the upper left represents binding of Lrp-PapI around the GATC-I site, whereas the oval at the lower right represents binding of Lrp near the GATC-I site. Black dots indicate methyl groups covalently attached to adenosine residues by Dam.

Citation: Low D. 1994. Methylation-Dependent and Lrp-Dependent Fimbrial Gene Regulation in Escherichia coli, p 423-436. In Miller V, Kaper J, Portnoy D, Isberg R (ed), Molecular Genetics of Bacterial Pathogenesis. ASM Press, Washington, DC. doi: 10.1128/9781555818340.ch28
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Organization of the regulatory region of the operon. Binding domains for PapB ( ), Lrp and Lrp-PapI ( ), and CRP ( ) as well as the 27-bp inverted repeats containing GATC-I and GATC-II are shown as boxes. Also shown are the transcription start sites of the and transcripts. PapB site 2 overlaps the -10 RNA polymerase recognition site at the promoter.

Citation: Low D. 1994. Methylation-Dependent and Lrp-Dependent Fimbrial Gene Regulation in Escherichia coli, p 423-436. In Miller V, Kaper J, Portnoy D, Isberg R (ed), Molecular Genetics of Bacterial Pathogenesis. ASM Press, Washington, DC. doi: 10.1128/9781555818340.ch28
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Regulatory regions of four Lrp-regulated fimbrial operons. The organization of the ( ), ( ), ( ), and ( ) fimbrial regulatory regions are shown. Genes sharing sequence similarities with are denoted by dark shading, whereas genes with sequence similarities to are denoted by diagonal stripes. DNA sequences with similarity to the GATC-I box (CGATCTTTTAT) and GATC-II box (AAGATCGT) ( ) are depicted as small open boxes. Transcription start sites are shown by arrows. The insertion sequences within are not drawn to scale. In the operon, ORF 7 overlaps the 3' end of the gene.

Citation: Low D. 1994. Methylation-Dependent and Lrp-Dependent Fimbrial Gene Regulation in Escherichia coli, p 423-436. In Miller V, Kaper J, Portnoy D, Isberg R (ed), Molecular Genetics of Bacterial Pathogenesis. ASM Press, Washington, DC. doi: 10.1128/9781555818340.ch28
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Comparative amino acid analysis of PapI-related DNA sequences. The amino acid sequences of PapI ( ), SfaC ( ), PrsI ( ), DaaF ( ), PefI ( ), and FaeA ( ) are shown. Dashes represent gaps introduced for alignment purposes. On the top row, cons denotes total consensus at a given amino acid position among all six regulatory proteins. Amino acids that are conserved among all six PapI-like proteins are shown in boldface type. Lowercase letters indicate that at least three sequences contain the same amino acid at a single position. Boxed regions show identities between either PefI and DaaF or PefI and FaeA or identities among PefI, DaaF, and FaeA that are not present in PapI, SfaC, or PrsI sequences.

Citation: Low D. 1994. Methylation-Dependent and Lrp-Dependent Fimbrial Gene Regulation in Escherichia coli, p 423-436. In Miller V, Kaper J, Portnoy D, Isberg R (ed), Molecular Genetics of Bacterial Pathogenesis. ASM Press, Washington, DC. doi: 10.1128/9781555818340.ch28
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

Regulatory networks affecting the operon. Large circles represent the operons controlled within each regulatory network or regulon, and numbers denote the various classes of regulatory control. The operons and are members of class 2 since they are controlled by Lrp, CRP, and DNA methylation patterns. The operon belongs to class 3 since it is not regulated by Dam. The and operons ( ) are possible members of class 1, although it is not known if any of these operons are regulated by Lrp or Dam. Finally, my colleagues and I ( ) recently identified a gene located at 77 min on the chromosome; the gene contains a nonmethylated GATC site dependent on the presence of Lrp, possibly a member of class 4.

Citation: Low D. 1994. Methylation-Dependent and Lrp-Dependent Fimbrial Gene Regulation in Escherichia coli, p 423-436. In Miller V, Kaper J, Portnoy D, Isberg R (ed), Molecular Genetics of Bacterial Pathogenesis. ASM Press, Washington, DC. doi: 10.1128/9781555818340.ch28
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818340.chap28
1. Anderson, J. J.,, S. C. Quay,, and D. L. Oxender. 1976. Mapping of two loci affecting the regulation of branched-chain amino acid transport in Escherichia coli K-12. J. Bacteriol. 126:8090.
