1887

Chapter 23 : Metabolism of

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Metabolism of , Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818357/9781555819101_Chap23-1.gif /docserver/preview/fulltext/10.1128/9781555818357/9781555819101_Chap23-2.gif

Abstract:

Researchers in mycobacterial biochemistry have almost exclusively concentrated their efforts on those aspects of metabolism that appear to be unique to members of the genus and have, in the absence of information to the contrary, assumed that other aspects of metabolism will be more or less the same as those of other, more amenable bacteria. In this chapter, the authors have chosen to follow the same elective pathway, concentrating on those aspects of metabolism that appear to be at least in some way unique to the mycobacteria and are, moreover, of relevance to the growth of as a pathogen within the tissues and fluids of its host. The peptidoglycan in mycobacteria is of a type common in many bacteria but with two slight differences. First, there are interpeptide linkages between two diaminopimelate residues as well as the usual D-alanyl-diaminopimelate linkages. Second, the usual N-acetylmuramic acid is replaced with N-glycolyl-muramic acid in and in other mycobacteria. An approach that might be appropriate would be to make probes for DNA based on appropriate genes identified in muramic acid metabolism from other microbes, as these genes would be expected to have some sequence similarity in all bacteria. There are many interesting and important implications for the new field of mycobacterial genetics: the complex organization of these microbes demands multiple genes for fatty acid biosynthesis and seemingly innumerable glycosyltransferase genes.

Citation: Wheeler P, Ratledge C. 1994. Metabolism of , p 353-385. In Bloom B (ed), Tuberculosis. ASM Press, Washington, DC. doi: 10.1128/9781555818357.ch23
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Metabolism of host carbon sources by intracellular mycobacteria (adapted from ). In addition, mycobacteria may also assimilate purines and pyrimidines and use these for nucleic acid biosynthesis. TCA, tricarboxylic acid.

Citation: Wheeler P, Ratledge C. 1994. Metabolism of , p 353-385. In Bloom B (ed), Tuberculosis. ASM Press, Washington, DC. doi: 10.1128/9781555818357.ch23
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Iron assimilation in microorganisms.

Citation: Wheeler P, Ratledge C. 1994. Metabolism of , p 353-385. In Bloom B (ed), Tuberculosis. ASM Press, Washington, DC. doi: 10.1128/9781555818357.ch23
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Structure of mycobactin, the intracellular siderophore of mycobacteria. For structures of other mycobactins, see and . Substituents: R1, alkyl chain up to C, often with double bond at Δ2 position, though occasionally, as with , this can be CH; R, —H or —CH; R —H or —CH; R, usually —CH or —CH, though occasionally, as with a long alkyl chain up to C; R, —H or —CH. For R is—CH, R = R = R = —H, and R is —CH.

Citation: Wheeler P, Ratledge C. 1994. Metabolism of , p 353-385. In Bloom B (ed), Tuberculosis. ASM Press, Washington, DC. doi: 10.1128/9781555818357.ch23
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Mechanism of iron uptake in mycobacteria as mediated by the exochelins and mycobactins.

Citation: Wheeler P, Ratledge C. 1994. Metabolism of , p 353-385. In Bloom B (ed), Tuberculosis. ASM Press, Washington, DC. doi: 10.1128/9781555818357.ch23
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

Possible biosynthetic pathways for phosphatidylinositolmannosides (PIM). PIM is strictly an intermediate and does not accumulate.

Citation: Wheeler P, Ratledge C. 1994. Metabolism of , p 353-385. In Bloom B (ed), Tuberculosis. ASM Press, Washington, DC. doi: 10.1128/9781555818357.ch23
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6
Figure 6

Early dedicated stages of mycolate biosynthesis. , Speculated—reaction sought but not shown; , see Wheeler et al., 1993b; , methylation reaction shown but not for 24:1 -5.

Citation: Wheeler P, Ratledge C. 1994. Metabolism of , p 353-385. In Bloom B (ed), Tuberculosis. ASM Press, Washington, DC. doi: 10.1128/9781555818357.ch23
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 7
Figure 7

Biosynthesis of methylmannose polysaccharide, x = 3 to 12.

