1887

Chapter 23 : Metabolism of

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Metabolism of , Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818357/9781555819101_Chap23-1.gif /docserver/preview/fulltext/10.1128/9781555818357/9781555819101_Chap23-2.gif

Abstract:

Researchers in mycobacterial biochemistry have almost exclusively concentrated their efforts on those aspects of metabolism that appear to be unique to members of the genus and have, in the absence of information to the contrary, assumed that other aspects of metabolism will be more or less the same as those of other, more amenable bacteria. In this chapter, the authors have chosen to follow the same elective pathway, concentrating on those aspects of metabolism that appear to be at least in some way unique to the mycobacteria and are, moreover, of relevance to the growth of as a pathogen within the tissues and fluids of its host. The peptidoglycan in mycobacteria is of a type common in many bacteria but with two slight differences. First, there are interpeptide linkages between two diaminopimelate residues as well as the usual D-alanyl-diaminopimelate linkages. Second, the usual N-acetylmuramic acid is replaced with N-glycolyl-muramic acid in and in other mycobacteria. An approach that might be appropriate would be to make probes for DNA based on appropriate genes identified in muramic acid metabolism from other microbes, as these genes would be expected to have some sequence similarity in all bacteria. There are many interesting and important implications for the new field of mycobacterial genetics: the complex organization of these microbes demands multiple genes for fatty acid biosynthesis and seemingly innumerable glycosyltransferase genes.

Citation: Wheeler P, Ratledge C. 1994. Metabolism of , p 353-385. In Bloom B (ed), Tuberculosis. ASM Press, Washington, DC. doi: 10.1128/9781555818357.ch23
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Metabolism of host carbon sources by intracellular mycobacteria (adapted from ). In addition, mycobacteria may also assimilate purines and pyrimidines and use these for nucleic acid biosynthesis. TCA, tricarboxylic acid.

Citation: Wheeler P, Ratledge C. 1994. Metabolism of , p 353-385. In Bloom B (ed), Tuberculosis. ASM Press, Washington, DC. doi: 10.1128/9781555818357.ch23
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Iron assimilation in microorganisms.

Citation: Wheeler P, Ratledge C. 1994. Metabolism of , p 353-385. In Bloom B (ed), Tuberculosis. ASM Press, Washington, DC. doi: 10.1128/9781555818357.ch23
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Structure of mycobactin, the intracellular siderophore of mycobacteria. For structures of other mycobactins, see and . Substituents: R1, alkyl chain up to C, often with double bond at Δ2 position, though occasionally, as with , this can be CH; R, —H or —CH; R —H or —CH; R, usually —CH or —CH, though occasionally, as with a long alkyl chain up to C; R, —H or —CH. For R is—CH, R = R = R = —H, and R is —CH.

Citation: Wheeler P, Ratledge C. 1994. Metabolism of , p 353-385. In Bloom B (ed), Tuberculosis. ASM Press, Washington, DC. doi: 10.1128/9781555818357.ch23
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Mechanism of iron uptake in mycobacteria as mediated by the exochelins and mycobactins.

Citation: Wheeler P, Ratledge C. 1994. Metabolism of , p 353-385. In Bloom B (ed), Tuberculosis. ASM Press, Washington, DC. doi: 10.1128/9781555818357.ch23
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

Possible biosynthetic pathways for phosphatidylinositolmannosides (PIM). PIM is strictly an intermediate and does not accumulate.

Citation: Wheeler P, Ratledge C. 1994. Metabolism of , p 353-385. In Bloom B (ed), Tuberculosis. ASM Press, Washington, DC. doi: 10.1128/9781555818357.ch23
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6
Figure 6

Early dedicated stages of mycolate biosynthesis. , Speculated—reaction sought but not shown; , see Wheeler et al., 1993b; , methylation reaction shown but not for 24:1 -5.

Citation: Wheeler P, Ratledge C. 1994. Metabolism of , p 353-385. In Bloom B (ed), Tuberculosis. ASM Press, Washington, DC. doi: 10.1128/9781555818357.ch23
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 7
Figure 7

Biosynthesis of methylmannose polysaccharide, x = 3 to 12.

