1887

Chapter 24 : Immune Mechanisms of Protection

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Immune Mechanisms of Protection, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818357/9781555819101_Chap24-1.gif /docserver/preview/fulltext/10.1128/9781555818357/9781555819101_Chap24-2.gif

Abstract:

This chapter focuses on the immune mechanisms involved in protective immunity against tuberculosis, with the awareness that in most cases the immune response activated during infection with may be remarkably powerful yet insufficient. M. Lurie and E. Suter independently found that macrophages from immune animals expressed tuberculostatic activities, whereas those from normal animals permitted unrestricted bacillary multiplication. Although these studies suggested involvement of specific immune mechanisms, the investigators did not contest alternative strategies when they realized that immune serum did not influence tuberculostasis by mononuclear phagocytes (MP). The use of oxygen radical scavengers to probe the significance of reactive oxygen intermediates (ROI) in the antimycobacterial function of macrophages can potentially generate misleading information because of nonspecific effects of peroxynitrite anion, NO, superoxide anion chemicals. More importantly, the role that RNIs play in defense against pathogens has not been established in humans. Mycobactins, a group of iron-chelating growth factors of mycobacteria, have been considered a possible virulence factor of . In tuberculosis, the port of entry as well as the major organ of disease is the lung. Due the relationship between and host immunity underlying infection is a labile one, any diminution of protective immunity will cause progression into clinical disease.

Citation: Chan J, Kaufmann S. 1994. Immune Mechanisms of Protection, p 389-415. In Bloom B (ed), Tuberculosis. ASM Press, Washington, DC. doi: 10.1128/9781555818357.ch24
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Antituberculous macrophage activities and evasion mechanisms. Accumulating evidence suggests that M. tuberculosis enters macrophages via specific binding to cell surface molecules of phagocytes. It has been reported that the tubercle bacillus can bind directly to the mannoase receptor via the cell wall-associated, mannosylated glycolipid LAM (1) or indirectly via complement receptors of the integrin family (CR1, CR3) or Fc receptors (2). Phagocytosis (3), triggered by engaging certain cell surface molecules such as the Fc receptor, stimulates the production of ROI via activation of the oxidative burst (4). Experimental data indicate that M. tuberculosis can interfere with the toxic effect of ROI by various mechanisms. First, various mycobacterial compounds including glycolipids (GL), sulfatides (ST), and LAM can downregulate the oxidative cytotoxic mechanism (5; see text for details). Second, uptake via CR1 bypasses activation of the respiratory burst. Cytokine-activated macrophages produce RNI that, at least in the mouse system, mediate potent antimycobacterial activity (6). The acidic condition of the phagolysosomal vacuole can be conducive to the toxic effect of RNI (7). However, NH4+ production by M. tuberculosis may attenuate the potency of the l-arginine-dependent antimycobacterial mechanism and that of lysosomal enzymes (8), which operate best at an acidic pH. In addition, mycobacterial products such as sulfatides and NH4+ may interfere with phagolysosomal fusion (9). Finally, the tubercle bacillus may evade the highly toxic environment by escaping into the cytoplasm via the production of hemolysin (10).

Citation: Chan J, Kaufmann S. 1994. Immune Mechanisms of Protection, p 389-415. In Bloom B (ed), Tuberculosis. ASM Press, Washington, DC. doi: 10.1128/9781555818357.ch24
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Relationship between intracellular persistence of M. tuberculosis, antigen type, and T-cell subset activation. (1) M. tuberculosis replicating in the phagosome secretes proteins that are degraded into peptides and then translocated to the cell surface by MHC class II molecules. (2) MHC class I molecules capture M. tuberculosis peptides derived from secreted proteins in the cytoplasm. Either the proteins or peptides had been translocated from the endosomal into the cytoplasmic compartment, or they were secreted into the cytoplasm by M. tuberculosis after its evasion of the phagosome. Later, M. tuberculosis is killed and degraded, thus giving rise to somatic proteins. (3) Peptides derived from M. tuberculosis killed in the phagosome contact MHC class II molecules. (4) Peptides from somatic proteins present in the cytoplasm are charged to MHC class I molecules. (5) Neither the source of peptides nor the presentation molecules involved in γ/δ T-cell stimulation are fully understood. This sequence of events leads to a first wave of T cells with specificity for secreted proteins followed by a second wave of T cells with specificity for somatic proteins. Ag, antigen.

