1887

Chapter 31 : Role of Sucrose Metabolism in the Cariogenicity of the Mutans Streptococci

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Role of Sucrose Metabolism in the Cariogenicity of the Mutans Streptococci, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818340/9781555810825_Chap31-1.gif /docserver/preview/fulltext/10.1128/9781555818340/9781555810825_Chap31-2.gif

Abstract:

Dental caries constitutes the most common, and very likely the most expensive, of human diseases. Two members of the mutans streptococci (MS), and , are the most common human cariogenic pathogens. Several enzymes or enzyme systems in the MS are associated with the metabolism of sucrose, and most may be involved in the virulence of these oral pathogens. All MS have glucosyltransferases (GTFs) responsible for the synthesis of extracellular homopolymers of glucose which may be water soluble or insoluble, depending on the proportion of α-1,3 linkages present. The amino acid sequences of the proteins predicted by the respective scrA genes shared only 45% identity, whereas the corresponding sucrose phosphate hydrolase (SPH) proteins predicted by the genes shared ~ 70% amino acid identity. An extremely useful feature of recombinant DNA technology is the ability to manipulate cloned genetic determinants from a particular organism, to replace the wild-type determinant with the altered one, and then to test the effects of such manipulation on the phenotype associated with that determinant. Such a process requires an ability to introduce DNA into the organism under study. Finally, the availability of gene transfer systems and appropriate vector molecules will permit comparative analyses of the regulation of sucrose metabolism in the MS.

Citation: LeBlanc D. 1994. Role of Sucrose Metabolism in the Cariogenicity of the Mutans Streptococci, p 465-477. In Miller V, Kaper J, Portnoy D, Isberg R (ed), Molecular Genetics of Bacterial Pathogenesis. ASM Press, Washington, DC. doi: 10.1128/9781555818340.ch31

Key Concept Ranking

Chromosomal DNA
0.5312873
Enterococcus faecalis
0.47317845
0.5312873
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Metabolism of sucrose by MS. Abbreviations: FTF, fructosyltransferase; GTF, glucosyl-transferase; MSM, membrane-associated transport proteins of the operon ( ); TTS, very low affinity, non-PTS, third (sucrose) transport system ( ); EH, EII, EII, and EII, trehalose-, sucrose-, glucose-, and fructose-specific enzyme IIs, respectively, of the PTS; Sue, sucrose; Suc-6-P, sucrose phosphorylated in the C-6 position of the glucose moiety; Suc-12-P, sucrose phosphorylated in the C-6 position of the fructose moiety; Glu, glucose; Glu-l-P and Glu-6-P, glucose phosphorylated in the C-1 and C-6 positions, respectively; Fru, fructose; Fru-6-P and Fru-1,6-diP, fructose phosphorylated in the C-6 position and in both the C-1 and C-6 carbon positions, respectively; P-Glu, phosphoglucose; Gly-3-P, glyceraldehyde-3-phosphate; DHAP, dihydroxyacetone phosphate; PEP, phosphoenolpyruvate; PTS, PEP-dependent phosphotransferase system; EI∼P and HPr∼P, phosphorylated EI (enzyme I) and HPr (heat-stable protein), respectively, which are cytoplasmic phosphocarrier proteins of the PTS providing phosphate groups for all sugar-specific Ells; EtOH, ethanol.