Citation: Wheeler P, Ratledge C. 1994. Metabolism of , p 353-385. In Bloom B (ed), Tuberculosis. ASM Press, Washington, DC. doi: 10.1128/9781555818357.ch23
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818357.chap23
1. Agiato Foster, L. A.,, and D. W. Dyer. 1993. A siderophore production mutant of Bordetella bronchiseptica cannot use lactoferrin as an iron source. Infect. Immun. 61: 2698 2702.
2. Akamatsu, Y.,, and J. H. Law. 1970. Enzymic alkylenation of phospholipid fatty acid chain by extracts of Mycobacterium phlei. J. Biol. Chem. 245: 701 708.
3. Azuma, I.,, D. W. Thomas,, A. Adam,, J. M. Ghuysen,, R. Bonaly,, J. F. Petit,, and G. Lederer. 1970. Occurrence of N-glycolylmuramic acid in bacterial cell walls. Biochim. Biophys. Acta 208: 444 451.
4. Bagg, A.,, and J. B. Neilands. 1987. Molecular mechanism of siderophore-mediated iron assimilation. Microbiol. Rev. 51: 509 530.
5. Ballou, C. E. 1972. Biosynthesis of mannophosphoinositides in Mycobacterium phlei. Methods Enzymol. 28: 493 500.
6. Barclay, R.,, D. E. Ewing,, and C. Ratledge. 1985. Isolation, identification and structural analysis of the mycobactins of Mycobacterium avium, M. intracellulare, M. scrofulaceum, and M. paratuberculosis. J. Bacteriol. 164: 896 905.
7. Barclay, R.,, and C. Ratledge. 1983. Iron-binding compounds of Mycobacterium avium, M. intracellular, M. scrofulaceum, and mycobactin-dependent M. paratuberculosis and M. avium. J. Bacteriol. 153: 1138 1146.
8. Barclay, R.,, and C. Ratledge. 1986a. Participation of iron in the growth inhibition of pathogenic strain of Mycobacterium avium and M. paratuberculosis in serum. Zentralbl. Bakteriol. Hyg. A 262: 189 194.
9. Barclay, R.,, and C. Ratledge. 1986b. Metal analogues of mycobactin and exochelin fail to act as effective antimycobacterial agents. Zentralbl. Bakteriol. Hyg. A 264: 203 207.
10. Barclay, R.,, and C. Ratledge. 1988. Mycobactins and exochelins of Mycobacterium tuberculosis, M. bovis, M. africanum and other related strains. J. Gen. Microbiol. 134: 771 776.
11. Barclay, R.,, and P. R. Wheeler,. 1989. Metabolism of mycobacteria in tissues, p. 37 196. In C. Ratledge,, J. Stanford,, and J. M. Grange (ed.), The Biology of the Mycobacteria, vol. 3. Academic Press, London.
12. Basu, J.,, R. Chattopadhyay,, M. Kundu,, and P. Chakrabarti. 1992. Purification and partial characterization of a penicillin-binding protein from Mycobacterium smegmatis. J. Bacteriol. 174: 4829 4832.
13. Bercovier, H.,, O. Kafri,, and S. Sela. 1986. Mycobacteria possess a surprisingly small number of RNA genes in relation to the size of their genome. Biochem. Biophys. Res. Commun. 136: 1136 1141.
14. Besra, G. S.,, D. E. Minnikin,, P. R. Wheeler,, and C. Ratledge. 1993. Synthesis of methyl (Z)-tetracos-5-enoate and both enantiomers of ethyl (E)-6-meth-yltetracos-4-enoate; possible intermediates in the biosynthesis of mycolic acids in mycobacteria. Chem. Phys. Lipids 66: 23 34.
15. Braun, V., 1990. Genetics of siderophore biosynthesis and transport, p. 103 129. In H. Kleinkauf, and H. von Dohren (ed.), Biochemistry of Peptide Antibiotics, de Gruyter, Berlin.
16. Brown, K. A.,, and C. Ratledge. 1975a. Iron transport in Mycobacterium smegmatis: ferrimycobactin reductase (NAD(P)H:ferrimycobactin oxidoreductase), the enzyme releasing iron from its carrier. FEBS Lett. 53: 262 266.
17. Brown, K. A.,, and C. Ratledge. 1975b. The effect of ^-aminosalicylic acid on iron transport and assimilation in mycobacteria. Biochim. Biophys. Acta 385: 207 220.
18. Chatterjee, D. Personal communication.
19. Chicurel, M.,, E. Garcia,, and F. Goodsaid. 1988. Modulation of macrophage lysosomal pH by Mycobacterium tuberculosis-deriwed proteins. Infect. Immun. 56: 479 483.
20. Cho, S. N.,, S. W. Hunter,, R. H. Gelber,, T. H. Rea,, and P. J. Brennan. 1986. Quantification of the phenolic glycolipid and relevance to glycolipid antigenemia in leprosy. J. Infect. Dis. 153: 560 569.
21. Couderc, F.,, H. Aurelle,, D. Prome,, A. Savagnac,, and J. C. Prome. 1988. Analysis of fatty acids by negative ion gas chromatography/tandem mass spectrometry: structural correlations between δ-mycolic acid chains and A-5-monounsaturated acids in Mycobacterium phlei. Biomed. Environ. Mass Spectrom. 16: 317 321.
22. Cynamon, M. H.,, and G. S. Palmer. 1983. In vitro activity of amoxicillin in combination with clavulanic acid against Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 24: 429 431.
23. De Bruyn, J.,, R. Bosmano,, J. Nyabenda,, and J. P. van Vooren. 1989. Effect of zinc deficiency on the appearance of two immunodominant protein antigens (32 kDa and 65 kDa) in culture filtrates of mycobacteria. J. Gen. Microbiol. 135: 79 84.
24. Dhariwal, K. R.,, A. Chander,, and T. A. Venkitasubramanian. 1976. Alterations in lipid constituents during growth of Mycobacterium smegmatis CDC46 and Mycobacterium phlei. Microbios 16: 169 182.
25. Dhariwal, K. R.,, A. Chander,, and T. A. Venkitasubramanian. 1978. Turnover of lipids in Mycobacterium smegmatis CDC 46 and Mycobacterium phlei ATCC 354. Arch. Microbiol. 116: 69 75.