Citation: Chan J, Kaufmann S. 1994. Immune Mechanisms of Protection, p 389-415. In Bloom B (ed), Tuberculosis. ASM Press, Washington, DC. doi: 10.1128/9781555818357.ch24
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818357.chap24
1. Adams, J. S.,, and M. A. Gacad. 1985. Characterization of 1-alpha hydroxylation of vitamin D3 sterols by cultured alveolar macrophages from patients with sarcoidosis. J. Exp. Med. 161:755765.
2. Albelda, S. M.,, and C. A. Buck. 1990. Integrins and other cell adhesion molecules. FASEB J. 4:28682880.
3. Amiri, P.,, R. M. Locksley,, T. G. Parslow,, M. Sadick,, E. Rector,, D. Ritter,, and J. H. McKerrow. 1992. Tumor necrosis factor a restores granulomas and induces parasite egg-laying in schistosome-infected SCID mice. Nature (London) 356:604607.
4. Anonymous. 1935. Die Sauglingstuberkulose in Lubeck. Julius Springer, Berlin.
5. Armstrong, J. A.,, and P. D'Arcy Hart. 1971. Response of cultured macrophages to Mycobacterium tuberculosis, with observations on fusion of lysosomes with phagosomes. J. Exp. Med. 134:713740.
6. Armstrong, J. A.,, and P. D'Arcy Hart. 1975. Phagosome-lysosome interactions in cultured macrophages infected with virulent tubercle bacilli. Reversal of the usual fusion pattern and observations on bacterial survival. J. Exp. Med. 142:116.
7. Arruda, S.,, G. Bomfim,, R. Knights,, T. Huima-Byron,, and L. W. Riley. 1993. Cloning of an M. tuberculosis DNA fragment associated with entry and survival inside cells. Science 261:14541457.
8. Augustin, A.,, R. T. Kubo,, and G.-K. Sim. 1989. Resident pulmonary lymphocytes expressing the c/d T-cell receptor. Nature (London) 340:239241.
9. Bail, O. 1910. Ubertragung der Tuberkulinempfindlichkeit. Z. Immunitaetsforsch. 4:470485.
10. Bainton, D. F. 1981. The discovery of lysosomes. J.Cell Biol. 91:66S76S.
11. Bancroft, G. J.,, R. D. Schreiber,, and E. R. Unanue. 1991. Natural immunity: a T-cell-independent pathway of macrophage activation defined in the scid mouse. Immunol. Rev. 124:524.
12. Barnes, P. F.,, S. D. Mistry,, C. L. Cooper,, C. Pirmez,, T. H. Rea,, and R. L. Modlin. 1989. Compartmentalization of a CD4+ T lymphocyte subpopulation in tuberculous pleuritis. J. Immunol. 142:11141119.
13. Beckman, J. S.,, T. W. Beckman,, J. Chen,, P. A. Marshall,, and B. A. Freeman. 1990. Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc. Natl. Acad. Sci. USA 87:16201624.
14. Bermudez, L. E. 1993. Production of transforming growth factor-p by Mycobacterium avium-infected human macrophages is associated with unresponsiveness to IFN-γ. J. Immunol. 150:18381845.
15. Bermudez, L. E.,, and J. Champsi. 1993. Infection with Mycobacterium avium induces production of interleukin-10 (IL-10), and administration of anti-IL-10 antibody is associated with enhanced resistance to infection in mice. Infect. Immun. 61:30933097.
16. Bielecki, J.,, P. Youngman,, P. Connelly,, and D. A. Portnoy. 1990. Bacillus subtilis expressing a haemolysin gene from Listeria monocytogenes can grow in mammalian cells. Nature (London) 345:175176.
17. Bloom, B. R.,, and B. Bennett. 1966. Mechanism of a reaction in vitro associated with delayed-type hypersensitivity. Science 153:8082.
18. Brennan, P. J. 1989. Structure of mycobacteria: recent developments in denning cell wall carbohydrates and proteins. J. Infect. Dis. 11:S420S430.
