1887

Chapter 14 : Transposition in Mycobacteria

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Transposition in Mycobacteria, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818357/9781555819101_Chap14-1.gif /docserver/preview/fulltext/10.1128/9781555818357/9781555819101_Chap14-2.gif

Abstract:

Recombination by transposition occurs without homology between the sequences of the transposon and the target sequence. A large number of different mobile genetic elements have been discovered in prokaryotes. The most basic is known as insertion sequences (ISs). In the cases of Tn5 and Tn10, only one of the ISs can mediate transposition. The chapter focuses on mycobacterial transposable elements. Work on constructing transposons from ISs for use as genetic tools in the mycobacteria has also been initiated. The analysis of cointegrates isolated from different strains each having one copy of Tn670 inserted has demonstrated that transposition occurs randomly with no specific target sites. Transposable elements from mycobacteria are potentially useful sources of genetic tools for the manipulation of mycobacteria in general and for the investigation of virulence mechanisms in pathogenic strains. Useful insertion elements for the development of mutagenesis systems for mycobacteria should (i) have a high frequency of transposition, (ii) not be present in the bacterial strains in which they will be used for mutagenesis, and (iii) exhibit no site or regional specificity. In mycobacteria, nonreplicative vectors have been used to demonstrate the transposition of IS6100, IS900, and IS6110 in . Transposons can be used for purposes other than mutagenesis. Genes of interest can be cloned in them and introduced as a stable single copy into the chromosome. Most ISs isolated from mycobacteria are species specific. Primers have been derived from these sequences and used for identification in polymerase chain reaction tests.

Citation: McAdam R, Guilhot C, Gicquel B. 1994. Transposition in Mycobacteria, p 199-216. In Bloom B (ed), Tuberculosis. ASM Press, Washington, DC. doi: 10.1128/9781555818357.ch14
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1.
Figure 1.

Model (according to Shapiro [1979]) of two different mechanisms of transposition. The three possible outcomes are illustrated. (I) The transposon, represented by a black arrow, is cleaved at its 3' extremities. A staggered cleavage of the target site leads to 5' protruding ends. (The specific cuts are indicated by small arrows.) (II) Joining the 3' ends of the transposon to the 5' ends of the target forms a transposition intermediate called the Shapiro intermediate. This structure can be resolved in the following two ways: (III) specific cleavage of the 5' ends of the transposon and filling in of the target site (white box) leads to a simple insertion of the transposon in the recipient by “conservative transposition,” or (IV) replication of the target site and the transposon by using the recipient as primer (white boxes and dashed arrows) leads to the formation of a cointegrate. This is called “replicative transposition.” (V) This structure can be resolved either by a site-specific resolvase or by the general homologous recombination pathway of the host.

Citation: McAdam R, Guilhot C, Gicquel B. 1994. Transposition in Mycobacteria, p 199-216. In Bloom B (ed), Tuberculosis. ASM Press, Washington, DC. doi: 10.1128/9781555818357.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

Main ORFs of mycobacterial insertion sequences. Capital letters indicate the putative transposases of the IS. In the elements of the IS3 family (i.e., IS, IS, and ISthe transposase is possibly the result of a fusion of ORFA and ORFB. In the case of IS, ORFA encodes the putative resolvase, and ORFC encodes a putative transposase.

Citation: McAdam R, Guilhot C, Gicquel B. 1994. Transposition in Mycobacteria, p 199-216. In Bloom B (ed), Tuberculosis. ASM Press, Washington, DC. doi: 10.1128/9781555818357.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.
Figure 3.

Alignment of the ORFBs of IS, IS1137, IS3, and This alignment was realized by using the Higgins and Sharp (1989) method (PILEUP; GCG, University of Wisconsin). Highly conserved amino acids related to retroviral integrase are underlined. The consensus is indicated when the amino acid is conserved in at least three sequences.

Citation: McAdam R, Guilhot C, Gicquel B. 1994. Transposition in Mycobacteria, p 199-216. In Bloom B (ed), Tuberculosis. ASM Press, Washington, DC. doi: 10.1128/9781555818357.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4.
Figure 4.

