1887

Chapter 14 : Transposition in Mycobacteria

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Transposition in Mycobacteria, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818357/9781555819101_Chap14-1.gif /docserver/preview/fulltext/10.1128/9781555818357/9781555819101_Chap14-2.gif

Abstract:

Recombination by transposition occurs without homology between the sequences of the transposon and the target sequence. A large number of different mobile genetic elements have been discovered in prokaryotes. The most basic is known as insertion sequences (ISs). In the cases of Tn5 and Tn10, only one of the ISs can mediate transposition. The chapter focuses on mycobacterial transposable elements. Work on constructing transposons from ISs for use as genetic tools in the mycobacteria has also been initiated. The analysis of cointegrates isolated from different strains each having one copy of Tn670 inserted has demonstrated that transposition occurs randomly with no specific target sites. Transposable elements from mycobacteria are potentially useful sources of genetic tools for the manipulation of mycobacteria in general and for the investigation of virulence mechanisms in pathogenic strains. Useful insertion elements for the development of mutagenesis systems for mycobacteria should (i) have a high frequency of transposition, (ii) not be present in the bacterial strains in which they will be used for mutagenesis, and (iii) exhibit no site or regional specificity. In mycobacteria, nonreplicative vectors have been used to demonstrate the transposition of IS6100, IS900, and IS6110 in . Transposons can be used for purposes other than mutagenesis. Genes of interest can be cloned in them and introduced as a stable single copy into the chromosome. Most ISs isolated from mycobacteria are species specific. Primers have been derived from these sequences and used for identification in polymerase chain reaction tests.

Citation: McAdam R, Guilhot C, Gicquel B. 1994. Transposition in Mycobacteria, p 199-216. In Bloom B (ed), Tuberculosis. ASM Press, Washington, DC. doi: 10.1128/9781555818357.ch14
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1.
Figure 1.

Model (according to Shapiro [1979]) of two different mechanisms of transposition. The three possible outcomes are illustrated. (I) The transposon, represented by a black arrow, is cleaved at its 3' extremities. A staggered cleavage of the target site leads to 5' protruding ends. (The specific cuts are indicated by small arrows.) (II) Joining the 3' ends of the transposon to the 5' ends of the target forms a transposition intermediate called the Shapiro intermediate. This structure can be resolved in the following two ways: (III) specific cleavage of the 5' ends of the transposon and filling in of the target site (white box) leads to a simple insertion of the transposon in the recipient by “conservative transposition,” or (IV) replication of the target site and the transposon by using the recipient as primer (white boxes and dashed arrows) leads to the formation of a cointegrate. This is called “replicative transposition.” (V) This structure can be resolved either by a site-specific resolvase or by the general homologous recombination pathway of the host.

Citation: McAdam R, Guilhot C, Gicquel B. 1994. Transposition in Mycobacteria, p 199-216. In Bloom B (ed), Tuberculosis. ASM Press, Washington, DC. doi: 10.1128/9781555818357.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

Main ORFs of mycobacterial insertion sequences. Capital letters indicate the putative transposases of the IS. In the elements of the IS3 family (i.e., IS, IS, and ISthe transposase is possibly the result of a fusion of ORFA and ORFB. In the case of IS, ORFA encodes the putative resolvase, and ORFC encodes a putative transposase.

Citation: McAdam R, Guilhot C, Gicquel B. 1994. Transposition in Mycobacteria, p 199-216. In Bloom B (ed), Tuberculosis. ASM Press, Washington, DC. doi: 10.1128/9781555818357.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.
Figure 3.

Alignment of the ORFBs of IS, IS1137, IS3, and This alignment was realized by using the Higgins and Sharp (1989) method (PILEUP; GCG, University of Wisconsin). Highly conserved amino acids related to retroviral integrase are underlined. The consensus is indicated when the amino acid is conserved in at least three sequences.

Citation: McAdam R, Guilhot C, Gicquel B. 1994. Transposition in Mycobacteria, p 199-216. In Bloom B (ed), Tuberculosis. ASM Press, Washington, DC. doi: 10.1128/9781555818357.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4.
Figure 4.