19. Brennan, P. J.,, S. W. Hunter,, M. McNeil,, D. Chatterjee,, and M. Daffe,. 1990. Reappraisal of the chemistry of mycobacterial cell walls, with a view to understanding the roles of individual entities in disease processes, p. 5575. In E. M. Ayoub,, G. H. Cassell,, W. C. Branche, Jr.,, and T. J. Henry (ed.), Microbial Determinants of Virulence and Host Response. American Society for Microbiology, Washington, D.C..
20. Brennt, C. E.,, A. C. Wright,, S. K. Dutta,, and J. G. Morris, Jr. 1991. Growth of Vibrio vulnificus in serum from alcoholics: association with high transferrin iron saturation. J. Infect. Dis. 164:10301032.
21. Brozna, J. P.,, M. Horan,, J. M. Rademacher,, K. A. Pabst,, and M. J. Pabst. 1991. Monocyte responses to sulfatide from Mycobacterium tuberculosis: inhibition of priming for enhanced release of superoxide, associated with increased secretion of interleukin-1 and tumor necrosis factor alpha, and altered protein phosphorylation. Infect. Immun. 59:25422548.
22. Bullen, J. J.,, P. B. Spalding,, C. G. Ward,, and J. M. C. Gutteridge. 1991. Hemochromatosis, iron, and septicemia caused by Vibrio vulnificus. Arch. Intern. Med. 151:16061609.
23. Bullock, W. E.,, and S. D. Wright. 1987. Role of the adherence-promoting receptors, CR3, LFA-1, and pl50,95 in binding of Histoplasma capsulatum by human macrophages. J. Exp. Med. 165:195210.
24. Cahall, D. L.,, and C. P. Youmans. 1975a. Conditions for production, and some characteristics, of mycobacterial growth inhibitory factor produced by spleen cells from mice immunized with viable cells of the attenuated H37Ra strain of Mycobacterium tuberculosis. Infect. Immun. 12:833840.
25. Cahall, D. L.,, and C. P. Youmans. 1975b. Molecular weight and other characteristics of mycobacterial growth inhibitory factor produced by spleen cells obtained from mice immunized with viable cells of the attenuated mycobacterial cells. Infect. Immun. 12:841850.
26. Chan, J.,, and B. R. Bloom. Unpublished observations.
27. Chan, J.,, X.-D. Fan,, S. W. Hunter,, P. J. Brennan,, and B. R. Bloom. 1991. Lipoarabinomannan, a possible virulence factor involved in persistence of Mycobacterium tuberculosis within macrophages. Infect. Immun. 59:17551761.
28. Chan, J.,, T. Fujiwara,, P. Brennan,, M. McNeil,, S. J. Turco,, J.-C. Sibille,, M. Snapper,, P. Aisen,, and B. R. Bloom. 1989. Microbial glycolipids: possible virulence factors that scavenge oxygen radicals. Proc. Natl. Acad. Sci. USA 86:24532457.
29. Chan, J.,, Y. Xing,, R. S. Magliozzo,, and B. R. Bloom. 1992. Killing of virulent Mycobacterium tuberculosis by reactive nitrogen intermediates produced by activated murine macrophages. J. Exp. Med. 175: 11111122.
30. Chase, M. W. 1945. The cellular transfer of cutaneous hypersensitivity to tuberculin. Proc. Soc. Exp. Biol. Med. 59:134135.
31. Chatterjee, D.,, K. Lowell,, B. Rivoire,, M. R. McNeil,, and P. J. Brennan. 1992a. Lipoarabinomannan of Mycobacterium tuberculosis. Capping with mannosyl residues in some strains. J. Biol. Chem. 267: 62346239.
32. Chatterjee, D.,, A. D. Roberts,, K. Lowell,, P. J. Brennan,, and I. M. Orme. 1992b. Structural basis of capacity of lipoarabinomannan to induce secretion of tumor necrosis factor. Infect. Immun. 60:12491253.
33. Cheever, A. W.,, F. D. Finkelman,, P. Caspar,, S. Heiny,, J. G. Macedonia,, and A. Sher. 1992. Treatment with anti-IL-2 antibodies reduces hepatic pathology and eosinophilia in Schistosoma mansoni-infected mice while selectively inhibiting T cell IL-5 production. J. Immunol. 148:32443248.
34. Chensue, S. W.,, I. G. Otterness,, G. I. Higashi,, C. S. Forsch,, and S. L. Kunkel. 1989. Monokine production by hypersensitivity (Schistosoma mansoni egg) and foreign body (Sephadex bead)-type granuloma macrophages. Evidence for sequential production of IL-1 and tumor necrosis factor. J. Immunol. 142: 12811286.