Alignment of the putative transposases of IS, IS, Iand 6. This alignment was realized by using the Higgins and Sharp (1989) method (PILEUP; GCG, University of Wisconsin). The consensus is indicated when the amino acid is conserved in at least three sequences.

Citation: McAdam R, Guilhot C, Gicquel B. 1994. Transposition in Mycobacteria, p 199-216. In Bloom B (ed), Tuberculosis. ASM Press, Washington, DC. doi: 10.1128/9781555818357.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818357.chap14
1. Ashby, M. K.,, and P. L. Bergquist. 1990. Cloning and sequence of IS1000, a putative insertion sequence from Thermus thermophilus HB8. Plasmid 24:111.
2. Baltz, R. H.,, D. R. Hahn,, M. A. McHenney,, and P. J. Solenberg. 1992. Transposition of Tn5096 and related transposons in Streptomyces species. Gene 115:6165.
3. Barlett, D. H.,, and M. Silverman. 1989. Nucleotide sequence of IS492, a novel insertion sequence causing variation in extracellular polysaccharide production in the marine bacterium Pseudomonas atlántica. J. Bacteriol. 171:17631766.
4. Beattie, D. T.,, M. J. Mahan,, and J. J. Mekalanos. 1993. Repressor binding to a regulatory site in the DNA coding sequence is sufficient to confer transcriptional regulation of the v/V-repressed genes (vrg genes) in Bordeteila pertussis. J. Bacteriol. 175:519527.
5. Berg, C. M.,, D. E. Berg,, and E. A. Groisman,. 1989. Transposable elements and the genetic engineering of bacteria, p. 879925. In D. E. Berg, and M. M. Howe (ed.), Mobile DNA.American Society for Microbiology, Washington, D.C.
6. Berg, D. E.,, and M. M. Howe(ed.). 1989. Mobile DNA. American Society for Microbiology, Washington, D.C.
7. Bernardini, M. L.,, J. Mounier,, H. d'Hauteville,, M. Coquis-Rondon,, and P. J. Sansonetti. 1989. Identification of icsA, a plasmid locus of Shigella flexneri that governs bacterial intra- and intercellular spread through interaction with F-actin. Proc. Natl. Acad. Sci. USA 86:38673871.
8. Bielecki, J.,, P. Youngman,, P. Connelly,, and D. A. Portnoi. 1990. Bacillus subtilis expressing a haemol-ysin gene from Listeria monocytogenes can grow in mammalian cells. Nature (London) 345:175176.
9. Bruton, C. J.,, and K. F. Chater. 1987. Nucleotide sequence of IS 110, an insertion sequence of Streptomyces coelicolor A3(2). Nucleic Acids Res. 15: 70537065.
10. Chandler, M.,, and O. Fayet. 1993. Translational frameshifting in the control of transposition in bacteria. Mol. Microbiol. 7:497503.
11. Charlier, D.,, J. Piette,, and N. Glansdorff. 1982. IS3 can function as a mobile promoter in E. coli. Nucleic Acids Res. 10:59355948.
12. Cirillo, J. D.,, R. G. Barletta,, B. R. Bloom,, and W. R. JacobsJr., 1991. A novel transposon trap for mycobacteria: isolation and characterization of IS1096. J. Bacteriol. 173:77727780.
13. Clark-Curtiss, J. E.,, W. R. Jacobs,, M. A. Docherty,, L. R. Ritchie,, and R. Curtiss III. 1985. Molecular analysis of DNA and construction of genomic libraries of Mycobacterium leprae. J. Bacteriol. 161: 10931102.
14. Collins, D. M.,, and D. M. Stephens. 1991. Identification of an insertion sequence, IS1081, in Mycobacterium bovis. FEMS Microbiol. Lett. 83:1116.
15. Cossart, P.,, M. F. Vicente,, J. Mengaud,, F. Baquero,, J. C. Perez-Diaz,, and P. Berche. 1989. Listeriolysin O is essential for virulence of Listeria monocytogenes: direct evidence obtained by gene complementation. Infect. Immun. 57:36293636.