2. Baaga, M.,, M. Goransson,, S. Normark,, and B. E. Uhlin. 1985. Transcriptional activation of a pap pilus virulence operon from uropathogenic Escherichia coli. EMBO J. 4:38873893.
3. Bilge, S. S.,, J. M. M. Apostol,, J. J. Fullner,, and S. L. Moseley. 1993. Transcriptional organization of the F1845 fimbrial adhesin determinant of Escherichia coli. Mol. Microbiol. 7:9931006.
4. Bilge, S. S.,, C. R. Clausen,, W. Lau,, and S. L. Moseley. 1989. Molecular characterization of a fimbrial adhesin, F1845, mediating diffuse adherence of diarrhea-associated Escherichia coli to HEp-2 cells. J. Bacteriol. 171:42814289.
5. Bloch, C. A.,, B. A. D. Stocker,, and P. E. Orndorff. 1992. A key role for type 1 pili in enterobacterial communicability. Mol. Microbiol. 6:697701.
6. Blomfield, I. Personal communication.
7. Blomfield, I. C.,, P. J. Calie,, K. J. Eberhardt,, M. S. McClain,, and B. I. Eisenstein. 1993. Lrp stimulates phase variation of type 1 fimbriation in Escherichia coli K-12. J. Bacteriol. 175:2736.
8. Blomfield, I. C.,, M. S. McClain,, J. A. Princ,, P. J. Calie,, and B. I. Eisenstein. 1991. Type 1 fimbriation and fimE mutants of Escherichia coli K-12. J. Bacteriol. 173:52985307.
9. Blyn, L. B.,, B. A. Braaten,, and D. A. Low. 1990. Regulation of pap pilin phase variation by a mechanism involving differential Dam methylation states. EMBO J. 9:40454054.
10. Blyn, L. B.,, B. A. Braaten,, C. A. White-Ziegler,, D. H. Rolfson,, and D. A. Low. 1989. Phase-variation of pyelonephritis-associated pili in Escherichia coli: evidence for transcriptional regulation. EMBO J. 8:613620.
11. Braaten, B. A.,, L. B. Blyn,, B. S. Skinner,, and D. A. Low. 1991. Evidence for a methylationblocking factor (mbf) locus involved in pap pilus expression and phase variation in Escherichia coli. J. Bacteriol. 173:17891800.
12. Braaten, B. A.,, X. Nou,, L. S. Kaltenbach,, and D. A. Low. 1994. Methylation patterns in pap regulatory DNA control the pyelonephritis-associated pili phase variation in Escherichia coli. Cell 76:577588.
13. Braaten, B. A.,, J. V. Platko,, M. W. van der Woude,, B. H. Simons,, F. K. de Graaf,, J. M. Calvo,, and D. A. Low. 1992. Leucine-responsive regulatory protein controls the expression of both the pap and fan pili operons in Escherichia coli. Proc. Natl. Acad. Sci. USA 89:42504254.
14. Calvo, J. M.,, and R. G. Matthews. The leucine-responsive regulatory protein (Lrp), a global regulator of metabolism in Escherichia coli. Microbiol. Rev., in press.
15. Eisenstein, B. I. 1981. Phase variation of type 1 fimbriae in Escherichia coli is under transcriptional control. Science 214:347349.
16. Eisenstein, B. 1. 1982. Operon fusion ofthe phase variation switch. A virulence factor in Escherichia coli. Infection 10:112115.
17. Eisenstein, B. I.,, D. S. Sweet,, V. Vaughn,, and D. I. Friedman. 1987. Integration host factor is required for the DNA inversion that controls phase variation in Escherichia coli. Proc. Natl. Acad. Sci. USA 84:65066510.
18. Foreman, K.,, M. Gorannson,, and B. E. Uhlin. 1989. Autoregulation and multiple DNA interactions by a transcriptional regulatory protein in E. coli pili biogenesis. EM BO J. 8:12711277.
19. Forsman, K.,, B. Sonden,, M. Goransson,, and B. E. Uhlin. 1992. Antirepression function in Escherichia coli for the cAMP-cAMP receptor protein transcriptional activator. Proc. Natl. Acad. Sci. USA 89:98809884.
20. Friedrich, M. J.,, N. E. Kinsey,, J. Vila,, and R. J. Kadner. 1993. Nucleotide sequence of a 13.9 kb segment of the 90 kb virulence plasmid of Salmonella typhimurium: the presence of fimbrial biosynthetic genes. Mol. Microbiol. 8:543558.