35. Chensue, S. W.,, P. D. Terebuh,, K. S. Warmington,, S. D. Hershey,, H. L. Evanoff,, S. L. Kunkel,, and G. I. Higashi. 1992. Role of IL-4 and IFN-γ in Schistosoma mansoni egg-induced hypersensitivity granuloma formation. Orchestration, relative contribution, and relationship to macrophage function. J. Immunol. 148:900906.
36. Cohn, Z. A. 1963. The fate of bacteria within phagocytic cells. I. The degradation of isotopically labeled bacteria by polymorphonuclear leucocytes and macrophages. J. Exp. Med. 117:2742.
37. Comstock, G. W. 1978. Tuberculosis in twins: a re-analysis of the Prophit survey. Am. Rev. Respir. Dis. 117:621624.
38. Cooper, A. M.,, D. K. Dalton,, T. A. Stewart,, J. P. Griffin,, D. G. Russell,, and I. M. Orme. 1993. Disseminated tuberculosis in interferon-γ gene-disrupted mice. J. Exp. Med. 178:22432247.
39. Crowle, A. J.,, E. J. Ross,, and M. H. May. 1987. Inhibition by l,25(OH)2-vitamin D3 of the multiplication of virulent tubercle bacilli in cultured human macrophages. Infect. Immun. 55:29452950.
40. Cunha, F. Q.,, S. Moncada,, and F. Y. Liew. 1992. Interleukin-10 (IL-10) inhibits the induction of nitric oxide synthase by interferon-gamma in murine macrophages. Biochem. Biophys. Res. Commun. 182: 11551159.
41. Daffe, M.,, C. Lacave,, M.-A. Laneelle,, and G. Laneelle. 1987. Structure of the major triglycosyl phenolphthiocerol of Mycobacterium tuberculosis (strain Canetti). Eur. J. Biochem. 167:144160.
42. Dalton, D.,, S. Pitts-Meek,, S. Keshav,, I. S. Figari,, A. Bradley,, and T. A. Stewart. 1993. Multiple defects of immune cell function in mice with disrupted interferon--/ genes. Science 259:17391742.
43. D'Andrea, A.,, M. Rengaraju,, N. M. Valiente,, J. Chehimi,, M. Kubin,, M. Aste,, S. H. Chan,, M. Kobayashi,, D. Young,, E. Nickbarg,, R. Chizzonite,, S. F. Wolf,, and G. Trinchieri. 1992. Production of natural killer cell stimulatory factor (interleukin 12) by peripheral blood mononuclear cells. J. Exp. Med. 176:13871398.
44. D'Arcy Hart, P.,, M. R. Young,, A. H. Gordon,, and K. H. Sullivan. 1987. Inhibition of phagosome-lysosome fusion in macrophages by certain mycobacteria can be explained by inhibition of lysosomal movements observed after phagocytosis. J. Exp. Med. 166:933946.
45. D'Arcy Hart, P.,, M. R. Young,, M. M. Jordan,, W. J. Perkins,, and M. J. Geisow. 1983. Chemical inhibitors of phagosome-lysosome fusion in cultured macrophages also inhibit saltatory lysosomal movements. A combined microscopic and computer study. J. Exp. Med. 158:477492.
46. David, J. R. 1966. Delayed hypersensitivity in vitro: its mediation by cell-free substances formed by lymphoid cell-antigen interaction. Proc. Natl. Acad. Sci. USA 56:7277.
47. de Duve, C.,, and R. Wattiaux. 1966. Functions of lysosomes. Annu. Rev. Physiol. 28:435492.
48. DeLibero, G.,, I. Flesch,, and S. H. E. Kaufmann. 1988. Mycobacteria reactive Lyt2+ T cell lines. Eur. J. Immunol. 18:5966.
49. Denis, M. 1991a. Killing of Mycobacterium tuberculosis within human monocytes: activation by cytokines and calcitriol. Clin. Exp. Immunol. 84:200206.
50. Denis, M. 1991b. Interferon-gamma-treated murine macrophages inhibit growth of tubercle bacilli via the generation of reactive nitrogen intermediates. Cell. Immunol. 132:150157.