26. Dhariwal, K. R.,, Y. M. Yang,, H. M. Fildes,, and M. B. Goren. 1987. Detection of trehalose monomycolate in Mycobacterium leprae grown in armadillo liver. J. Gen. Microbiol. 133: 201 209.
27. Draper, P., 1982. The anatomy of mycobacteria, p. 9 52. In C. Ratledge, and J. L. Stanford (ed.), Biology of the Mycobacteria, vol. 1. Academic Press, Inc. (London) Ltd., London.
28. Embley, T. M.,, A. G. O'Donnell,, J. Rostron,, and M. Goodfellow. 1988. Chemotaxonomy of wall type IV actinomycetes which lack mycolic acids. J. Gen. Microbiol. 134: 953 960.
29. Eun, H. M.,, A. Yapo,, and J.-F. Petit. 1978. D D-carboxypeptidase activity of membrane fragments of Mycobacterium smegmatis. Enzymic properties and sensitivity to β-lactam antibiotics. Eur. J. Biochem. 86: 97 103.
30. Franzblau, S. G.,, A. N. Biswas,, P. Jenner,, and M. J. Colston. 1992. Double-blind evaluation of BACTEC and Buddemeyer-type radiorespirometric assays for in vitro screening of antileprosy agents. Lepr. Rev. 63: 125 133.
31. Frehel, C.,, N. Rastogi,, J. C. Benichou,, and A. Ryter. 1988. Do test-tube grown pathogenic mycobacteria possess a protective capsule? FEMS Microbiol. Lett. 56: 225 230.
32. Frehel, C.,, A. Ryter,, N. Rastogi,, and H. L. David. 1986. The electron-transparent zone in phagocytosed Mycobacterium avium and other mycobacteria: formation, persistence and role in bacterial survival. Ann. Inst. Pasteur (Microbiol.) 137B: 239 257.
33. Griffiths, E., 1987. The iron-uptake systems of pathogenic bacteria, p. 69 138. In J. J. Bullen, and E. Griffiths (ed.), Iron and Infection: Molecular, Physiological and Clinical Aspects. John Wiley & Sons, Chichester, United Kingdom.
34. Hall, R. M. 1986. Mycobactins: how to obtain them and how to employ them as chemotaxonomic characters for the mycobacteria and related organisms. Actinomycetes 19: 92 106.
35. Hall, R. M.,, and C. Ratledge. 1984. Mycobactins as chemotaxonomic characters for some rapidly growing mycobacteria. J. Gen. Microbiol. 130: 1883 1892.
36. Hall, R. M.,, and C. Ratledge. 1987. Exochelin-mediated iron acquisition by the leprosy bacillus, Mycobacterium leprae. J. Gen. Microbiol. 133: 193 199.
37. Hall, R. M.,, M. Sritharan,, A. j. M. Messenger,, and C. Ratledge. 1987. Iron transport in Mycobacterium smegmatis: occurrence of iron-regulated envelope proteins as potential receptors for iron uptake. J. Gen. Microbiol. 133: 2107 2114.
38. Harrison, P. M.,, S. C. Andrews,, G. C. Ford,, J. M. A. Smith,, A. Treffry,, and J. L. White,. 1987. Ferritin and bacterioferritin: iron sequestering molecules from man to microbe, p. 445 475. In G. Winkelmann,, D. van der Helm,, and J. B. Neilands (ed.), Iron Transport in Microbes, Plants and Animals. VCH mbH, Weinheim, Germany.
39. Harshan, K. V.,, A. Mittal,, H. K. Prasad,, R. S. Misra,, N. K. Chopra,, and I. Nath. 1990. Uptake of purine and pyrimidine nucleosides by macrophage-resident Mycobacterium leprae: 3H-adenosine as an indication of viability and antimicrobial activity. Int. J. Lepr. 58: 526 533.
40. Harshey, R. M.,, and T. Ramakrishnan. 1976. Purification and properties of DNA-dependent RNA polymerase from Mycobacterium tuberculosis H37Rv. Biochim. Biophys. Acta 432: 49 59.
41. Harvey, R. J.,, and A. L. Koch. 1980. How partially inhibitory concentrations of chloramphenicol affect the growth of Escherichia coli. Antimicrob. Agents Chemother. 18: 323 327.
42. Hiriyanna, K. T.,, and T. Ramakrishnan. 1986. DNA replication time in Mycobacterium tuberculosis H37Rv. Arch. Microbiol. 144: 105 109.
43. Hunter, S. W.,, and P. J. Brennan. 1990. Evidence for the presence of a phosphatidylinositol anchor on the lipoarabinomannan and lipomannan of Mycobacterium tuberculosis. J. Biol. Chem. 265: 9272 9279.
44. Husson, M. D.,, D. Legrand,, G. Spik,, and H. Leclerc. 1993. Iron acquisition by Helicobacter pylori: importance of human lactoferrin. Infect. Immun. 61: 2694 2697.
45. Jacobs, W. R.,, R. G. Barletta,, R. Udani,, G. Kalkut,, G. Souse,, T. Kieser,, G. F. Hatfull,, and B. R. Bloom. 1993. Rapid assessment of drug susceptibilities of Mycobacterium tuberculosis by means of luciferase reporter phages. Science 260: 819 822.
46. Jarlier, V.,, L. Gutmann,, and H. Nikaido. 1991. Interplay of cell wall barrier and β-lactamase activity determines high resistance to β-lactam antibiotics in Mycobacterium chelonae. Antimicrob. Agents Chemother. 35: 1937 1939.
47. Jarlier, V.,, and H. Nikaido. 1990. Permeability barrier to hydrophilic solutes in Mycobacterium chelonei. J. Bacteriol. 172: 1418 1423.
48. Kanai, K.,, E. Wiegeshaus,, and D. W. Smith. 1970. Demonstration of mycolic acid and phthiocerol dimycocerosate in "in vivo grown tubercle bacilli." Jpn. J. Med. Sci. Biol. 23: 327 333.
49. Kannan, K. B.,, L. G. Dover,, and C. Ratledge. Unpublished data.
50. Kato, L. 1985. Absence of mycobactin in Mycobacterium leprae; probably a microbe dependent microorganism implications. Int. J. Lepr. 57: 58 70.
51. Kell, D. B. 1987. Forces, fluxes and the control of microbial growth and metabolism. J. Gen. Microbiol. 133: 1651 1665.