Citation: Wheeler P, Ratledge C. 1994. Metabolism of , p 353-385. In Bloom B (ed), Tuberculosis. ASM Press, Washington, DC. doi: 10.1128/9781555818357.ch23
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818357.chap23
1. Agiato Foster, L. A.,, and D. W. Dyer. 1993. A siderophore production mutant of Bordetella bronchiseptica cannot use lactoferrin as an iron source. Infect. Immun. 61:26982702.
2. Akamatsu, Y.,, and J. H. Law. 1970. Enzymic alkylenation of phospholipid fatty acid chain by extracts of Mycobacterium phlei. J. Biol. Chem. 245:701708.
3. Azuma, I.,, D. W. Thomas,, A. Adam,, J. M. Ghuysen,, R. Bonaly,, J. F. Petit,, and G. Lederer. 1970. Occurrence of N-glycolylmuramic acid in bacterial cell walls. Biochim. Biophys. Acta 208:444451.
4. Bagg, A.,, and J. B. Neilands. 1987. Molecular mechanism of siderophore-mediated iron assimilation. Microbiol. Rev. 51:509530.
5. Ballou, C. E. 1972. Biosynthesis of mannophosphoinositides in Mycobacterium phlei. Methods Enzymol. 28:493500.
6. Barclay, R.,, D. E. Ewing,, and C. Ratledge. 1985. Isolation, identification and structural analysis of the mycobactins of Mycobacterium avium, M. intracellulare, M. scrofulaceum, and M. paratuberculosis. J. Bacteriol. 164:896905.
7. Barclay, R.,, and C. Ratledge. 1983. Iron-binding compounds of Mycobacterium avium, M. intracellular, M. scrofulaceum, and mycobactin-dependent M. paratuberculosis and M. avium. J. Bacteriol. 153: 11381146.
8. Barclay, R.,, and C. Ratledge. 1986a. Participation of iron in the growth inhibition of pathogenic strain of Mycobacterium avium and M. paratuberculosis in serum. Zentralbl. Bakteriol. Hyg. A 262:189194.
9. Barclay, R.,, and C. Ratledge. 1986b. Metal analogues of mycobactin and exochelin fail to act as effective antimycobacterial agents. Zentralbl. Bakteriol. Hyg. A 264:203207.
10. Barclay, R.,, and C. Ratledge. 1988. Mycobactins and exochelins of Mycobacterium tuberculosis, M. bovis, M. africanum and other related strains. J. Gen. Microbiol. 134:771776.
11. Barclay, R.,, and P. R. Wheeler,. 1989. Metabolism of mycobacteria in tissues, p. 37196. In C. Ratledge,, J. Stanford,, and J. M. Grange (ed.), The Biology of the Mycobacteria, vol. 3. Academic Press, London.
12. Basu, J.,, R. Chattopadhyay,, M. Kundu,, and P. Chakrabarti. 1992. Purification and partial characterization of a penicillin-binding protein from Mycobacterium smegmatis. J. Bacteriol. 174:48294832.
13. Bercovier, H.,, O. Kafri,, and S. Sela. 1986. Mycobacteria possess a surprisingly small number of RNA genes in relation to the size of their genome. Biochem. Biophys. Res. Commun. 136:11361141.
14. Besra, G. S.,, D. E. Minnikin,, P. R. Wheeler,, and C. Ratledge. 1993. Synthesis of methyl (Z)-tetracos-5-enoate and both enantiomers of ethyl (E)-6-meth-yltetracos-4-enoate; possible intermediates in the biosynthesis of mycolic acids in mycobacteria. Chem. Phys. Lipids 66:2334.
15. Braun, V., 1990. Genetics of siderophore biosynthesis and transport, p. 103129. In H. Kleinkauf, and H. von Dohren (ed.), Biochemistry of Peptide Antibiotics, de Gruyter, Berlin.
16. Brown, K. A.,, and C. Ratledge. 1975a. Iron transport in Mycobacterium smegmatis: ferrimycobactin reductase (NAD(P)H:ferrimycobactin oxidoreductase), the enzyme releasing iron from its carrier. FEBS Lett. 53:262266.
17. Brown, K. A.,, and C. Ratledge. 1975b. The effect of ^-aminosalicylic acid on iron transport and assimilation in mycobacteria. Biochim. Biophys. Acta 385: 207220.
18. Chatterjee, D. Personal communication.
19. Chicurel, M.,, E. Garcia,, and F. Goodsaid. 1988. Modulation of macrophage lysosomal pH by Mycobacterium tuberculosis-deriwed proteins. Infect. Immun. 56:479483.
20. Cho, S. N.,, S. W. Hunter,, R. H. Gelber,, T. H. Rea,, and P. J. Brennan. 1986. Quantification of the phenolic glycolipid and relevance to glycolipid antigenemia in leprosy. J. Infect. Dis. 153:560569.
21. Couderc, F.,, H. Aurelle,, D. Prome,, A. Savagnac,, and J. C. Prome. 1988. Analysis of fatty acids by negative ion gas chromatography/tandem mass spectrometry: structural correlations between δ-mycolic acid chains and A-5-monounsaturated acids in Mycobacterium phlei. Biomed. Environ. Mass Spectrom. 16:317321.
22. Cynamon, M. H.,, and G. S. Palmer. 1983. In vitro activity of amoxicillin in combination with clavulanic acid against Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 24:429431.
23. De Bruyn, J.,, R. Bosmano,, J. Nyabenda,, and J. P. van Vooren. 1989. Effect of zinc deficiency on the appearance of two immunodominant protein antigens (32 kDa and 65 kDa) in culture filtrates of mycobacteria. J. Gen. Microbiol. 135:7984.
24. Dhariwal, K. R.,, A. Chander,, and T. A. Venkitasubramanian. 1976. Alterations in lipid constituents during growth of Mycobacterium smegmatis CDC46 and Mycobacterium phlei. Microbios 16:169182.
25. Dhariwal, K. R.,, A. Chander,, and T. A. Venkitasubramanian. 1978. Turnover of lipids in Mycobacterium smegmatis CDC 46 and Mycobacterium phlei ATCC 354. Arch. Microbiol. 116:6975.