Citation: LeBlanc D. 1994. Role of Sucrose Metabolism in the Cariogenicity of the Mutans Streptococci, p 465-477. In Miller V, Kaper J, Portnoy D, Isberg R (ed), Molecular Genetics of Bacterial Pathogenesis. ASM Press, Washington, DC. doi: 10.1128/9781555818340.ch31
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818340.chap31
1. Chassy, B. M.,, and E. V. Porter. 1982. Sucrose-6-phosphate hydrolase from Streptococcus mutans. Methods Enzymol. 90: 556 559.
2. Chen, Y. M. 1993. Genetic analysis of scrA and scrB from Streptococcus sobrinus strain 6715. Ph.D. thesis. University of Texas Health Science Center at San Antonio, San Antonio.
3. Chen, Y. M.,, and D. J. LeBlanc. 1992. Genetic analysis of scrA and scrB from Streptococcus sobrinus 6715. Infect. Immun. 60: 3739 3746.
4. Chen, Y.-Y. M.,, L. N. Lee,, and D. J. LeBlanc. 1993. Sequence analysis of scrA and scrB from Streptococcus sobrinus 6715. Infect. Immun. 61: 2602 2610.
5. Churchward, G.,, D. Belin,, and Y. Nagamine. 1984. A pSC101-derived plasmid which shows no sequence homology to other commonly used cloning vectors. Gene 31: 165 171.
6. Ellwood, D. C.,, and I. R. Hamilton. 1982. Properties of Streptococcus mutans Ingbritt growing on limiting sucrose in a chemostat: repression of the phosphoenolpyruvate phosphotransferase transport system. Infect. Immun. 36: 576 581.
7. Ellwood, D. C.,, J. R. Hunter,, and V. M. C. Longyear. 1974. Growth of Streptococcus mutans in a chemostat. Arch. Oral Biol. 19: 659 664.
8. Fitzgerald, R. J.,, and P. H. Keyes. 1960. Demonstration of the etiologic role of streptococci in experimental caries in the hamster. J. Am. Dent. Assoc. 61: 9 19.
9. Gibbons, R. J. 1964. Bacteriology of caries. J. Dent. Res. 46( Suppl.): 1021 1028.
10. Hayakawa, M.,, H. Aoki,, and H. K. Kuramitsu. 1986. Isolation and characterization of the sucrose-6-phosphate hydrolase gene from Streptococcus mutans. Infect. Immun. 53: 582 586.
11. Hillman, J. D. 1978. Lactate dehydrogenase mutans of Streptococcus mutans; isolation and preliminary characterization. Infect. Immun. 21: 206 212.
12. Keyes, P. H. 1960. The infectious and transmissible nature of experimental dental caries. Findings and implications. Arch. Oral Biol. 1: 304 320.
13. Kuramitsu, H. K. 1973. Characterization of invertase activity from cariogenic Streptococcus mutans. J. Bacteriol. 115: 1003 1010.
14. Kuramitsu, H. K.,, T. Shiroza,, S. Sato,, and M. Hayakawa,. 1987. Genetic analysis of Streptococcusmutans glucosyltransferases, p. 209 211. In J. J. Ferretti, and R. Curtiss III (ed.), Streptococcal Genetics. American Society for Microbiology, Washington, D.C..
15. LeBlanc, D. J.,, Y.-Y. M. Chen,, and L. N. Lee. 1993. Identification and characterization of a mobilization gene in the streptococcal plasmid, pVA380-l. Plasmid 30: 296 302.
16. LeBlanc, D. J.,, L. N. Lee,, and A. Abu-AI-Jaibat. 1992. Molecular, genetic, and functional analysis of the basic replicon of pVA380-l, a plasmid of oral streptococcal origin. Plasmid 28: 130 145.
17. LeBlanc, D. J.,, L. N. Lee,, and J. M. Inamine. 1991. Cloning and nucleotide base sequence analysis of a spectinomycin adenyltransferase AAD(9) determinant from Enterococcus faecalis. Antimicrob. Agents Chemother. 35: 1804 1810.
18. Lodge, J.,, and G. R. Jacobson. 1988. Starvation-induced stimulation of sugar uptake in Streptococcus mutans is due to an effect on the activities of preexisting proteins of the phosphotransferase system. Infect. Immun. 56: 2594 2600.
19. Loesche, W. J., 1986. Role of Streptococcus mutans in human dental decay. Microbiol. Rev. 50: 353 380.
20. Lunsford, R. D.,, and F. L. Macrina. 1986. Molecular cloning and characterization of scrB, the structural gene for the Streptococcus mutans phosphoenolpyruvate-dependent sucrose phosphotransferase system sucrose-6-phosphate hydrolase. J. Bacteriol. 166: 426 434.
21. McKay, L. L.,, K. A. Baldwin,, and J. D. Efstathiou. 1976. Transductional evidence for plasmid linkage of lactose metabolism in Streptococcus lactis C2. Appl. Environ. Microbiol. 32: 45 52.
22. Mikx, F. H. M.,, and M. Svanberg,. 1978. Considerations about microbial interactions in relation to modification of the microflora of dental plaque, p. 109 118. In B. G. Bibby, and R. J. Shem (ed.), Proceedings, Methods of Caries Prediction, special supplement to Microbial Abstracts. Information Retrieval, Inc., Washington, D.C..