52. Kikuchi, K.,, D. L. Rainwater,, and P. E. Kolattukudy. 1992. Purification and characterization of an unusually large fatty acid synthase from Mycobacterium tuberculosis var. bovis BCG. Arch. Biochem. Biophys. 295: 318 326.
53. Kikuchi, S.,, and T. Kusaka. 1986. Isolation and partial characterization of a fatty acid desaturation system from the cytosol of Mycobacterium smegmatis. J. Biochem. 99: 723 731.
54. Koch, A. L. 1971. The adaptive responses of Escherichia coli to a feast and famine existence. Adv. Microb. Physiol. 6: 147 217.
55. Kochan, I. 1973. The role of iron in bacterial infections with special consideration of host-tubercle bacillus interaction. Curr. Top. Microbiol. Immunol. 60: 1 30.
56. Kochan, I. 1976. Role of iron in the regulation of nutritional immunity. Bioorg. Chem. 2: 55 57.
57. Kochan, I.,, N. R. Pellis,, and C. A. Golden. 1971. Mechanism of tuberculostasis in mammalian serum. III. Neutralization of serum tuberculostasis by mycobactin. Infect. Immun. 3: 553 558.
58. Kondo, E.,, and K. Kanai. 1972. Further demonstration of bacterial lipids in Mycobacterium bovis harvested from infected mouse lungs. Jpn. J. Med. Sci. Biol. 25: 249 257.
59. Kundu, M.,, J. Basu,, and P. Chakrabarti. 1989. Purification and characterization of an extracellular lectin from Mycobacterium smegmatis. FEBS Lett. 256: 207 210.
60. Kundu, M.,, J. Basu,, and P. Chakrabarti. 1991. Defective mycolic acid metabolism in mutant of Mycobacterium smegmatis. J. Gen. Microbiol. 137: 2197 2200.
61. Lacave, C.,, M.-A. Laneelle,, M. Daffe,, H. Montrozier,, and G. Laneelle. 1989. Mycolic acid filiation and location in Mycobacterium aurum and Mycobacterium phlei. Eur. J. Biochem. 181: 459 466.
62. Lacave, C.,, M. A. Laneelle,, and G. Laneelle. 1990a. Mycolic acid synthesis by Mycobacterium aurum cell-free extracts. Biochim. Biophys. Acta 1042: 315 323.
63. Lacave, C.,, A. Quemard,, and G. Laneelle. 1990b. Cell-free synthesis of mycolic acids in Mycobacterium aurum: radioactivity distribution in newly synthesized acids and presence of cell wall in the system. Biochim. Biophys. Acta 1045: 58 65.
64. Lambrecht, R. S.,, and M. T. Collins. 1992. Mycobacterium tuberculosis factors that influence mycobactin dependence. Diagn. Microbiol. Infect. Dis. 15: 239 246.
65. Lambrecht, R. S.,, and M. T. Collins. 1993. Inability to detect mycobactin in Mycobacteria-infected tissues suggests an alternative iron acquisition mechanism by Mycobacteria in vivo. Microb. Pathog. 14: 229 238.
66. Lindquist, S. 1986. The heat shock response. Annu. Rev. Biochem. 55: 1151 1192.
67. Macham, L. P.,, and C. Ratledge. 1975. A new group of water-soluble iron-binding compounds from mycobacteria: the exochelins. J. Gen. Microbiol. 89: 379 382.
68. Macham, L. P.,, C. Ratledge,, and J. C. Nocton. 1975. Extracellular iron acquisition by mycobacteria: role of the exochelins and evidence against the participation of mycobactin. Infect. Immun. 12: 1242 1251.
69. Macham, L. P.,, M. C. Stephenson,, and C. Ratledge. 1977. Iron transport in Mycobacterium smegmatis: the isolation, purification and function of exochelin MS. J. Gen. Microbiol. 101: 41 49.
70. Mathur, M.,, and P. E. Kolattukudy. 1992. Molecular cloning and sequencing of the gene for mycocerosic acid synthase, a novel fatty acid-elongating multifunctional enzyme, from Mycobacterium tuberculosis BCG. J. Bacteriol. 267: 19388 19395.
71. McCready, K. A.,, and C. Ratledge. 1977. Unpublished data.
72. McCready, K. A.,, and C. Ratledge. 1979. Ferrimycobactin reductase activity from Mycobacterium smegmatis. J. Gen. Microbiol. 113: 67 72.
73. McKenna, W. R.,, P. A. Mickelsen,, P. F. Sparling,, and D. W. Dyer. 1988. Iron uptake from lactoferrin and transferrin by Neisseria gonorrhoeae. Infect. Immun. 56: 785 790.
74. McNeil, M. R.,, and P. J. Brennan. 1991. Structure, function and biogenesis of the cell envelope of mycobacteria in relation to bacterial physiology, pathogenesis and drug resistance; some thoughts and possibilities arising from recent structural information. Res. Microbiol. 142: 451 463.
75. McNeil, M. R.,, M. Dane,, and P. J. Brennan. 1991. Location of the mycolyl ester subunits in the walls of mycobacteria. J. Biol. Chem. 266: 13217 13223.
76. Medhi, I.,, P. S. Murthy,, and T. A. Venkitasubramanian. 1979. Demonstration and purification of three fatty acid synthases from Mycobacterium tuberculosis H37Rv. Indian J. Biochem. Biophys. 16: 216 222.
77. Menozzi, F. D.,, C. Gantiez,, and C. Locht. 1991. Identification and purification of transferrin- and lactoferrin-binding proteins of Bordetella pertussis and Bordetella bronchiseptica. Infect. Immun. 59: 3982 3988.
78. Messenger, A. J. M.,, R. M. Hall,, and C. Ratledge. 1986. Iron uptake processes in Mycobacterium vaccae R877R, a mycobacterium lacking mycobactin. J. Gen. Microbiol. 132: 845 852.
79. Messenger, A. J. M.,, and C. Ratledge. 1982. Iron transport in Mycobacterium smegmatis: uptake of iron from ferric citrate. J. Bacteriol. 149: 131 135.
80. Messenger, A. J. M.,, and C. Ratledge. Unpublished work.
81. Mickelsen, P. A.,, E. Blackman,, and P. F. Sparling. 1982. Ability of Neisseria gonorrhoeae, N. meningitidis, and commensal Neisseria to obtain iron from lactoferrin. Infect. Immun. 35: 915 920.