26. Dhariwal, K. R.,, Y. M. Yang,, H. M. Fildes,, and M. B. Goren. 1987. Detection of trehalose monomycolate in Mycobacterium leprae grown in armadillo liver. J. Gen. Microbiol. 133:201209.
27. Draper, P., 1982. The anatomy of mycobacteria, p. 952. In C. Ratledge, and J. L. Stanford (ed.), Biology of the Mycobacteria, vol. 1. Academic Press, Inc. (London) Ltd., London.
28. Embley, T. M.,, A. G. O'Donnell,, J. Rostron,, and M. Goodfellow. 1988. Chemotaxonomy of wall type IV actinomycetes which lack mycolic acids. J. Gen. Microbiol. 134:953960.
29. Eun, H. M.,, A. Yapo,, and J.-F. Petit. 1978. D D-carboxypeptidase activity of membrane fragments of Mycobacterium smegmatis. Enzymic properties and sensitivity to β-lactam antibiotics. Eur. J. Biochem. 86:97103.
30. Franzblau, S. G.,, A. N. Biswas,, P. Jenner,, and M. J. Colston. 1992. Double-blind evaluation of BACTEC and Buddemeyer-type radiorespirometric assays for in vitro screening of antileprosy agents. Lepr. Rev. 63:125133.
31. Frehel, C.,, N. Rastogi,, J. C. Benichou,, and A. Ryter. 1988. Do test-tube grown pathogenic mycobacteria possess a protective capsule? FEMS Microbiol. Lett. 56:225230.
32. Frehel, C.,, A. Ryter,, N. Rastogi,, and H. L. David. 1986. The electron-transparent zone in phagocytosed Mycobacterium avium and other mycobacteria: formation, persistence and role in bacterial survival. Ann. Inst. Pasteur (Microbiol.) 137B:239257.
33. Griffiths, E., 1987. The iron-uptake systems of pathogenic bacteria, p. 69138. In J. J. Bullen, and E. Griffiths (ed.), Iron and Infection: Molecular, Physiological and Clinical Aspects. John Wiley & Sons, Chichester, United Kingdom.
34. Hall, R. M. 1986. Mycobactins: how to obtain them and how to employ them as chemotaxonomic characters for the mycobacteria and related organisms. Actinomycetes 19:92106.
35. Hall, R. M.,, and C. Ratledge. 1984. Mycobactins as chemotaxonomic characters for some rapidly growing mycobacteria. J. Gen. Microbiol. 130:18831892.
36. Hall, R. M.,, and C. Ratledge. 1987. Exochelin-mediated iron acquisition by the leprosy bacillus, Mycobacterium leprae. J. Gen. Microbiol. 133:193199.
37. Hall, R. M.,, M. Sritharan,, A. j. M. Messenger,, and C. Ratledge. 1987. Iron transport in Mycobacterium smegmatis: occurrence of iron-regulated envelope proteins as potential receptors for iron uptake. J. Gen. Microbiol. 133:21072114.
38. Harrison, P. M.,, S. C. Andrews,, G. C. Ford,, J. M. A. Smith,, A. Treffry,, and J. L. White,. 1987. Ferritin and bacterioferritin: iron sequestering molecules from man to microbe, p. 445475. In G. Winkelmann,, D. van der Helm,, and J. B. Neilands (ed.), Iron Transport in Microbes, Plants and Animals. VCH mbH, Weinheim, Germany.
39. Harshan, K. V.,, A. Mittal,, H. K. Prasad,, R. S. Misra,, N. K. Chopra,, and I. Nath. 1990. Uptake of purine and pyrimidine nucleosides by macrophage-resident Mycobacterium leprae: 3H-adenosine as an indication of viability and antimicrobial activity. Int. J. Lepr. 58:526533.
40. Harshey, R. M.,, and T. Ramakrishnan. 1976. Purification and properties of DNA-dependent RNA polymerase from Mycobacterium tuberculosis H37Rv. Biochim. Biophys. Acta 432:4959.
41. Harvey, R. J.,, and A. L. Koch. 1980. How partially inhibitory concentrations of chloramphenicol affect the growth of Escherichia coli. Antimicrob. Agents Chemother. 18:323327.
42. Hiriyanna, K. T.,, and T. Ramakrishnan. 1986. DNA replication time in Mycobacterium tuberculosis H37Rv. Arch. Microbiol. 144:105109.
43. Hunter, S. W.,, and P. J. Brennan. 1990. Evidence for the presence of a phosphatidylinositol anchor on the lipoarabinomannan and lipomannan of Mycobacterium tuberculosis. J. Biol. Chem. 265:92729279.
44. Husson, M. D.,, D. Legrand,, G. Spik,, and H. Leclerc. 1993. Iron acquisition by Helicobacter pylori: importance of human lactoferrin. Infect. Immun. 61: 26942697.
45. Jacobs, W. R.,, R. G. Barletta,, R. Udani,, G. Kalkut,, G. Souse,, T. Kieser,, G. F. Hatfull,, and B. R. Bloom. 1993. Rapid assessment of drug susceptibilities of Mycobacterium tuberculosis by means of luciferase reporter phages. Science 260:819822.
46. Jarlier, V.,, L. Gutmann,, and H. Nikaido. 1991. Interplay of cell wall barrier and β-lactamase activity determines high resistance to β-lactam antibiotics in Mycobacterium chelonae. Antimicrob. Agents Chemother. 35:19371939.
47. Jarlier, V.,, and H. Nikaido. 1990. Permeability barrier to hydrophilic solutes in Mycobacterium chelonei. J. Bacteriol. 172:14181423.
48. Kanai, K.,, E. Wiegeshaus,, and D. W. Smith. 1970. Demonstration of mycolic acid and phthiocerol dimycocerosate in "in vivo grown tubercle bacilli." Jpn. J. Med. Sci. Biol. 23:327333.
49. Kannan, K. B.,, L. G. Dover,, and C. Ratledge. Unpublished data.
50. Kato, L. 1985. Absence of mycobactin in Mycobacterium leprae; probably a microbe dependent microorganism implications. Int. J. Lepr. 57:5870.
51. Kell, D. B. 1987. Forces, fluxes and the control of microbial growth and metabolism. J. Gen. Microbiol. 133:16511665.