16. de Lorenzo, V.,, M. Herrero,, U. Jakubzik,, and K. N. Timmis. 1990. Mini-Tn5 transposon derivatives for insertion mutagenesis, promoter probing, and chromosomal insertion of cloned DNA in gram-negative eubacteria. J. Bacteriol. 172:65686572.
17. Eisenach, K. D.,, J. T. Crawford,, and J. H. Bates. 1988. Repetitive DNA sequences as probes for Mycobacterium tuberculosis. J. Clin. Microbiol. 26:22402245.
18. England, P. M.,, Q. Wall,, and J. McFadden. 1991. IS900-promoted stable integration of a foreign gene into mycobacteria. Mol. Microbiol. 5:20472052.
19. Fayet, O.,, P. Ramond,, P. Polard,, M. F. Frère,, and M. Chandler. 1990. Functional similarities between retroviruses and the ISi family of bacterial insertion sequences? Mol. Microbiol. 4:17711777.
20. Fields, P. I.,, E. A. Groisman,, and F. Heffron. 1989. A Salmonella locus that controls resistance to microbicidal proteins from phagocytic cells. Science 243: 10591062.
21. Fields, P. L, R. V. Swanson, C. G. Haidaris, and F. Heffron. 1986. Mutants of Salmonella typhimurium that cannot survive within the macrophage are avirulent. Proc. Natl. Acad. Sci. USA 83:51895193.
22. Fomukong, N. G.,, and J. W. Dale. 1993. Transpositional activity of IS986 in Mycobacterium smegmatis. Gene 130:99105.
23. Gaillard, J. L.,, P. Berche,, and P. Sansonetti. 1986. Transposon mutagenesis as a tool to study the role of hemolysin in the virulence of Listeria monocytogenes. Infect. Immun. 52:5055.
24. Galas, D. J.,, and M. Chandler,. 1989. Bacterial insertion sequences, p. 109162. In D. E. Berg, and M. M. Howe (ed.), Mobile DNA. American Society for Microbiology, Washington, D.C.
25. Garcia, M. J.,, C. Guilhot,, R. Lathigra,, C. Menendez,, P. Domenech,, C. Moreno,, B. Gicquel,, and C. Martin. Insertion sequence IS1137, a new IS3 family element from Mycobacterium smegmatis. Submitted for publication.
26. Gicquel, B.,, and W. R. JacobsJr., Personal communication.
27. Gormley, E. P.,, and J. Davies. 1991. Transfer of plasmid RSF1010 by conjugation from Escherichia coli to Streptomyces lividans and Mycobacterium smegmatis. J. Bacteriol. 173:67056708.
28. Green, E. P.,, M. L. V. Tizard,, M. T. Moss,, J. Thompson,, D. J. Winterbourne,, J. McFadden,, and J. Hermon-Taylor. 1989. Sequence and characteristics of IS900, an insertion element identified in a human Crohn's disease isolate of Mycobacterium paratu-berculosis. Nucleic Acids Res. 17:90639073.
29. Guilhot, C.. Unpublished data.
30. Guilhot, C.,, B. Gicquel,, J. Davies,, and C. Martin. 1992a. Isolation and analysis of IS6/20, a new insertion sequence from Mycobacterium smegmatis. Mol. Microbiol. 6:107113.
31. Guilhot, C.,, B. Gicquel,, and C. Martin. 1992b. Temperature-sensitive mutants of the Mycobacterium plasmid pAL5000. FEMS Microbiol. Lett. 98:181186.
32. Guilhot, C.,, I. Otal,, I. van Rompaey,, C. Martin,, and B. Gicquel. 1994. Efficient transposition in mycobacteria: construction of M. smegmatis insertional mutant libraries. J. Bacteriol. 176:535539.
33. Hahn, D. R.,, P. J. Solenberg,, and R. H. Baltz. 1991. Tn5099, a xylE promoter probe transposon for Streptomyces spp. J. Bacteriol. 173:55735577.