82. Miller, M. J. 1989. Syntheses and therapeutic potential of hydroxamic acid based siderophores and analogues. Chem. Rev. 89: 1563 1579.
83. Miller, M. J.,, and F. Malouin. 1993. Microbial iron chelators as drug delivery agents: the rational design and synthesis of siderophore-drug conjugates. Acc. Chem. Res. 26: 241 249.
84. Minnikin, D. E., 1982. Lipids: complex lipids, their chemistry, biosynthesis and roles, p. 95 185. In C. Ratledge, and J. L. Stanford (ed.), Biology of the Mycobacteria, vol. 1. Academic Press, Inc. (London) Ltd., London.
85. Minnikin, D. E. 1991. Chemical principles in the organization of lipid components in the mycobacterial cell envelope. Res. Microbiol. 142: 423 427.
86. Minnikin, D. E.,, and M. Goodfellow,. 1980. Lipid composition in the classification and identification of acid-fast bacteria, p. 189 256. In M. Goodfellow, and R. G. Board (ed.), Microbiological Classification and Identification. Academic Press, Inc. (London) Ltd., London.
87. Monahan, I. M.,, D. K. Banerjee,, and P. D. Butcher. 1993. Gene expression of Mycobacterium bovis BCG induced in-vitro by stress stimuli associated with infection. Biochem. Soc. Trans. 22: 89S.
88. Monahan, I. M.,. , and P. D. Butcher. Unpublished observations.
89. Murty, M. V. V. S.,, and T. A. Venkitasubramanian. 1984. Turnover of phospholipids and glycerides in spheroplasts of Mycobacterium smegmatis. Ann. Microbiol. 1358: 147 154.
90. Nam-Lee, Y.,, and M. J. Colston. 1985. Measurement of ATP generation and decay in Mycobacterium leprae in vitro. J. Gen. Microbiol. 131: 3331 3338.
91. Neilands, J. B.,, K. Konopka,, B. Schwyn,, M. Coy,, R. T. Francis,, B. H. Paw,, and A. Bagg,. 1987. Comparative biochemistry of microbial iron assimilation, p. 3 33. In G. Winkelmann,, D. van der Helm,, and J. B. Neilands (ed.), Iron Transport in Microbes, Plants and Animals. VCH mbH, Weinheim, Germany.
92. Nikaido, H. 1993. Uptake of iron-siderophore complexes across the bacterial outer membrane. Trends Microbiol. 51: 5 7.
93. Nikaido, H.,, S. H. Kim,, and E. Y. Rosenberg. 1993. Physical organization of lipids in the cell wall of Mycobacterium chelonae. Mol. Microbiol. 8: 1025 1030.
94. Nikaido, H.,, and M. H. Saier. 1992. Transport proteins in bacteria: common themes in their design. Science 258: 936 942.
95. Ogunnariwo, J. A.,, and A. P. Schryvers. 1990. Iron acquisition in Pasteurella haemolytica: expression and identification of a bovine-specific transferrin receptor. Infect. Immun. 58: 2091 2097.
96. Patel, B. K. R.,, D. K. Banerjee,, and P. D. Butcher. 1991. Characterization of the heat shock response in Mycobacterium bovis BCG. J. Bacteriol. 173: 7982 7987.
97. Pattyn, S. R.,, and F. Portaels. 1980. In vitro cultivation and characterization of Mycobacterium lepraemurium. Int. J. Lepr. 48: 7 14.
98. Penumarti, N.,, and G. K. Khuller. 1982. Influence of antibodies to mannophosphoinositides on phospholipid synthesis in Mycobacterium smegmatis ATCC 607. Infect. Immun. 37: 884 890.
99. Postle, K. 1990. Ton B and the Gram-negative dilemma. Mol. Microbiol. 4: 2019 2025.
100. Quemard, A.,, C. Lacave,, and G. Laneelle. 1991. Isoniazid inhibition of mycolic acid synthesis by extracts of sensitive and resistant strains of Mycobacterium aurum. Antimicrob. Agents Chemother. 35: 1035 1039.
101. Qureshi, N.,, N. Sathyamoorthy,, and K. Takayama. 1984. Biosynthesis of C 30 to C 56 fatty acids by an extract of Mycobacterium tuberculosis H37Ra. J. Bacteriol. 157: 46 52.
102. Rainwater, D. L.,, and P. E. Kolattukudy. 1982. Isolation and characterization of acyl-CoA carboxylases from Mycobacterium tuberculosis and M. bovis, which produce multiple methyl branched mycocerosic acids. J. Bacteriol. 151: 905 911.
103. Rainwater, D. L.,, and P. E. Kolattukudy. 1985. Fatty acid biosynthesis in Mycobacterium tuberculosis var bovis BCG: purification and characterization of a novel fatty acid synthase, mycocerosate synthase, which elongates n-fatty acyl-CoA with methylmalonyl-CoA. J. Biol. Chem. 260: 616 623.
104. Rastogi, N. 1991. Recent observations concerning structure and function relationships in the mycobacterial cell envelope: elaboration of a model in terms of mycobacterial pathogenicity, virulence and drug-resistance. Res. Microbiol. 142: 464 476.
105. Rastogi, N.,, C. Frehel,, A. Ryter,, H. Ohayou,, M. Lesourd,, and H. L. David. 1981. Multiple drug resistance in Mycobacterium avium: is the wall architecture responsible for the exclusion of antimicrobial agents? Antimicrob. Agents Chemother. 20: 666 677.
106. Rastogi, N.,, and K. S. Goh. 1990. Antibacterial action of l-isonicotinyl-2-palmitoyl hydrazine against the Mycobacterium avium complex and the enhancement of its activity by m-flurophenylalanine. Antimicrob. Agents Chemother. 34: 2061 2064.
107. Rastogi, N.,, K. S. Goh,, and H. L. David. 1990. Enhancement of drug susceptibility of Mycobacterium avium by inhibitors of cell envelope synthesis. Antimicrob. Agents Chemother. 34: 759 764.