52. Kikuchi, K.,, D. L. Rainwater,, and P. E. Kolattukudy. 1992. Purification and characterization of an unusually large fatty acid synthase from Mycobacterium tuberculosis var. bovis BCG. Arch. Biochem. Biophys. 295:318326.
53. Kikuchi, S.,, and T. Kusaka. 1986. Isolation and partial characterization of a fatty acid desaturation system from the cytosol of Mycobacterium smegmatis. J. Biochem. 99:723731.
54. Koch, A. L. 1971. The adaptive responses of Escherichia coli to a feast and famine existence. Adv. Microb. Physiol. 6:147217.
55. Kochan, I.1973. The role of iron in bacterial infections with special consideration of host-tubercle bacillus interaction. Curr. Top. Microbiol. Immunol. 60:130.
56. Kochan, I. 1976. Role of iron in the regulation of nutritional immunity. Bioorg. Chem. 2:5557.
57. Kochan, I.,, N. R. Pellis,, and C. A. Golden. 1971. Mechanism of tuberculostasis in mammalian serum. III. Neutralization of serum tuberculostasis by mycobactin. Infect. Immun. 3:553558.
58. Kondo, E.,, and K. Kanai. 1972. Further demonstration of bacterial lipids in Mycobacterium bovis harvested from infected mouse lungs. Jpn. J. Med. Sci. Biol. 25:249257.
59. Kundu, M.,, J. Basu,, and P. Chakrabarti. 1989. Purification and characterization of an extracellular lectin from Mycobacterium smegmatis. FEBS Lett. 256: 207210.
60. Kundu, M.,, J. Basu,, and P. Chakrabarti. 1991. Defective mycolic acid metabolism in mutant of Mycobacterium smegmatis. J. Gen. Microbiol. 137:21972200.
61. Lacave, C.,, M.-A. Laneelle,, M. Daffe,, H. Montrozier,, and G. Laneelle. 1989. Mycolic acid filiation and location in Mycobacterium aurum and Mycobacterium phlei.Eur. J. Biochem. 181:459466.
62. Lacave, C.,, M. A. Laneelle,, and G. Laneelle. 1990a. Mycolic acid synthesis by Mycobacterium aurum cell-free extracts. Biochim. Biophys. Acta 1042:315323.
63. Lacave, C.,, A. Quemard,, and G. Laneelle. 1990b. Cell-free synthesis of mycolic acids in Mycobacterium aurum: radioactivity distribution in newly synthesized acids and presence of cell wall in the system. Biochim. Biophys. Acta 1045:5865.
64. Lambrecht, R. S.,, and M. T. Collins. 1992. Mycobacterium tuberculosis factors that influence mycobactin dependence. Diagn. Microbiol. Infect. Dis. 15: 239246.
65. Lambrecht, R. S.,, and M. T. Collins. 1993. Inability to detect mycobactin in Mycobacteria-infected tissues suggests an alternative iron acquisition mechanism by Mycobacteria in vivo. Microb. Pathog. 14:229238.
66. Lindquist, S. 1986. The heat shock response. Annu. Rev. Biochem. 55:11511192.
67. Macham, L. P.,, and C. Ratledge. 1975. A new group of water-soluble iron-binding compounds from mycobacteria: the exochelins. J. Gen. Microbiol. 89:379382.
68. Macham, L. P.,, C. Ratledge,, and J. C. Nocton. 1975. Extracellular iron acquisition by mycobacteria: role of the exochelins and evidence against the participation of mycobactin. Infect. Immun. 12:12421251.
69. Macham, L. P.,, M. C. Stephenson,, and C. Ratledge. 1977. Iron transport in Mycobacterium smegmatis: the isolation, purification and function of exochelin MS. J. Gen. Microbiol. 101:4149.
70. Mathur, M.,, and P. E. Kolattukudy. 1992. Molecular cloning and sequencing of the gene for mycocerosic acid synthase, a novel fatty acid-elongating multifunctional enzyme, from Mycobacterium tuberculosis BCG. J. Bacteriol. 267:1938819395.
71. McCready, K. A.,, and C. Ratledge. 1977. Unpublished data.
72. McCready, K. A.,, and C. Ratledge. 1979. Ferrimycobactin reductase activity from Mycobacterium smegmatis. J. Gen. Microbiol. 113:6772.
73. McKenna, W. R.,, P. A. Mickelsen,, P. F. Sparling,, and D. W. Dyer. 1988. Iron uptake from lactoferrin and transferrin by Neisseria gonorrhoeae. Infect. Immun. 56:785790.
74. McNeil, M. R.,, and P. J. Brennan. 1991. Structure, function and biogenesis of the cell envelope of mycobacteria in relation to bacterial physiology, pathogenesis and drug resistance; some thoughts and possibilities arising from recent structural information. Res. Microbiol. 142:451463.
75. McNeil, M. R.,, M. Dane,, and P. J. Brennan. 1991. Location of the mycolyl ester subunits in the walls of mycobacteria. J. Biol. Chem. 266:1321713223.
76. Medhi, I.,, P. S. Murthy,, and T. A. Venkitasubramanian. 1979. Demonstration and purification of three fatty acid synthases from Mycobacterium tuberculosis H37Rv. Indian J. Biochem. Biophys. 16:216222.
77. Menozzi, F. D.,, C. Gantiez,, and C. Locht. 1991. Identification and purification of transferrin- and lactoferrin-binding proteins of Bordetella pertussis and Bordetella bronchiseptica. Infect. Immun. 59: 39823988.
78. Messenger, A. J. M.,, R. M. Hall,, and C. Ratledge. 1986. Iron uptake processes in Mycobacterium vaccae R877R, a mycobacterium lacking mycobactin. J. Gen. Microbiol. 132:845852.
79. Messenger, A. J. M.,, and C. Ratledge. 1982. Iron transport in Mycobacterium smegmatis: uptake of iron from ferric citrate. J. Bacteriol. 149:131135.
80. Messenger, A. J. M.,, and C. Ratledge. Unpublished work.
81. Mickelsen, P. A.,, E. Blackman,, and P. F. Sparling. 1982. Ability of Neisseria gonorrhoeae, N. meningitidis, and commensal Neisseria to obtain iron from lactoferrin. Infect. Immun. 35:915920.