34. Hatfull, G. F.,, and G. J. Sarkis. 1993. DNA sequence, structure and gene expression of mycobacterio-phage L5: a phage system for mycobacterial genetics. Mol. Microbiol. 7:395405.
35. Henderson, D. J.,, D. F. Brolle,, T. Kieser,, R. E. Melton,, and D. A. Hopwood. 1990. Transposition of IS117 (the Streptomyces coelicolor A3(2) mini-circle) to and from a cloned target site and into secondary chromosomal sites. Mol. Gen. Genet. 224:6571.
36. Hermans, P. W.. Personal communication.
37. Hermans, P. W.,, D. van Soolingen,, E. M. Bik,, P. E. W. de Haas,, J. W. Dale,, and J. D. A. van Embden. 1991. Insertion element IS987 from Mycobacterium bovis BCG is located in a hot-spot integration region for insertion elements in Mycobacterium tuberculosis complex strains. Infect. Immun. 59:26952705.
38. Higgins, D. G.,, and P. M. Sharp. 1989. Fast and sensitive multiple sequence alignments on a microcomputer. Comput. Appl. Biosci. 5:151153.
39. Hoiseth, S. K.,, and B. A. D. Stacker. 1981. Aromatic-dependent Salmonella typhimurium are non-virulent and effective as live vaccines. Nature (London) 291:238239.
40. Isberg, R. R.,, and S. Falkow. 1985. A single genetic locus encoded by Yersinia pseudotuberculosis permits invasion of cultured animal cells by Escherichia coli K-12. Nature (London) 317:262264.
41. Kalpana, G.,, B. Bloom,, and W. R. Jacobs. 1991. Insertional mutagenesis and illegitimate recombination in mycobacteria. Proc. Natl. Acad. Sci. USA 88:54335437.
42. Keiser, T.,, and D. A. Hopwood. 1991. Genetic manipulation of Streptomyces: integrating vectors and gene replacement. Methods Enzymol. 204:430458.
43. Keiser, T.,, M. T. Moss,, J. W. Dale,, and D. A. Hopwood. 1986. Cloning and expression of Mycobacterium bovis BCG DNA in "Streptomyces lividans." J. Bacteriol. 168:7280.
44. Kleckner, N.,, J. Bender,, and S. Gottesman. 1991. Uses of transposons with emphasis on Tn10. Methods Enzymol. 204:139180.
45. Kleckner, N.,, J. Roth,, and D. Botstein. 1977. Genetic engineering in vivo using translocatable drug-resistance elements. New methods in bacterial genetics. J. Mol. Biol. 116:125159.
46. Kunze, Z. M.,, S. Wall,, R. Appelberg,, M. T. Silva,, F. Portaels,, and J. J. McFadden. 1991. IS901, a new member of a widespread class of atypical insertion sequences, is associated with pathogenicity in Mycobacterium avium. Mol. Microbiol. 5:22652272.
47. Leskiw, B. K.,, M. Mevarech,, L. S. Barritt,, S. E. Jensen,, D. J. Henderson,, D. A. Hopwood,, C. J. Bruton,, and K. F. Chater. 1990. Discovery of an insertion sequence, IS//6, from Streptomyces clavuligerus and its relatedness to other transposable elements from actinomycetes. J. Gen. Microbiol. 136:12511258.
48. Mahan, M. J.,, J. M. Slauch,, and J. J. Mekalanos. 1993. Selection of bacterial virulence genes that are specifically induced in host tissues. Science 259:686688.
49. Manoil, C.,, J. J. Mekalanos,, and J. Beckwith. 1990. Alkaline phosphatase fusions: sensors of subcellular location. J. Bacteriol. 172:515518.
50. Mariani, F.,, E. Piccolella,, V. Colizzi,, R. Rappuoli,, and R. Gross. 1993. Characterization of an IS-like element from Mycobacterium tuberculosis. J. Gen. Microbiol. 139:17671772.
51. Martin, C.,, P. Mazodier,, M. V. Mediola,, B. Gicquel,, T. Smokvina,, C. J. Thompson,, and J. Davies. 1991. Site-specific integration of the Streptomyces plasmid pSAM2 in Mycobacterium smegmatis. Mol. Microbiol. 5:24992502.