Alignment of the putative transposases of IS, IS, Iand 6. This alignment was realized by using the Higgins and Sharp (1989) method (PILEUP; GCG, University of Wisconsin). The consensus is indicated when the amino acid is conserved in at least three sequences.

Citation: McAdam R, Guilhot C, Gicquel B. 1994. Transposition in Mycobacteria, p 199-216. In Bloom B (ed), Tuberculosis. ASM Press, Washington, DC. doi: 10.1128/9781555818357.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818357.chap14
1. Ashby, M. K.,, and P. L. Bergquist. 1990. Cloning and sequence of IS1000, a putative insertion sequence from Thermus thermophilus HB8. Plasmid 24: 1 11.
2. Baltz, R. H.,, D. R. Hahn,, M. A. McHenney,, and P. J. Solenberg. 1992. Transposition of Tn5096 and related transposons in Streptomyces species. Gene 115: 61 65.
3. Barlett, D. H.,, and M. Silverman. 1989. Nucleotide sequence of IS492, a novel insertion sequence causing variation in extracellular polysaccharide production in the marine bacterium Pseudomonas atlántica. J. Bacteriol. 171: 1763 1766.
4. Beattie, D. T.,, M. J. Mahan,, and J. J. Mekalanos. 1993. Repressor binding to a regulatory site in the DNA coding sequence is sufficient to confer transcriptional regulation of the v/V-repressed genes (vrg genes) in Bordeteila pertussis. J. Bacteriol. 175: 519 527.
5. Berg, C. M.,, D. E. Berg,, and E. A. Groisman,. 1989. Transposable elements and the genetic engineering of bacteria, p. 879 925. In D. E. Berg, and M. M. Howe (ed.), Mobile DNA. American Society for Microbiology, Washington, D.C.
6. Berg, D. E.,, and M. M. Howe(ed.). 1989. Mobile DNA. American Society for Microbiology, Washington, D.C.
7. Bernardini, M. L.,, J. Mounier,, H. d'Hauteville,, M. Coquis-Rondon,, and P. J. Sansonetti. 1989. Identification of icsA, a plasmid locus of Shigella flexneri that governs bacterial intra- and intercellular spread through interaction with F-actin. Proc. Natl. Acad. Sci. USA 86: 3867 3871.
8. Bielecki, J.,, P. Youngman,, P. Connelly,, and D. A. Portnoi. 1990. Bacillus subtilis expressing a haemol-ysin gene from Listeria monocytogenes can grow in mammalian cells. Nature (London) 345: 175 176.
9. Bruton, C. J.,, and K. F. Chater. 1987. Nucleotide sequence of IS 110, an insertion sequence of Streptomyces coelicolor A3(2). Nucleic Acids Res. 15: 7053 7065.
10. Chandler, M.,, and O. Fayet. 1993. Translational frameshifting in the control of transposition in bacteria. Mol. Microbiol. 7: 497 503.
11. Charlier, D.,, J. Piette,, and N. Glansdorff. 1982. IS 3 can function as a mobile promoter in E. coli. Nucleic Acids Res. 10: 5935 5948.
12. Cirillo, J. D.,, R. G. Barletta,, B. R. Bloom,, and W. R. Jacobs Jr., 1991. A novel transposon trap for mycobacteria: isolation and characterization of IS 1096. J. Bacteriol. 173: 7772 7780.
13. Clark-Curtiss, J. E.,, W. R. Jacobs,, M. A. Docherty,, L. R. Ritchie,, and R. Curtiss III. 1985. Molecular analysis of DNA and construction of genomic libraries of Mycobacterium leprae. J. Bacteriol. 161: 1093 1102.
14. Collins, D. M.,, and D. M. Stephens. 1991. Identification of an insertion sequence, IS1081, in Mycobacterium bovis. FEMS Microbiol. Lett. 83: 11 16.
15. Cossart, P.,, M. F. Vicente,, J. Mengaud,, F. Baquero,, J. C. Perez-Diaz,, and P. Berche. 1989. Listeriolysin O is essential for virulence of Listeria monocytogenes: direct evidence obtained by gene complementation. Infect. Immun. 57: 3629 3636.