82. Miller, M. J. 1989. Syntheses and therapeutic potential of hydroxamic acid based siderophores and analogues. Chem. Rev. 89:15631579.
83. Miller, M. J.,, and F. Malouin. 1993. Microbial iron chelators as drug delivery agents: the rational design and synthesis of siderophore-drug conjugates. Acc. Chem. Res. 26:241249.
84. Minnikin, D. E., 1982. Lipids: complex lipids, their chemistry, biosynthesis and roles, p. 95185. In C. Ratledge, and J. L. Stanford (ed.), Biology of the Mycobacteria, vol. 1. Academic Press, Inc. (London) Ltd., London.
85. Minnikin, D. E. 1991. Chemical principles in the organization of lipid components in the mycobacterial cell envelope. Res. Microbiol. 142:423427.
86. Minnikin, D. E.,, and M. Goodfellow,. 1980. Lipid composition in the classification and identification of acid-fast bacteria, p. 189256. In M. Goodfellow, and R. G. Board (ed.), Microbiological Classification and Identification. Academic Press, Inc. (London) Ltd., London.
87. Monahan, I. M.,, D. K. Banerjee,, and P. D. Butcher. 1993. Gene expression of Mycobacterium bovis BCG induced in-vitro by stress stimuli associated with infection. Biochem. Soc. Trans. 22:89S.
88. Monahan, I. M.,. , and P. D. Butcher. Unpublished observations.
89. Murty, M. V. V. S.,, and T. A. Venkitasubramanian. 1984. Turnover of phospholipids and glycerides in spheroplasts of Mycobacterium smegmatis. Ann. Microbiol. 1358:147154.
90. Nam-Lee, Y.,, and M. J. Colston. 1985. Measurement of ATP generation and decay in Mycobacterium leprae in vitro. J. Gen. Microbiol. 131:33313338.
91. Neilands, J. B.,, K. Konopka,, B. Schwyn,, M. Coy,, R. T. Francis,, B. H. Paw,, and A. Bagg,. 1987. Comparative biochemistry of microbial iron assimilation, p. 333. In G. Winkelmann,, D. van der Helm,, and J. B. Neilands (ed.), Iron Transport in Microbes, Plants and Animals. VCH mbH, Weinheim, Germany.
92. Nikaido, H. 1993. Uptake of iron-siderophore complexes across the bacterial outer membrane. Trends Microbiol. 51:57.
93. Nikaido, H.,, S. H. Kim,, and E. Y. Rosenberg. 1993. Physical organization of lipids in the cell wall of Mycobacterium chelonae. Mol. Microbiol. 8:10251030.
94. Nikaido, H.,, and M. H. Saier. 1992. Transport proteins in bacteria: common themes in their design. Science 258:936942.
95. Ogunnariwo, J. A.,, and A. P. Schryvers. 1990. Iron acquisition in Pasteurella haemolytica: expression and identification of a bovine-specific transferrin receptor. Infect. Immun. 58:20912097.
96. Patel, B. K. R.,, D. K. Banerjee,, and P. D. Butcher. 1991. Characterization of the heat shock response in Mycobacterium bovis BCG. J. Bacteriol. 173:79827987.
97. Pattyn, S. R.,, and F. Portaels. 1980. In vitro cultivation and characterization of Mycobacterium lepraemurium. Int. J. Lepr. 48:714.
98. Penumarti, N.,, and G. K. Khuller. 1982. Influence of antibodies to mannophosphoinositides on phospholipid synthesis in Mycobacterium smegmatis ATCC 607. Infect. Immun. 37:884890.
99. Postle, K. 1990. Ton B and the Gram-negative dilemma. Mol. Microbiol. 4:20192025.
100. Quemard, A.,, C. Lacave,, and G. Laneelle. 1991. Isoniazid inhibition of mycolic acid synthesis by extracts of sensitive and resistant strains of Mycobacterium aurum. Antimicrob. Agents Chemother. 35: 10351039.
101. Qureshi, N.,, N. Sathyamoorthy,, and K. Takayama. 1984. Biosynthesis of C30 to C56 fatty acids by an extract of Mycobacterium tuberculosis H37Ra. J. Bacteriol. 157:4652.
102. Rainwater, D. L.,, and P. E. Kolattukudy. 1982. Isolation and characterization of acyl-CoA carboxylases from Mycobacterium tuberculosis and M. bovis, which produce multiple methyl branched mycocerosic acids. J. Bacteriol. 151:905911.
103. Rainwater, D. L.,, and P. E. Kolattukudy. 1985. Fatty acid biosynthesis in Mycobacterium tuberculosis var bovis BCG: purification and characterization of a novel fatty acid synthase, mycocerosate synthase, which elongates n-fatty acyl-CoA with methylmalonyl-CoA. J. Biol. Chem. 260:616623.
104. Rastogi, N. 1991. Recent observations concerning structure and function relationships in the mycobacterial cell envelope: elaboration of a model in terms of mycobacterial pathogenicity, virulence and drug-resistance. Res. Microbiol. 142:464476.
105. Rastogi, N.,, C. Frehel,, A. Ryter,, H. Ohayou,, M. Lesourd,, and H. L. David. 1981. Multiple drug resistance in Mycobacterium avium: is the wall architecture responsible for the exclusion of antimicrobial agents? Antimicrob. Agents Chemother. 20: 666677.
106. Rastogi, N.,, and K. S. Goh. 1990. Antibacterial action of l-isonicotinyl-2-palmitoyl hydrazine against the Mycobacterium avium complex and the enhancement of its activity by m-flurophenylalanine. Antimicrob. Agents Chemother. 34:20612064.
107. Rastogi, N.,, K. S. Goh,, and H. L. David. 1990. Enhancement of drug susceptibility of Mycobacterium avium by inhibitors of cell envelope synthesis. Antimicrob. Agents Chemother. 34:759764.