52. Martin, C.,, J. Timm,, J. Rauzier,, R. Gomez-Lus,, J. Davies,, and B. Gicquel. 1990. Transposition of an antibiotic resistance element in mycobacteria. Nature (London) 345:739743.
53. McAdam, R. A.. Personal communication.
54. McAdam, R. A.. Unpublished data.
55. McAdam, R. A.,, P. W. M. Hermans,, D. van Soolingen,, Z. F. Zainuddin,, D. Catty,, J. D. A. van Embden,, and J. W. Dale. 1990. Characterization of a Mycobacterium tuberculosis insertion sequence belonging to the IS5 family. Mol. Microbiol. 4:16071613.
56. McClintock, B. 1956a. Intranuclear systems controlling gene action and mutation. Brookhaven Symp. Biol. 8:5874.
57. McClintock, B. 1956b. Controlling elements and the gene. Cold Spring Harbor Symp. Quant. Biol. 21: 197216.
58. McFadden, J. J.,, P. D. Butcher,, R. J. Chiodini,, and J. Hermon-Taylor. 1987a. Use of DNA probes to distinguish between mycobacterial species: Crohn's disease-isolated mycobacteria are identical to Mycobacterium paratuberculosis. J. Clin. Microbiol. 25:796801.
59. McFadden, J. J.,, P. D. Butcher,, J. Thompson,, R. Chiodini,, and J. Hermon-Taylor. 1987b. The use of DNA probes identifying restriction-fragment-length polymorphisms to examine the Mycobacterium avium complex. Mol. Microbiol. 1:283291.
60. McHenney, M. A.,, and R. H. Baltz. 1991. Transposition of Tn5096 from a temperature-sensitive trans-ducible plasmid in Streptomyces spp. J. Bacteriol. 173:55785581.
61. Mendiola, M. V.,, C. Martin,, I. Otal,, and B. Gicquel. 1992. Analysis of the regions responsible for IS6II0 RFLPs in a single Mycobacterium tuberculosis strain. Res. Microbiol. 143:767772.
62. Mizuuchi, K. 1992. Transpositional recombination: mechanistic insights from studies of Mu and other elements. Annu. Rev. Biochem. 61:10111051.
63. Murphy, E., 1989. Transposable elements in gram-positive bacteria, p. 269288. In D. E. Berg, and M. M. Howe (ed.), Mobile DNA. American Society for Microbiology, Washington, D.C.
64. Murray, A.,, N. Winter,, M. Lagranderie,, D. F. Hill,, J. Rauzier,, J. Timm,, C. Leclerc,, K. M. Moriarty,, M. Georghiu,, and B. Gicquel. 1992. Expression of Escherichia coli b-galactosidase in Mycobacterium bovis BCG using an expression system isolated from Mycobacterium paratuberculosis which induced humoral and cellular immune responses. Mol. Microbiol. 6:33313342.
65. Negoro, S.,, K. Kato,, T. Yomo,, and I. Urabe. 1993. Structural analysis of nylon oligomer degradative plasmid pOAD2. International Conference on Pseudomonas '93.
66. Petit, M.-A.,, C. Bruand,, L. Janniere,, and S. D. Ehrlich. 1990. Tn/0-derived transposons active in Bacillus subtilis. J. Bacteriol. 172:67366740.
67. Shapiro, J. A.. 1979. Molecular model for the transposition and replication of bacteriophage Mu and other transposable elements. Proc. Natl. Acad. Sci. USA 76:19331937.
68. Sohaskey, C. D.,, H. Im,, and A. T. Schauer. 1992. Construction and application of plasmid- and transposon-based promoter-probe vectors for Streptomyces spp. that employ a Vibrio harveyi luciferase reporter casette. J. Bacteriol. 174:367376.
69. Solenberg, P.,, and R. H. Baltz. 1991. Transposition of Tn5096 and other IS493 derivatives in Streptomyces griseofuscus. J. Bacteriol. 173:10961104.