21. Gaily, D. L.,, J. A. Bogan,, B. I. Eisenstein,, and I. C. Blomfield. 1993. Environmental regulation of the fim switch controlling type 1 fimbrial phase variation in Escherichia coli K-12: effects of temperature and media. J. Bacteriol. 175:61866193.
22. Gorannson, M.,, K. Forsman,, P. Nilsson,, and B. E. Uhlin. 1989. Upstream activating sequences that are shared by two divergently transcribed operons mediate cAMP-CRP regulation of a pilus-adhesin is Escherichia coli. Mol. Microbiol. 3:15571565.
23. Gorannson, M.,, K. Forsman,, and B. E. Uhlin. 1988. Functional and structural homology among regulatory cistrons of pili-adhesin determinants in Escherichia coli. Mol. Gen. Genet. 212:412417.
24. Gorannson, M.,, B. Sonden,, P. Nilsson,, B. Dagberg,, K. Forsman,, K. Emanuelsson,, and B. E. Uhlin. 1990. Transcriptional silencing and thermoregulation of gene expression in Escherichia coli. Nature (London) 344:682685.
25. Hacker, J. 1990. Genetic determinants coding for fimbriae and adhesins of extraintestinal Escherichia coli. Curr. Top. Microbiol. Immunol. 151:127.
26. Hale, W. B.,, M. van der Woude,, and D. A. Low. Analysis of nonmethylated GATC sites in the Escherichia coli chromosome and identification of sites that are differentially methylated in response to environmental stimuli. J. Bacteriol., in press.
27. Hanisch, F. G.,, J. Hacker,, and H. Schroten. 1993. Specificity of S fimbriae on recombinant Escherichia coli: preferential binding to gangliosides expressing NeuGco(2-3)Gal and NeuAcα(2-8)NeuAc. Infect. Immun. 61:21082115.
28. Hanson, M. S.,, and C. Brinton, Jr. 1988. Identification and characterization of the E. coli type-1 pilus tip adhesion protein. Nature (London) 332:265268.
29. Huisman, T. T.,, D. Bakker,, P. Klaasen,, and F. K. de Graaf. 1994. Leucine-responsive regulatory protein, IS1 insertions, and the negative regulator FaeA control the expression of the fae (K88) operon in Escherichia coli. Mol. Microbiol. 11:525536.
30. Inoue, O. J.,, J. H. Lee,, and R. E. Isaacson. 1993. Transcriptional organization of the Escherichia coli pilus adhesin K99. Mol. Microbiol. 10:607613.
31. luchi, S.,, and E. C. C. Lin. 1988. ArcA (dye), a global regulatory gene in Escherichia coli mediating repression of enzymes in areobic pathways. Proc. Natl. Acad. Sci. USA 85:18881892.
32. Kadner, R. Personal communication.
33. Kaltenbach, I. Unpublished data.
34. Kawula, T. H.,, and P. E. Orndorff. 1991. Rapid site-specific DNA inversion in Escherichia coli mutants lacking the histone-like protein H-NS. J. Bacterioi. 173:41164123.
35. Klemm, P. 1986. Two regulatory genes fim genes, fimB and fimE, control the phase variation of type 1 fimbriae in Escherichia coli. EMBO J. 5:13891393.
36. Lin, R. T.,, R. D'Ari,, and E. B. Newman. 1990. The leucine regulon of E. coli K-12: a mutation in rblA alters expression of L-leucine-dependent metabolic operons. J. Bacteriol. 172:45294535.
37. Llndberg, F.,, B. Lund,, L. Johansson,, and S. Normark. 1987. Localization of the receptor-binding protein adhesin at the tip of the bacterial pilus. Nature (London) 328:8487.
38. Lund, B.,, B. I. Marklund,, B.-I. Stromberg,, F. Llndberg,, K. A. Karlsson,, and S. Normark. 1988. Uropathogenic Escherichia coli can express serologically identical pili of different receptor binding specificities. Mol. Microbiol. 2:225263.
39. Marklund, B. I.,, J. M. Tennent,, E. Garcia,, A. Hamers,, M. Baaga,, F. Lindberg,, W. Gaastra,, and S. Normark. 1992. Horizontal gene transfer of the Escherichia coli pap and prs operons as a mechanism for the development of tissue-specific adhesive properties. Mol. Microbiol. 6: 22252242.
40. McClain, M. S.,, I. C. Blomfield,, and B. I. Eisenstein. 1991. Roles of fimB and fimE in site-specific DNA inversion associated with phase variation of type 1 fimbriae in Escherichia coli. J. Bacterioi. 173:53085314.