108. Ratledge, C., 1982a. Lipids: composition, fatty acid biosynthesis, p. 5394. In C. Ratledge, and J. L. Stanford (ed.), Biology of the Mycobacteria, vol. 1. Academic Press Inc. Ltd. (London), London.
109. Ratledge, C., 1982b. Nutrition, growth and metabolism, p. 186212. In C. Ratledge, and J. L. Stanford (ed.), Biology of the Mycobacteria, vol. 1. Academic Press, Inc. (London) Ltd., London.
110. Ratledge, C.,, L. P. Macham,, K. A. Brown,, and B. J. Marshall. 1974. Iron transport in Mycobacterium smegmatis: a restricted role for salicylic acid in the extracellular environment. Biochim. Biophys. Acta 372:3951.
111. Ratledge, C.,, P. V. Patel,, and J. Mundy. 1982. Iron transport in Mycobacterium smegmatis: the location of mycobactin by electron microscopy. J. Gen. Microbiol. 128:15591565.
112. Ratledge, C.,, and F. G. Winder. 1962. The accumulation of salicylic acid by mycobacteria during growth on an iron-deficient medium. Biochem. J. 84:501506.
113. Rogers, H. J.,, C. Synge,, and V. E. Woods. 1980. Antibacterial effect of scandium and indium complexes of enterochelin on Klebsiella pneumoniae. Antimicrob. Agents Chemother. 18:6368.
114. Rogers, H. J.,, V. E. Woods,, and C. Synge. 1982. Antibacterial effect of scandium and indium complexes of enterochelin on Escherichia coli. J. Gen. Microbiol. 128:23892394.
115. Sathyamoorthy, N.,, and K. Takayama. 1987. Purification and characterization of a novel mycolic acid exchange enzyme from Mycobacterium smegmatis. J. Biol. Chem. 262:1341713423.
116. Schryvers, A. B.,, and L. J. Morris. 1988a. Identification and characterization of the transferrin receptor from Neisseria meningitidis. Mol. Microbiol. 2:281288.
117. Schryvers, A. B.,, and L. J. Morris. 1988b. Identification and characterization of the human lactoferrin-binding protein from Neisseria meningitidis. Infect. Immun. 56:11441149.
118. Snow, G. A. 1970. Mycobactins: iron-chelating growth factors from mycobacteria. Bacteriol. Rev. 34:99125.
119. Somogyi, P. A.,, and I. Foldes. 1983. Incorporation of thymine, thymidine, adenine and uracil into the nucleic acids of Mycobacterium phlei and its phage. Ann. Microbiol. 134a:1928.
120. Sritharan, M.,, and C. Ratledge. 1989. Co-ordinated expression of the components of iron transport (mycobactin, exochelin and envelope proteins) in Mycobacterium neoaurum. FEMS Microbiol. Lett. 60:183186.
121. Sritharan, M.,, and C. Ratledge. 1990. Iron-regulated envelope proteins of mycobacteria grown in vitro and their occurrence in Mycobacterium leprae grown in vivo. Biol. Metals 2:203208.
122. Stahl, D. A.,, and J. W. Urbance. 1990. The division between fast- and slow-growing mycobacteria corresponds to natural relationships among the mycobacteria. J. Bacteriol. 172:116124.
123. Stephenson, M. C, and C. Ratledge. 1980. Specificity of exochelins for iron transport in three species of mycobacteria. J. Gen. Microbiol. 116:521523.
124. Suntari, M.,, and S. Laakso. 1993. Effect of growth temperature on the fatty acid composition of Mycobacterium phlei. Arch. Microbiol. 159:119123.
125. Suzuki, Y.,, T. Mori,, Y. Miyata,, and T. Yamada. 1987. The number of ribosomal RNA genes in Mycobacterium lepraemurium. FEMS Microbiol. Lett. 44: 7376.
126. Takayama, K.,, and E. L. Armstrong. 1976. Isolation, characterization and function of 6-mycolyl-6'acetyl-trehalose in the H37Rv strain of Mycobacterium tuberculosis. Biochemistry 15:441447.
127. Takayama, K.,, E. L. Armstrong,, E. L. Davidson,, K. A. Kunugi,, and J. O. Kilburn. 1978a. Effect of low temperature on growth, viability, and synthesis of mycolic acids of Mycobacterium tuberculosis strain H37Ra. Am. Rev. Respir. Dis. 118:113117.
128. Takayama, K.,, and D. S. Goldman. 1969. Pathway for the synthesis of mannophospholipids in Mycobacterium tuberculosis. Biochim. Biophys. Acta 176:196198.
129. Takayama, K.,, and D. S. Goldman. 1970. Enzymatic synthesis of mannosyl-l-phosphoryl decaprenol by a cell-free system of Mycobacterium tuberculosis. J. Bacteriol. 245:62516257.
130. Takayama, K.,, and J. O. Kilburn. 1989. Inhibition of synthesis of arabinogalactan by ethambutol in Mycobacterium smegmatis. Antimicrob. Agents Chemother. 33:14931499.
131. Takayama, K.,, N. Qureshi,, and H. K. Schnoes. 1978b. Isolation and characterization of the monounsaturated long chain fatty acids of Mycobacterium tuberculosis. Lipids 13:575579.
132. Takayama, K.,, L. Wang,, and H. L. David. 1972. Effect of isoniazid on the in vivo mycolic acid synthesis, cell growth and viability of Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 2:2935.
133. Toriyama, S.,, I. Yano,, M. Matsui,, M. Kusunose,, and E. Kusunose. 1978. Separation of C50-60 and C70-80 mycolic acid molecular species and their changes by growth temperature in Mycobacterium phlei. FEBS Lett. 95:111115.
134. Trias, J.,, and R. Benz. 1993. Characterization of the channel formed by the mycobacterial porin in lipid bilayer membranes. Demonstration of voltage gating and of negative point charges at the channel mouth. J. Bacteriol. 268:62346240.
135. Trias, J.,, V. Jarlier,, and R. Benz. 1992. Porins in the cell wall of mycobacteria. Science 258:14791481.