16. de Lorenzo, V.,, M. Herrero,, U. Jakubzik,, and K. N. Timmis. 1990. Mini-Tn 5 transposon derivatives for insertion mutagenesis, promoter probing, and chromosomal insertion of cloned DNA in gram-negative eubacteria. J. Bacteriol. 172: 6568 6572.
17. Eisenach, K. D.,, J. T. Crawford,, and J. H. Bates. 1988. Repetitive DNA sequences as probes for Mycobacterium tuberculosis. J. Clin. Microbiol. 26: 2240 2245.
18. England, P. M.,, Q. Wall,, and J. McFadden. 1991. IS900-promoted stable integration of a foreign gene into mycobacteria. Mol. Microbiol. 5: 2047 2052.
19. Fayet, O.,, P. Ramond,, P. Polard,, M. F. Frère,, and M. Chandler. 1990. Functional similarities between retroviruses and the ISi family of bacterial insertion sequences? Mol. Microbiol. 4: 1771 1777.
20. Fields, P. I.,, E. A. Groisman,, and F. Heffron. 1989. A Salmonella locus that controls resistance to microbicidal proteins from phagocytic cells. Science 243: 1059 1062.
21. Fields, P. L, R. V. Swanson, C. G. Haidaris, and F. Heffron. 1986. Mutants of Salmonella typhimurium that cannot survive within the macrophage are avirulent. Proc. Natl. Acad. Sci. USA 83: 5189 5193.
22. Fomukong, N. G.,, and J. W. Dale. 1993. Transpositional activity of IS986 in Mycobacterium smegmatis. Gene 130: 99 105.
23. Gaillard, J. L.,, P. Berche,, and P. Sansonetti. 1986. Transposon mutagenesis as a tool to study the role of hemolysin in the virulence of Listeria monocytogenes. Infect. Immun. 52: 50 55.
24. Galas, D. J.,, and M. Chandler,. 1989. Bacterial insertion sequences, p. 109 162. In D. E. Berg, and M. M. Howe (ed.), Mobile DNA. American Society for Microbiology, Washington, D.C.
25. Garcia, M. J.,, C. Guilhot,, R. Lathigra,, C. Menendez,, P. Domenech,, C. Moreno,, B. Gicquel,, and C. Martin. Insertion sequence IS 1137, a new IS 3 family element from Mycobacterium smegmatis. Submitted for publication.
26. Gicquel, B.,, and W. R. Jacobs Jr., Personal communication.
27. Gormley, E. P.,, and J. Davies. 1991. Transfer of plasmid RSF1010 by conjugation from Escherichia coli to Streptomyces lividans and Mycobacterium smegmatis. J. Bacteriol. 173: 6705 6708.
28. Green, E. P.,, M. L. V. Tizard,, M. T. Moss,, J. Thompson,, D. J. Winterbourne,, J. McFadden,, and J. Hermon-Taylor. 1989. Sequence and characteristics of IS900, an insertion element identified in a human Crohn's disease isolate of Mycobacterium paratu-berculosis. Nucleic Acids Res. 17: 9063 9073.
29. Guilhot, C.. Unpublished data.
30. Guilhot, C.,, B. Gicquel,, J. Davies,, and C. Martin. 1992a. Isolation and analysis of IS6/20, a new insertion sequence from Mycobacterium smegmatis. Mol. Microbiol. 6: 107 113.
31. Guilhot, C.,, B. Gicquel,, and C. Martin. 1992b. Temperature-sensitive mutants of the Mycobacterium plasmid pAL5000. FEMS Microbiol. Lett. 98: 181 186.
32. Guilhot, C.,, I. Otal,, I. van Rompaey,, C. Martin,, and B. Gicquel. 1994. Efficient transposition in mycobacteria: construction of M. smegmatis insertional mutant libraries. J. Bacteriol. 176: 535 539.
33. Hahn, D. R.,, P. J. Solenberg,, and R. H. Baltz. 1991. Tn5099, a xylE promoter probe transposon for Streptomyces spp. J. Bacteriol. 173: 5573 5577.