51. Denis, M. 1991c. Tumor necrosis factor and granulocyte macrophage colony-stimulating factor stimulate human macrophages to restrict growth of virulent Mycobacterium avium and to kill avirulent M. avium: killing effector mechanism depends on the generation of reactive nitrogen intermediates. J. Leukocyte Biol. 49:380387.
52. Denis, M.,, and E. Ghadirian. 1991. Transforming growth factor (TGF-(31) plays a detrimental role in the progression of experimental Mycobacterium avium infection; in vivo and in vitro evidence. Microb. Pathog. 11:367372.
53. Doi, T.,, M. Ando,, T. Akaike,, M. Suga,, K. Sato,, and H. Maeda. 1993. Resistance to nitric oxide in Mycobacterium avium complex and its implication in pathogenesis. Infect. Immun. 61:19801989.
54. Douvas, G. S.,, D. L. Looker,, A. E. Vatter,, and A. J. Crowle. 1985. Gamma interferon activates human macrophages to become tumoricidal and leishmanicidal but enhances replication of macrophage-associated mycobacteria. Infect. Immun. 50:18.
55. Drapier, J.-C,, H. Hirling,, J. Wietzerbin,, P. Kaldy,, and L. C. Kuhn. 1993. Biosynthesis of nitric oxide activates iron regulatory factor in macrophages. EMBO J. 12:36433649.
56. Dunn, C. J.,, M. M. Hardee,, A. J. Gibbons,, N. D. Staite,, and K. A. Richard,. 1988. Interleukin-1 induces chronic granulomatous inflammation, p. 329334. In M. C. Powanda,, J. J. Oppenheim,, M. J. Kluger,, and C. A. Dinarello (ed.), Monokines and Other Non-lymphocytic Cytokines. Alan R. Liss, Inc., New York.
57. Eaton, J. W.,, P. Brandt,, and J. R. Mahoney. 1982. Haptoglobin: a natural bacteriostat. Science 215: 691693.
58. Emmrich, F.,, J. Thole,, J. D. A. Van Embden,, and S. H. E. Kaufmann. 1986. A recombinant 64 kilodalton protein of Mycobacterium bovis BCG specifically stimulates human T4 clones reactive to mycobacterial antigens. J. Exp. Med. 163:10241029.
59. Falini, B.,, L. Flenghi,, S. Piled,, P. Pelicci,, M. Fagioli,, M. F. Martelli,, L. Moretta,, and E. Ciccone. 1989. Distribution of T cells bearing different forms of the T cell receptor c/d in normal and pathological human tissues. J. Immunol. 143:24802488.
60. Falkow, S.,, R. R. Isberg,, and D. A. Portnoy. 1992. The interaction of bacteria with mammalian cells. Annu. Rev. Cell Biol. 8:333363.
61. Fan, X.-D.,, M. Goldberg,, and B. R. Bloom. 1988. Interferon-gamma-induced transcriptional activation is mediated by protein kinase C. Proc. Natl. Acad. Sci. USA 85:51225125.
62. Filley, E. A.,, and G. A. W. Rook. 1991. Effect of mycobacteria on sensitivity to the cytotoxic effects of tumor necrosis factor. Infect. Immun. 59:25672572.
63. Flesch, I. E. A.,, and S. H. E. Kaufmann. 1987. Mycobacterial growth inhibition by interferon-γ-activated bone marrow macrophages and differential susceptibility among strains of Mycobacterium tuberculosis. J. Immunol. 138:44084413.
64. Flesch, I. E. A.,, and S. H. E. Kaufmann. 1988. Attempts to characterize the mechanisms involved in mycobacterial growth inhibition by gamma-interferon-activated bone marrow macrophages. Infect. Immun. 56:1464.
65. Flesch, I. E. A.,, and S. H. E. Kaufmann. 1990a. Activation of tuberculostatic macrophage functions by gamma interferon, interleukin-4, and tumor necrosis factor. Infect. Immun. 58:26752677.
66. Flesch, I. E. A.,, and S. H. E. Kaufmann. 1990b. Stimulation of antibacterial macrophage activities by B-cell stimulatory factor 2 (interleukin-6). Infect. Immun. 58:269271.
67. Flesch, I. E. A.,, and S. H. E. Kaufmann. 1991. Mechanisms involved in mycobacterial growth inhibition by gamma interferon-activated bone marrow macrophages: role of reactive nitrogen intermediates. Infect. Immun. 59:32133218.