136. Walton, D. J.,, and D. D. Jordan. 1988. Order of enzymic incorporation of 0-methyl groups into the O-methyl-D-glucose containing polysaccharide of Mycobacterium smegmatis: a tritium labeling study. Carbohydr. Res. 172:267274.
137. Watson, K. 1990. Microbial stress proteins. Adv. Microb. Physiol. 31:183223.
138. Wayne, L. G. 1976. Dynamics of submerged growth of Mycobacterium tuberculosis under aerobic and microaerophilic conditions. Am. Rev. Respir. Dis. 114:807811.
139. Wayne, L. G.,, and K.-Y. Lin. 1982. Glyoxylate metabolism and adaptation of Mycobacterium tuberculosis to survival under anaerobic conditions. Infect. Immun. 37:10421049.
140. Weisman, L. S.,, and C. E. Ballou. 1984a. Biosynthesis of the mycobacterial methylmannose polysaccharide. Identification of an a 1-4 mannosyltransferase. J. Biol. Chem. 259:34573463.
141. Weisman, L. S.,, and C. E. Ballou. 1984b. Biosynthesis of the mycobacterial methylmannose polysaccharide: identification of a 3-O-methyltransferase. J. Biol. Chem. 259:34643469.
142. Wheeler, P. R. 1987a. Biosynthesis and scavenging of purines by pathogenic mycobacteria including Mycobacterium leprae. J. Gen. Microbiol. 133:29993011.
143. Wheeler, P. R. 1987b. Enzymes for purine synthesis and scavenging in pathogenic mycobacteria and their distribution in Mycobacterium leprae. J. Gen. Microbiol. 133:30133018.
144. Wheeler, P. R. 1990. Biosynthesis and scavenging of pyrimidines by pathogenic mycobacteria. J. Gen. Microbiol. 136:189201.
145. Wheeler, P. R.,, G. S. Besra,, D. E. Minnikin,, and C. Ratledge. 1993a. Inhibition of mycolic acid biosynthesis in a cell-wall preparation from Mycobacterium smegmatis by methyl 4-(2-octadecylcyclopropen-l-yl)butanoate, a structural analogue of a key precursor. Lett. Appl. Microbiol. 17:3336.
146. Wheeler, P. R.,, G. S. Besra,, D. E. Minnikin,, and C. Ratledge. 1993b. Stimulation of mycolic acid biosynthesis by incorporation of cis-tetracos-5-enoic acid in a cell-wall preparation from Mycobacterium smegmatis. Biochim. Biophys. Acta 1167:182188.
147. Wheeler, P. R.,, and K. Bulmer. Unpublished work.
148. Wheeler, P. R.,, K. Bulmer,, and C. Ratledge. 1990. Enzymes for biosynthesis de novo and elongation of fatty acids in mycobacteria: is Mycobacterium leprae competent in fatty acid biosynthesis? J. Gen. Microbiol. 136:211217.
149. Wheeler, P. R.,, K. Bulmer,, and C. Ratledge. 1991. Fatty acid oxidation and the B-oxidation complex in Mycobacterium leprae and two axenically cultivable mycobacteria that are pathogens. J. Gen. Microbiol. 137:885893.
150. Wheeler, P. R.,, K. Bulmer,, C. Ratledge,, J. W. Dale,, and E. Norman. 1992. Control and location of acyl-CoA carboxylase activity in mycobacteria. FEMS Microbiol. Lett. 90:169172.
151. Wheeler, P. R.,, and C. Ratledge. 1988. Use of carbon sources for lipid biosynthesis in Mycobacterium leprae: a comparison with other pathogenic mycobacteria. J. Gen. Microbiol. 134:21112121.
152. Wheeler, P. R.,, and C. Ratledge. 1991. Phospholipase activity of Mycobacterium leprae harvested from experimentally infected armadillo tissue. Infect. Immun. 59:27812789.
153. Wheeler, P. R.,, and C. Ratledge. 1992. Control and location of acyl-hydrolysing phospholipase activity in mycobacteria. J. Gen. Microbiol. 138:825830.
154. Wietzerbin, J.,, B. C. Das,, J. F. Petit,, E. Lederer,, L. M. Bouille,, and J. M. Ghyusen. 1975. Occurrence of D-alanyl-(D)-meso-diaminopimelate and meso-diaminopimelyl-meso-diaminopimilate interpeptide link-ages in the peptidoglycan of mycobacteria. Biochemistry 13:34713476.
155. Winder, F. G.,, J. J. Tighe,, and P. J. Brennan. 1972. Turnover of acylglucose, acyltrehalose and free trehalose during growth of Mycobacterium smegmatis on glucose. J. Gen. Microbiol. 73:539546.
156. Winkelmann, G. (ed.). 1991. CRC Handbook of Microbial Iron Chelates. CRC Press, Inc., Boca Raton, Fla..
157. Woodley, C. L.,, J. O. Kilburn,, H. L. David,, and V. A. Silcox. 1972. Susceptibility of mycobacteria to rifampin. Antimicrob. Agents Chemother. 2:245249.
158. Wooldridge, K. G.,, J. A. Morrissey,, and P. H. Williams. 1992. Transport of ferric-aerobactin into the periplasm and cytoplasm of Escherichia coli K12: role of envelope-associated proteins and the effect of endogenous siderophores. J. Gen. Microbiol. 138:597603.
159. Yokoyama, K.,, and C. E. Ballou. 1989. Synthesis of a 1-6 mannooligosaccharides in Mycobacterium smegmatis: function of 3-mannosylphosphoryldecaprenol as mannosyl donor. J. Biol. Chem. 264: 2162121628.
160. Young, D. B.,, S. H. Kaufmann,, P. W. Hermans,, and J. F. Thole. 1991. Mycobacterial protein antigens: a compilation. Mol. Microbiol. 6:133145.
161. Zhang, Y.,, V. A. Steingrube,, and R. J. Wallace. 1992. B-Lactamase inhibitors and the inducibility of β-lactamase of Mycobacterium tuberculosis. Am. Rev. Respir. Dis. 145:657660.
162. Zhou, X. H.,, and D. van der Helm. 1993. A novel purification of ferric citrate receptor (FecA) from Escherichia coli UT 5600 and further characterization of its binding capacity. Biol. Metab. 6:3744.