34. Hatfull, G. F.,, and G. J. Sarkis. 1993. DNA sequence, structure and gene expression of mycobacterio-phage L5: a phage system for mycobacterial genetics. Mol. Microbiol. 7: 395 405.
35. Henderson, D. J.,, D. F. Brolle,, T. Kieser,, R. E. Melton,, and D. A. Hopwood. 1990. Transposition of IS 117 (the Streptomyces coelicolor A3(2) mini-circle) to and from a cloned target site and into secondary chromosomal sites. Mol. Gen. Genet. 224: 65 71.
36. Hermans, P. W.. Personal communication.
37. Hermans, P. W.,, D. van Soolingen,, E. M. Bik,, P. E. W. de Haas,, J. W. Dale,, and J. D. A. van Embden. 1991. Insertion element IS 987 from Mycobacterium bovis BCG is located in a hot-spot integration region for insertion elements in Mycobacterium tuberculosis complex strains. Infect. Immun. 59: 2695 2705.
38. Higgins, D. G.,, and P. M. Sharp. 1989. Fast and sensitive multiple sequence alignments on a microcomputer. Comput. Appl. Biosci. 5: 151 153.
39. Hoiseth, S. K.,, and B. A. D. Stacker. 1981. Aromatic-dependent Salmonella typhimurium are non-virulent and effective as live vaccines. Nature (London) 291: 238 239.
40. Isberg, R. R.,, and S. Falkow. 1985. A single genetic locus encoded by Yersinia pseudotuberculosis permits invasion of cultured animal cells by Escherichia coli K-12. Nature (London) 317: 262 264.
41. Kalpana, G.,, B. Bloom,, and W. R. Jacobs. 1991. Insertional mutagenesis and illegitimate recombination in mycobacteria. Proc. Natl. Acad. Sci. USA 88: 5433 5437.
42. Keiser, T.,, and D. A. Hopwood. 1991. Genetic manipulation of Streptomyces: integrating vectors and gene replacement. Methods Enzymol. 204: 430 458.
43. Keiser, T.,, M. T. Moss,, J. W. Dale,, and D. A. Hopwood. 1986. Cloning and expression of Mycobacterium bovis BCG DNA in "Streptomyces lividans." J. Bacteriol. 168: 72 80.
44. Kleckner, N.,, J. Bender,, and S. Gottesman. 1991. Uses of transposons with emphasis on Tn 10. Methods Enzymol. 204: 139 180.
45. Kleckner, N.,, J. Roth,, and D. Botstein. 1977. Genetic engineering in vivo using translocatable drug-resistance elements. New methods in bacterial genetics. J. Mol. Biol. 116: 125 159.
46. Kunze, Z. M.,, S. Wall,, R. Appelberg,, M. T. Silva,, F. Portaels,, and J. J. McFadden. 1991. IS 901, a new member of a widespread class of atypical insertion sequences, is associated with pathogenicity in Mycobacterium avium. Mol. Microbiol. 5: 2265 2272.
47. Leskiw, B. K.,, M. Mevarech,, L. S. Barritt,, S. E. Jensen,, D. J. Henderson,, D. A. Hopwood,, C. J. Bruton,, and K. F. Chater. 1990. Discovery of an insertion sequence, IS//6, from Streptomyces clavuligerus and its relatedness to other transposable elements from actinomycetes. J. Gen. Microbiol. 136: 1251 1258.
48. Mahan, M. J.,, J. M. Slauch,, and J. J. Mekalanos. 1993. Selection of bacterial virulence genes that are specifically induced in host tissues. Science 259: 686 688.
49. Manoil, C.,, J. J. Mekalanos,, and J. Beckwith. 1990. Alkaline phosphatase fusions: sensors of subcellular location. J. Bacteriol. 172: 515 518.
50. Mariani, F.,, E. Piccolella,, V. Colizzi,, R. Rappuoli,, and R. Gross. 1993. Characterization of an IS-like element from Mycobacterium tuberculosis. J. Gen. Microbiol. 139: 1767 1772.
51. Martin, C.,, P. Mazodier,, M. V. Mediola,, B. Gicquel,, T. Smokvina,, C. J. Thompson,, and J. Davies. 1991. Site-specific integration of the Streptomyces plasmid pSAM2 in Mycobacterium smegmatis. Mol. Microbiol. 5: 2499 2502.