41. Nagy, B.,, H. Moon,, R. Isaacson,, C. C. To,, and C. C. Brinton. 1978. Immunization of suckling pigs against enteric enterotoxigenic Escherichia coli infection by vaccinating dams with purified pili. Infect. Immun. 21:269274.
42. Nou, X.,, B. Skinner,, B. Braaten,, L. Blyn,, D. Hirsh,, and D. Low. 1993. Regulation of pyelonephritis-associated pili phase variation in Escherichia coli: binding of the PapI and Lrp regulatory proteins is controlled by DNA methylation. Mol. Microbiol. 7:545553.
43. O'Hanley, P.,, D. Low,, I. Romero,, D. Lark,, K. Vosti,, S. Falkow,, and G. Schoolnik. 1985. Gal-Gal binding and hemolysin phenotypes and genotypes associated with uropathogenic Escherichia coli. N. Engl. J. Med. 313:414447.
44. Platko, J. V.,, and J. M. Calvo. 1993. Mutations affecting the ability of Escherichia coli Lrp to bind DNA, activate transcription, or respond to leucine. J. Bacteriol. 175:11101117.
45. Platko, J. V.,, D. A. Willins,, and J. M. Calvo. 1990. The ilvIH operon of Escherichia coli is positively regulated. J. Bacteriol. 172:45634570.
46. Rex, J. H.,, B. D. Aronson,, and R. L. Somerville. 1991. The tdh and serA operons of Escherichia coli: mutational analysis of the regulatory elements of leucine-responsive genes. J. Bacteriol. 173: 59445993.
47. Rinquist, S.,, and C. L. Smith. 1992. The Escherichia coli chromosome contains specific, unmethy-lated dam and dcm sites. Proc. Natl. Acad. Sci. USA 89:45394543.
48. Rodriguez-Ortega, M.,, I. Ofek,, and N. Sharon. 1987. Membrane glycoproteins of human polymorphonuclear leukocytes that act as receptors for mannose-specific Escherichia coli. Infect. Immun. 55:968973.
49. Roosendaal, E.,, M. Boots,, and F. K. de Graaf. 1987. Two novel genes, fanA and fanB, involved in the biogenesis of K99 fimbriae. Nucleic Acids Res. 15:59735984.
50. Selander, R. K.,, T. K. Korhonen,, V. Vaisanen-Rhen,, P. H. Williams,, P. E. Pattison,, and D. A. Caugant. 1986. Genetic relationships and clonal structure of strains of Escherichia coli causing neonatal septicemia and meningitis. Infect. Immun. 52:213222.
51. van der Woude, M.,, L. Kaltenbach,, and D. A. Low. Unpublished data.
52. van der Woude, M.,, and D. A. Low. 1994. Leucine-responsive regulatory protein and deoxyadeno-sine methylase control the phase variation and expression of the sfa and daa pili operons in Escherichia coli. Mol. Microbiol. 11:605618.
53. van der Woude, M. J.,, B. A. Braaten,, and D. A. Low. 1992. Evidence for global regulatory control of pilus expression in Escherichia coli by Lrp and DNA methylation: model building based on analysis of pap. Mol. Microbiol. 6:24292435.
54. Wang, M. X.,, and G. M. Church. 1992. A whole genome approach to in vivo DNA-protein interactions in E. coli. Nature (London) 360:606610.
55. Wang, Q.,, and J. M. Calvo. 1993. Lrp, a global regulatory protein of Escherichia coli, binds cooperatively to multiple sites and activates transcription of ilvIH. J. Mol. Biol. 229:306318.
56. Wang, Q.,, M. Sacco,, E. Ricca,, C. T. Lago,, M. DeFelice,, and J. M. Calvo. 1993. Organization of Lrp binding sites upstream of ilvIH in Salmonella typhimurium. Mol. Microbiol. 7:883891.
57. Westerlund, B.,, I. van Die,, C. Kramer,, P. Kuusela,, H. Holthofer,, A.-M. Tarkkhanen,, R. Virkola,, N. Riegman,, H. Bergmans,, W. Hoekstra,, and T. K. Korhonen. 1991. Multifunctional nature of P fimbriae of uropathogenic Escherichia coli: mutations in fsoE and fsoF influence fimbrial binding to renal tubuli and immobilized fibronectin. Mol. Microbiol. 5:29652975.
58. White-Ziegler, C. A.,, and D. A. Low. 1992. Thermoregulation of the pap operon: evidence for the involvement of Rim J, the N-terminal acetylase of ribosomal protein S5. J. Bacteriol. 174: 70037012.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error