Tables

Generic image for table
Table 1

Substrates that may be available to mycobacteria growing in the host

Citation: Wheeler P, Ratledge C. 1994. Metabolism of , p 353-385. In Bloom B (ed), Tuberculosis. ASM Press, Washington, DC. doi: 10.1128/9781555818357.ch23
Generic image for table
Table 2

Growth and rates of synthesis of nucleic acids

Citation: Wheeler P, Ratledge C. 1994. Metabolism of , p 353-385. In Bloom B (ed), Tuberculosis. ASM Press, Washington, DC. doi: 10.1128/9781555818357.ch23
Generic image for table
Table 3

Heat shock proteins in and

Citation: Wheeler P, Ratledge C. 1994. Metabolism of , p 353-385. In Bloom B (ed), Tuberculosis. ASM Press, Washington, DC. doi: 10.1128/9781555818357.ch23
Generic image for table
Table 4

Occurrence of IREPs and HIPs as analyzed by SDS-PAGE in mycobacteria grown in vitro and in vivo

Citation: Wheeler P, Ratledge C. 1994. Metabolism of , p 353-385. In Bloom B (ed), Tuberculosis. ASM Press, Washington, DC. doi: 10.1128/9781555818357.ch23
Generic image for table
Table 5

Mannosyltransferases detected in mycobacteria

Citation: Wheeler P, Ratledge C. 1994. Metabolism of , p 353-385. In Bloom B (ed), Tuberculosis. ASM Press, Washington, DC. doi: 10.1128/9781555818357.ch23

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error