52. Martin, C.,, J. Timm,, J. Rauzier,, R. Gomez-Lus,, J. Davies,, and B. Gicquel. 1990. Transposition of an antibiotic resistance element in mycobacteria. Nature (London) 345: 739 743.
53. McAdam, R. A.. Personal communication.
54. McAdam, R. A.. Unpublished data.
55. McAdam, R. A.,, P. W. M. Hermans,, D. van Soolingen,, Z. F. Zainuddin,, D. Catty,, J. D. A. van Embden,, and J. W. Dale. 1990. Characterization of a Mycobacterium tuberculosis insertion sequence belonging to the IS5 family. Mol. Microbiol. 4: 1607 1613.
56. McClintock, B. 1956a. Intranuclear systems controlling gene action and mutation. Brookhaven Symp. Biol. 8: 58 74.
57. McClintock, B. 1956b. Controlling elements and the gene. Cold Spring Harbor Symp. Quant. Biol. 21: 197 216.
58. McFadden, J. J.,, P. D. Butcher,, R. J. Chiodini,, and J. Hermon-Taylor. 1987a. Use of DNA probes to distinguish between mycobacterial species: Crohn's disease-isolated mycobacteria are identical to Mycobacterium paratuberculosis. J. Clin. Microbiol. 25: 796 801.
59. McFadden, J. J.,, P. D. Butcher,, J. Thompson,, R. Chiodini,, and J. Hermon-Taylor. 1987b. The use of DNA probes identifying restriction-fragment-length polymorphisms to examine the Mycobacterium avium complex. Mol. Microbiol. 1: 283 291.
60. McHenney, M. A.,, and R. H. Baltz. 1991. Transposition of Tn5096 from a temperature-sensitive trans-ducible plasmid in Streptomyces spp. J. Bacteriol. 173: 5578 5581.
61. Mendiola, M. V.,, C. Martin,, I. Otal,, and B. Gicquel. 1992. Analysis of the regions responsible for IS 6II0 RFLPs in a single Mycobacterium tuberculosis strain. Res. Microbiol. 143: 767 772.
62. Mizuuchi, K. 1992. Transpositional recombination: mechanistic insights from studies of Mu and other elements. Annu. Rev. Biochem. 61: 1011 1051.
63. Murphy, E., 1989. Transposable elements in gram-positive bacteria, p. 269 288. In D. E. Berg, and M. M. Howe (ed.), Mobile DNA. American Society for Microbiology, Washington, D.C.
64. Murray, A.,, N. Winter,, M. Lagranderie,, D. F. Hill,, J. Rauzier,, J. Timm,, C. Leclerc,, K. M. Moriarty,, M. Georghiu,, and B. Gicquel. 1992. Expression of Escherichia coli b-galactosidase in Mycobacterium bovis BCG using an expression system isolated from Mycobacterium paratuberculosis which induced humoral and cellular immune responses. Mol. Microbiol. 6: 3331 3342.
65. Negoro, S.,, K. Kato,, T. Yomo,, and I. Urabe. 1993. Structural analysis of nylon oligomer degradative plasmid pOAD2. International Conference on Pseudomonas '93.
66. Petit, M.-A.,, C. Bruand,, L. Janniere,, and S. D. Ehrlich. 1990. Tn/0-derived transposons active in Bacillus subtilis. J. Bacteriol. 172: 6736 6740.
67. Shapiro, J. A.. 1979. Molecular model for the transposition and replication of bacteriophage Mu and other transposable elements. Proc. Natl. Acad. Sci. USA 76: 1933 1937.
68. Sohaskey, C. D.,, H. Im,, and A. T. Schauer. 1992. Construction and application of plasmid- and transposon-based promoter-probe vectors for Streptomyces spp. that employ a Vibrio harveyi luciferase reporter casette. J. Bacteriol. 174: 367 376.
69. Solenberg, P.,, and R. H. Baltz. 1991. Transposition of Tn 5096 and other IS 493 derivatives in Streptomyces griseofuscus. J. Bacteriol. 173: 1096 1104.