108. Ratledge, C., 1982a. Lipids: composition, fatty acid biosynthesis, p. 53 94. In C. Ratledge, and J. L. Stanford (ed.), Biology of the Mycobacteria, vol. 1. Academic Press Inc. Ltd. (London), London.
109. Ratledge, C., 1982b. Nutrition, growth and metabolism, p. 186 212. In C. Ratledge, and J. L. Stanford (ed.), Biology of the Mycobacteria, vol. 1. Academic Press, Inc. (London) Ltd., London.
110. Ratledge, C.,, L. P. Macham,, K. A. Brown,, and B. J. Marshall. 1974. Iron transport in Mycobacterium smegmatis: a restricted role for salicylic acid in the extracellular environment. Biochim. Biophys. Acta 372: 39 51.
111. Ratledge, C.,, P. V. Patel,, and J. Mundy. 1982. Iron transport in Mycobacterium smegmatis: the location of mycobactin by electron microscopy. J. Gen. Microbiol. 128: 1559 1565.
112. Ratledge, C.,, and F. G. Winder. 1962. The accumulation of salicylic acid by mycobacteria during growth on an iron-deficient medium. Biochem. J. 84: 501 506.
113. Rogers, H. J.,, C. Synge,, and V. E. Woods. 1980. Antibacterial effect of scandium and indium complexes of enterochelin on Klebsiella pneumoniae. Antimicrob. Agents Chemother. 18: 63 68.
114. Rogers, H. J.,, V. E. Woods,, and C. Synge. 1982. Antibacterial effect of scandium and indium complexes of enterochelin on Escherichia coli. J. Gen. Microbiol. 128: 2389 2394.
115. Sathyamoorthy, N.,, and K. Takayama. 1987. Purification and characterization of a novel mycolic acid exchange enzyme from Mycobacterium smegmatis. J. Biol. Chem. 262: 13417 13423.
116. Schryvers, A. B.,, and L. J. Morris. 1988a. Identification and characterization of the transferrin receptor from Neisseria meningitidis. Mol. Microbiol. 2: 281 288.
117. Schryvers, A. B.,, and L. J. Morris. 1988b. Identification and characterization of the human lactoferrin-binding protein from Neisseria meningitidis. Infect. Immun. 56: 1144 1149.
118. Snow, G. A. 1970. Mycobactins: iron-chelating growth factors from mycobacteria. Bacteriol. Rev. 34: 99 125.
119. Somogyi, P. A.,, and I. Foldes. 1983. Incorporation of thymine, thymidine, adenine and uracil into the nucleic acids of Mycobacterium phlei and its phage. Ann. Microbiol. 134a: 19 28.
120. Sritharan, M.,, and C. Ratledge. 1989. Co-ordinated expression of the components of iron transport (mycobactin, exochelin and envelope proteins) in Mycobacterium neoaurum. FEMS Microbiol. Lett. 60: 183 186.
121. Sritharan, M.,, and C. Ratledge. 1990. Iron-regulated envelope proteins of mycobacteria grown in vitro and their occurrence in Mycobacterium leprae grown in vivo. Biol. Metals 2: 203 208.
122. Stahl, D. A.,, and J. W. Urbance. 1990. The division between fast- and slow-growing mycobacteria corresponds to natural relationships among the mycobacteria. J. Bacteriol. 172: 116 124.
123. Stephenson, M. C, and C. Ratledge. 1980. Specificity of exochelins for iron transport in three species of mycobacteria. J. Gen. Microbiol. 116: 521 523.
124. Suntari, M.,, and S. Laakso. 1993. Effect of growth temperature on the fatty acid composition of Mycobacterium phlei. Arch. Microbiol. 159: 119 123.
125. Suzuki, Y.,, T. Mori,, Y. Miyata,, and T. Yamada. 1987. The number of ribosomal RNA genes in Mycobacterium lepraemurium. FEMS Microbiol. Lett. 44: 73 76.
126. Takayama, K.,, and E. L. Armstrong. 1976. Isolation, characterization and function of 6-mycolyl-6'acetyl-trehalose in the H37Rv strain of Mycobacterium tuberculosis. Biochemistry 15: 441 447.
127. Takayama, K.,, E. L. Armstrong,, E. L. Davidson,, K. A. Kunugi,, and J. O. Kilburn. 1978a. Effect of low temperature on growth, viability, and synthesis of mycolic acids of Mycobacterium tuberculosis strain H37Ra. Am. Rev. Respir. Dis. 118: 113 117.
128. Takayama, K.,, and D. S. Goldman. 1969. Pathway for the synthesis of mannophospholipids in Mycobacterium tuberculosis. Biochim. Biophys. Acta 176: 196 198.
129. Takayama, K.,, and D. S. Goldman. 1970. Enzymatic synthesis of mannosyl-l-phosphoryl decaprenol by a cell-free system of Mycobacterium tuberculosis. J. Bacteriol. 245: 6251 6257.
130. Takayama, K.,, and J. O. Kilburn. 1989. Inhibition of synthesis of arabinogalactan by ethambutol in Mycobacterium smegmatis. Antimicrob. Agents Chemother. 33: 1493 1499.
131. Takayama, K.,, N. Qureshi,, and H. K. Schnoes. 1978b. Isolation and characterization of the monounsaturated long chain fatty acids of Mycobacterium tuberculosis. Lipids 13: 575 579.
132. Takayama, K.,, L. Wang,, and H. L. David. 1972. Effect of isoniazid on the in vivo mycolic acid synthesis, cell growth and viability of Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 2: 29 35.
133. Toriyama, S.,, I. Yano,, M. Matsui,, M. Kusunose,, and E. Kusunose. 1978. Separation of C50-60 and C70-80 mycolic acid molecular species and their changes by growth temperature in Mycobacterium phlei. FEBS Lett. 95: 111 115.
134. Trias, J.,, and R. Benz. 1993. Characterization of the channel formed by the mycobacterial porin in lipid bilayer membranes. Demonstration of voltage gating and of negative point charges at the channel mouth. J. Bacteriol. 268: 6234 6240.
135. Trias, J.,, V. Jarlier,, and R. Benz. 1992. Porins in the cell wall of mycobacteria. Science 258: 1479 1481.