23. Munro, C.,, S. M. Michalek,, and F. L. Macrina. 1991. Cariogenicity of Streptococcus mutans V403 glucosyltransferase and fructosyltransferase mutants constructed by allelic exchange. Infect. Immun. 59: 2316 2323.
24. Powell, I. B.,, M. G. Achen,, A. J. Hillier,, and B. E. Davidson. 1988. A simple and rapid method for genetic transformation of lactic streptococci by electroporation. Appl. Environ. Microbiol. 54: 655 660.
25. Poy, F.,, and G. R. Jacobson. 1990. Evidence that a low-affinity sucrose phosphotransferase activity in Streptococcus mutans GS-5 is a high-affinity trehalose uptake system. Infect. Immun. 58: 1479 1480.
26. Reizer, J.,, M. H. Saier, Jr.,, J. Deutscher,, F. Grenier,, J. Thompson,, and W. Henstenberg. 1988. The phosphoenolpyruvate:sugar phosphotransferase system in gram-positive bacteria: properties, mechanism, and regulation. Crit. Rev. Microbiol. 15: 297 338.
27. Robeson, J. P.,, R. G. Barletta,, and R. Curtiss III. 1983. Expression of a Streptococcus mutans glucosyltransferase gene in Escherichia coli. J. Bacteriol. 153: 211 221.
28. Russell, R. R. B.,, J. Aduse-Opoku,, I. C. Sutcliffe,, L. Tao,, and J. J. Ferretti. 1992. A binding protein-dependent transport system in Streptococcus mutans responsible for multiple sugar metabolism. J. Biol. Chem. 267: 4631 4637.
29. Sato, S.,, and H. K. Kuramitsu. 1986. Isolation and characterization of a fructosyltransferase gene from Streptococcus mutans GS5. Infect. Immun. 52: 166 170.
30. Sato, Y.,, and H. K. Kuramitsu. 1988. Sequence analysis of the Steptococcus mutans scrB gene. Infect. Immun. 56: 1956 1960.
31. Sato, Y.,, F. Poy,, G. R. Jacobson,, and H. K. Kuramitsu. 1989. Characterization and sequence analysis of the scrA gene encoding enzyme II scr of the Streptococcus mutans phosphoenolpyruvate-dependent sucrose phosphotransferase system. J. Bacteriol. 171: 263 271.
32. Schroeder, V. A.,, S. M. Michalek,, and F. L Macrina. 1989. Biochemical characterization and evaluation of virulence of a fructosyltransferase-deficient mutant of Streptococcus mutans V403. Infect. Immun. 57: 3560 3569.
33. Slee, A. M.,, and J. M. Tanzer. 1979. Phosphoenolpyruvate-dependent sucrose phosphotransferase activity in Streptococcus mutans NCTC 10449. Infect. Immun. 24: 821 828.
34. Slee, A. M.,, and J. M. Tanzer. 1980. Effect of growth conditions on sucrose phosphotransferase activity of Streptococcus mutans. Infect. Immun. 27: 922 927.
35. Slee, A. M.,, and J. M. Tanzer. 1982. Sucrose transport by Streptococcus mutans: evidence for multiple transport systems. Biochim. Biophys. Acta 692: 415 424.
36. Socransky, S. S.,, A. D. Manganielli,, D. Propas,, V. Orum,, and J. van Houte. 1977. Bacteriological studies of developing supragingival dental plaque. J. Periodontal Res. 12: 90 106.
37. St. Martin, E. J.,, and C. L. Wittenberger. 1979. Characterization of a phosphoenolpyruvate-dependent sucrose phosphotransferase system in Streptococcus mutans. Infect. Immun. 24: 865 868.
38. St. Martin, E. J.,, and C. L. Wittenberger. 1979. Regulation and function of sucrose 6-phosphate hydrolase in Streptococcus mutans. Infect. Immun. 26: 487 491.
39. Tanzer, J. M., 1992. Microbiology of dental caries, p. 377 424. In J. Slots, and M. Taubman (ed.), Contemporary Oral Microbiology and Immunology. Mosby Year Book, St. Louis.
40. Tanzer, J. M.,, A. T. Brown,, and M. F. Mclnerney. 1973. Identification, preliminary characterization, and evidence for regulation of invertase in Streptococcus mutans. J. Bacteriol. 116: 192 202.
41. Tao, L.,, I. C. Sutcliffe,, R. R. B. Russell,, and J. J. Ferretti. 1993. Transport of sugars, including sucrose, by the msm transport system of Streptococcus mutans. J. Dent. Res. 72: 1386 1390.
42. Trieu-Cuot, P.,, and P. Courvalin. 1983. Nucleotide sequence of the Streptococcus faecalis plasmid gene encoding the 3'-5'-aminoglycoside phosphotransferase type III. Gene 23: 331 341.
43. Yamashita, Y.,, N. Hanada,, and T. Takehara. 1989. Purification of a fourth glucosyltransferase from Streptococcus sobrinus. J. Bacteriol. 171: 6265 6270.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error