70. Solenberg, P.,, and S. G. Burgett. 1989. Method for selection of transposable DNA and characterization of a new insertion sequence, IS 493, from Streptomyces lividans. J. Bacteriol. 171:4807-4813.
71. Stover, C. K., et al. 1991. New use of BCG for recombinant vaccines. Nature (London) 351: 456 460.
72. Taylor, R. K.,, C. Manoil,, and J. J. Mekalanos. 1989. Broad-host-range vectors for delivery of Tn phoA: use in genetic analysis of secreted virulence determinants of Vibrio cholerae. J. Bacteriol. 171: 1870 1878.
73. Thierry, D.,, A. Brisson-Noel,, V. Vincent-Levy-Frebault,, S. Nguyen,, J. L. Guesdon,, and B. Gicquel. 1990a. Characterization of a Mycobacterium tuberculosis insertion sequence, IS 6110, and its application in diagnosis. J. Clin. Microbiol. 28: 2668 2673.
74. Thierry, D.,, M. D. Cave,, K. D. Eisenach,, J. T. Crawford,, J. H. Bates,, B. Gicquel,, and J. L. Guesdon. 1990b. IS6110, an IS-like element of Mycobacterium tuberculosis. Nucleic Acids Res. 18: 188.
75. Thole, J. R.,, H. G. Dauwerse,, P. K. Das,, D. G. Groothuis,, L. M. Schouls,, and J. D. A. van Embden. 1985. Cloning of Mycobacterium bovis BCG DNA and expression of antigens in Escherichia coli. Infect. Immun. 50: 800 806.
76. Timm, J., et al. Transcription and expression analysis, using lacZ and phoA gene fusions, of Mycobacterium fortuitum p-lactamase genes cloned from a natural isolate and a high-level p-lactamase producer. Submitted for publication.
77. Tizard, M. V. L.,, M. T. Moss,, J. D. Sanderson,, B. M. Austen,, and J. Hermon-Taylor. 1992. p43, the protein product of the atypical insertion sequence IS900, is expressed in Mycobacterium paratuberculosis. J. Gen. Microbiol. 138: 1729 1736.
78. van der Zee, A.,, C. Agterberg,, M. van Agterveld,, M. Peeters,, and F. R. Mooi. 1993. Characterization of IS/00/, an insertion sequence element of Bordetella parapertussis. J. Bacteriol. 175: 141 147.
79. Via, L. E.,, and J. O. Falkinham III. 1993. GenBank, L10239.
80. Weiss, A. A.,, and S. Falkow. 1983. The use of molecular techniques to study microbial determinants of pathogenicity. Phil. Trans. R. Soc. London Ser. B 303: 219 225.
81. Wohlleben, W.,, W. Arnold,, L. Bissonnette,, A. Pelletier,, A. Tanguay,, P. H. Roy,, G. C. Gamboa,, G. F. Barry,, E. Aubert,, J. Davies,, and S. K. Kagan. 1989. On the evolution of Tn 21-like multiresistance transposons: sequence analysis of the gene (aacCl) for gentamicin acetyltransferase-3-I(AAC(3)-I), another member of the Tn 21-based expression cassette. Mol. Gen. Genet. 217: 202 208.
82. Yuen, L. K.,, B. C. Ross,, K. M. Jackson,, and B. Dwyer. 1993. Characterization of Mycobacterium tuberculosis strains from Vietnamese patients by Southern blot hybridization. J. Clin. Microbiol. 131:1615-1618

Tables

Generic image for table
Table 1.

Main features of mycobacterial ISs

Citation: McAdam R, Guilhot C, Gicquel B. 1994. Transposition in Mycobacteria, p 199-216. In Bloom B (ed), Tuberculosis. ASM Press, Washington, DC. doi: 10.1128/9781555818357.ch14
Generic image for table
Table 2.

Auxotrophic types

Citation: McAdam R, Guilhot C, Gicquel B. 1994. Transposition in Mycobacteria, p 199-216. In Bloom B (ed), Tuberculosis. ASM Press, Washington, DC. doi: 10.1128/9781555818357.ch14

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error