136. Walton, D. J.,, and D. D. Jordan. 1988. Order of enzymic incorporation of 0-methyl groups into the O-methyl-D-glucose containing polysaccharide of Mycobacterium smegmatis: a tritium labeling study. Carbohydr. Res. 172: 267 274.
137. Watson, K. 1990. Microbial stress proteins. Adv. Microb. Physiol. 31: 183 223.
138. Wayne, L. G. 1976. Dynamics of submerged growth of Mycobacterium tuberculosis under aerobic and microaerophilic conditions. Am. Rev. Respir. Dis. 114: 807 811.
139. Wayne, L. G.,, and K.-Y. Lin. 1982. Glyoxylate metabolism and adaptation of Mycobacterium tuberculosis to survival under anaerobic conditions. Infect. Immun. 37: 1042 1049.
140. Weisman, L. S.,, and C. E. Ballou. 1984a. Biosynthesis of the mycobacterial methylmannose polysaccharide. Identification of an a 1-4 mannosyltransferase. J. Biol. Chem. 259: 3457 3463.
141. Weisman, L. S.,, and C. E. Ballou. 1984b. Biosynthesis of the mycobacterial methylmannose polysaccharide: identification of a 3-O-methyltransferase. J. Biol. Chem. 259: 3464 3469.
142. Wheeler, P. R. 1987a. Biosynthesis and scavenging of purines by pathogenic mycobacteria including Mycobacterium leprae. J. Gen. Microbiol. 133: 2999 3011.
143. Wheeler, P. R. 1987b. Enzymes for purine synthesis and scavenging in pathogenic mycobacteria and their distribution in Mycobacterium leprae. J. Gen. Microbiol. 133: 3013 3018.
144. Wheeler, P. R. 1990. Biosynthesis and scavenging of pyrimidines by pathogenic mycobacteria. J. Gen. Microbiol. 136: 189 201.
145. Wheeler, P. R.,, G. S. Besra,, D. E. Minnikin,, and C. Ratledge. 1993a. Inhibition of mycolic acid biosynthesis in a cell-wall preparation from Mycobacterium smegmatis by methyl 4-(2-octadecylcyclopropen-l-yl)butanoate, a structural analogue of a key precursor. Lett. Appl. Microbiol. 17: 33 36.
146. Wheeler, P. R.,, G. S. Besra,, D. E. Minnikin,, and C. Ratledge. 1993b. Stimulation of mycolic acid biosynthesis by incorporation of cis-tetracos-5-enoic acid in a cell-wall preparation from Mycobacterium smegmatis. Biochim. Biophys. Acta 1167: 182 188.
147. Wheeler, P. R.,, and K. Bulmer. Unpublished work.
148. Wheeler, P. R.,, K. Bulmer,, and C. Ratledge. 1990. Enzymes for biosynthesis de novo and elongation of fatty acids in mycobacteria: is Mycobacterium leprae competent in fatty acid biosynthesis? J. Gen. Microbiol. 136: 211 217.
149. Wheeler, P. R.,, K. Bulmer,, and C. Ratledge. 1991. Fatty acid oxidation and the B-oxidation complex in Mycobacterium leprae and two axenically cultivable mycobacteria that are pathogens. J. Gen. Microbiol. 137: 885 893.
150. Wheeler, P. R.,, K. Bulmer,, C. Ratledge,, J. W. Dale,, and E. Norman. 1992. Control and location of acyl-CoA carboxylase activity in mycobacteria. FEMS Microbiol. Lett. 90: 169 172.
151. Wheeler, P. R.,, and C. Ratledge. 1988. Use of carbon sources for lipid biosynthesis in Mycobacterium leprae: a comparison with other pathogenic mycobacteria. J. Gen. Microbiol. 134: 2111 2121.
152. Wheeler, P. R.,, and C. Ratledge. 1991. Phospholipase activity of Mycobacterium leprae harvested from experimentally infected armadillo tissue. Infect. Immun. 59: 2781 2789.
153. Wheeler, P. R.,, and C. Ratledge. 1992. Control and location of acyl-hydrolysing phospholipase activity in mycobacteria. J. Gen. Microbiol. 138: 825 830.
154. Wietzerbin, J.,, B. C. Das,, J. F. Petit,, E. Lederer,, L. M. Bouille,, and J. M. Ghyusen. 1975. Occurrence of D-alanyl-(D)-meso-diaminopimelate and meso-diaminopimelyl-meso-diaminopimilate interpeptide link-ages in the peptidoglycan of mycobacteria. Biochemistry 13: 3471 3476.
155. Winder, F. G.,, J. J. Tighe,, and P. J. Brennan. 1972. Turnover of acylglucose, acyltrehalose and free trehalose during growth of Mycobacterium smegmatis on glucose. J. Gen. Microbiol. 73: 539 546.
156. Winkelmann, G. (ed.). 1991. CRC Handbook of Microbial Iron Chelates. CRC Press, Inc., Boca Raton, Fla..
157. Woodley, C. L.,, J. O. Kilburn,, H. L. David,, and V. A. Silcox. 1972. Susceptibility of mycobacteria to rifampin. Antimicrob. Agents Chemother. 2: 245 249.
158. Wooldridge, K. G.,, J. A. Morrissey,, and P. H. Williams. 1992. Transport of ferric-aerobactin into the periplasm and cytoplasm of Escherichia coli K12: role of envelope-associated proteins and the effect of endogenous siderophores. J. Gen. Microbiol. 138: 597 603.
159. Yokoyama, K.,, and C. E. Ballou. 1989. Synthesis of a 1-6 mannooligosaccharides in Mycobacterium smegmatis: function of 3-mannosylphosphoryldecaprenol as mannosyl donor. J. Biol. Chem. 264: 21621 21628.
160. Young, D. B.,, S. H. Kaufmann,, P. W. Hermans,, and J. F. Thole. 1991. Mycobacterial protein antigens: a compilation. Mol. Microbiol. 6: 133 145.
161. Zhang, Y.,, V. A. Steingrube,, and R. J. Wallace. 1992. B-Lactamase inhibitors and the inducibility of β-lactamase of Mycobacterium tuberculosis. Am. Rev. Respir. Dis. 145: 657 660.
162. Zhou, X. H.,, and D. van der Helm. 1993. A novel purification of ferric citrate receptor (FecA) from Escherichia coli UT 5600 and further characterization of its binding capacity. Biol. Metab. 6: 37 44.