70. Solenberg, P.,, and S. G. Burgett. 1989. Method for selection of transposable DNA and characterization of a new insertion sequence, IS493, from Streptomyces lividans. J. Bacteriol. 171:4807-4813.
71. Stover, C. K., et al. 1991. New use of BCG for recombinant vaccines. Nature (London) 351:456460.
72. Taylor, R. K.,, C. Manoil,, and J. J. Mekalanos. 1989. Broad-host-range vectors for delivery of TnphoA: use in genetic analysis of secreted virulence determinants of Vibrio cholerae. J. Bacteriol. 171:18701878.
73. Thierry, D.,, A. Brisson-Noel,, V. Vincent-Levy-Frebault,, S. Nguyen,, J. L. Guesdon,, and B. Gicquel. 1990a. Characterization of a Mycobacterium tuberculosis insertion sequence, IS6110, and its application in diagnosis. J. Clin. Microbiol. 28:26682673.
74. Thierry, D.,, M. D. Cave,, K. D. Eisenach,, J. T. Crawford,, J. H. Bates,, B. Gicquel,, and J. L. Guesdon. 1990b. IS6110, an IS-like element of Mycobacterium tuberculosis. Nucleic Acids Res. 18:188.
75. Thole, J. R.,, H. G. Dauwerse,, P. K. Das,, D. G. Groothuis,, L. M. Schouls,, and J. D. A. van Embden. 1985. Cloning of Mycobacterium bovis BCG DNA and expression of antigens in Escherichia coli. Infect. Immun. 50:800806.
76. Timm, J., et al. Transcription and expression analysis, using lacZ and phoA gene fusions, of Mycobacterium fortuitum p-lactamase genes cloned from a natural isolate and a high-level p-lactamase producer. Submitted for publication.
77. Tizard, M. V. L.,, M. T. Moss,, J. D. Sanderson,, B. M. Austen,, and J. Hermon-Taylor. 1992. p43, the protein product of the atypical insertion sequence IS900, is expressed in Mycobacterium paratuberculosis. J. Gen. Microbiol. 138:17291736.
78. van der Zee, A.,, C. Agterberg,, M. van Agterveld,, M. Peeters,, and F. R. Mooi. 1993. Characterization of IS/00/, an insertion sequence element of Bordetella parapertussis. J. Bacteriol. 175:141147.
79. Via, L. E.,, and J. O. Falkinham III. 1993. GenBank, L10239.
80. Weiss, A. A.,, and S. Falkow. 1983. The use of molecular techniques to study microbial determinants of pathogenicity. Phil. Trans. R. Soc. London Ser. B 303:219225.
81. Wohlleben, W.,, W. Arnold,, L. Bissonnette,, A. Pelletier,, A. Tanguay,, P. H. Roy,, G. C. Gamboa,, G. F. Barry,, E. Aubert,, J. Davies,, and S. K. Kagan. 1989. On the evolution of Tn21-like multiresistance transposons: sequence analysis of the gene (aacCl) for gentamicin acetyltransferase-3-I(AAC(3)-I), another member of the Tn21-based expression cassette. Mol. Gen. Genet. 217:202208.
82. Yuen, L. K.,, B. C. Ross,, K. M. Jackson,, and B. Dwyer. 1993. Characterization of Mycobacterium tuberculosis strains from Vietnamese patients by Southern blot hybridization. J. Clin. Microbiol. 131:1615-1618

Tables

Generic image for table
Table 1.

Main features of mycobacterial ISs

Citation: McAdam R, Guilhot C, Gicquel B. 1994. Transposition in Mycobacteria, p 199-216. In Bloom B (ed), Tuberculosis. ASM Press, Washington, DC. doi: 10.1128/9781555818357.ch14
Generic image for table
Table 2.

Auxotrophic types

Citation: McAdam R, Guilhot C, Gicquel B. 1994. Transposition in Mycobacteria, p 199-216. In Bloom B (ed), Tuberculosis. ASM Press, Washington, DC. doi: 10.1128/9781555818357.ch14

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error