Tables

Generic image for table
Table 1

Substrates that may be available to mycobacteria growing in the host

Citation: Wheeler P, Ratledge C. 1994. Metabolism of , p 353-385. In Bloom B (ed), Tuberculosis. ASM Press, Washington, DC. doi: 10.1128/9781555818357.ch23
Generic image for table
Table 2

Growth and rates of synthesis of nucleic acids

Citation: Wheeler P, Ratledge C. 1994. Metabolism of , p 353-385. In Bloom B (ed), Tuberculosis. ASM Press, Washington, DC. doi: 10.1128/9781555818357.ch23
Generic image for table
Table 3

Heat shock proteins in and

Citation: Wheeler P, Ratledge C. 1994. Metabolism of , p 353-385. In Bloom B (ed), Tuberculosis. ASM Press, Washington, DC. doi: 10.1128/9781555818357.ch23
Generic image for table
Table 4

Occurrence of IREPs and HIPs as analyzed by SDS-PAGE in mycobacteria grown in vitro and in vivo

Citation: Wheeler P, Ratledge C. 1994. Metabolism of , p 353-385. In Bloom B (ed), Tuberculosis. ASM Press, Washington, DC. doi: 10.1128/9781555818357.ch23
Generic image for table
Table 5

Mannosyltransferases detected in mycobacteria

Citation: Wheeler P, Ratledge C. 1994. Metabolism of , p 353-385. In Bloom B (ed), Tuberculosis. ASM Press, Washington, DC. doi: 10.1128/9781555818357.ch23

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error