68. Flynn, J. L.,, and B. R. Bloom. Personal communication.
69. Flynn, J. L.,, J. Chan,, K. J. Triebold,, D. K. Dalton,, T. A. Stewart,, and B. R. Bloom. 1993. An essential role for IFN-γ in resistance to Mycobacterium tuberculosis infection. J. Exp. Med. 178:22492254.
70. Flynn, J. L.,, M. A. Goldstein,, K. J. Treibold,, B. Roller,, and B. R. Bloom. 1992. Major histocompatibility complex class I-restricted T cells are required for resistance to Mycobacterium tuberculosis infection. Proc. Natl. Acad. Sci. USA 89:1201312017.
71. Flynn, J. L.,, D. Mathis,, and B. R. Bloom. Unpublished observations.
72. Flynn, J. L.,, R. Schreiber,, and B. R. Bloom. Personal communication.
73. Follows, G. A.,, M. E. Munk,, A. J. Gatrill,, P. Conradt,, and S. H. E. Kaufmann. 1992. Interferon-7 and interleukin 2 but no detectable interleukin 4 in γ/δ T-cell cultures after activation with bacteria. Infect. Immun. 60:12291231.
74. Forrest, C. B.,, J. R. Forehand,, R. A. Axtell,, R. L. Roberts,, and R. B. Johnston, Jr. 1988. Clinical features and current management of chronic granulomatous disease. Hematol. Oncol. Clin. N. Am. 2:253265.
75. Friedland, J. S.,, D. G. Remick,, R. Shattock,, and G. E. Griffin. 1992. Secretion of interleukin-8 following phagocytosis of Mycobacterium tuberculosis by human monocyte cell lines. Eur. J. Immunol. 22:13731378.
76. Friedland, J. S.,, R. J. Shattock,, J. D. Johnson,, D. G. Remick,, R. E. Holliman,, and G. E. Griffin. 1993. Differential cytokine gene expression and secretion after phagocytosis by a human monocytic cell line of Toxoplasma gondii compared with Mycobacterium tuberculosis. Clin. Exp. Immunol. 91:282286.
77. Gavioli, R.,, S. Spisani,, A. Giuliani,, and S. Traniello. 1987. Protein kinase C mediates human neutrophil cytotoxicity. Biochem. Biophys. Res. Commun. 148:12901294.
78. Gazzinelli, R. T.,, S. Hieny,, T. A. Wynn,, S. Wolf,, and A. Sher. 1993. Interleukin 12 is required for the T-lymphocyte-independent induction of interferon γ by an intracellular parasite and induces resistance in T-cell-deficient hosts. Proc. Natl. Acad. Sci. USA 90:61156119.
79. GazzineUi, R. T.,, I. P. Oswald,, S. L. James,, and A. Sher. 1992. IL-10 inhibits parasite killing and nitrogen oxide production by IFN-gamma-activated macrophages. J. Immunol. 148:17921796.
80. Gennaro, R.,, C. Florio,, and O. Romeo. 1985. Activation of protein kinase C in neutrophil cytoplasts. FEBS Lett. 180:185190.
81. Goodman, R. M.,, and A. G. Motulsky. 1979. Genetic Diseases among Askenazi Jews, p. 301. Raven Press, Inc., New York.
82. Gordon, A. H.,, P. D'Arcy Hart,, and M. R. Young. 1980. Ammonia inhibits phagosome-lysosome fusion in macrophages. Nature (London) 286:7981.
83. Goren, M. B.,, O. Brokl,, P. Roller,, H. M. Fales,, and B. C. Das. 1976a. Sulfatides of Mycobacterium tuberculosis: the structure of the principal sulfatide (SL-1). Biochemistry 15:2728.
84. Goren, M. B.,, O. Brokl,, and W. B. Schaeffer. 1974. Lipids of putative relevance to virulence in Mycobacterium tuberculosis: correlation of virulence with elaboration of sulfatides and strongly acidic lipids. Infect. Immun. 9:142149.
85. Goren, M. B.,, P. D'Arcy Hart,, M. R. Young,, and J. A. Armstrong. 1976b. Prevention of phagosome-lysosome fusion in cultured macrophages by sulfatides of Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA 73:25102514.
86. Goren, M. B.,, A. E. Vatter,, and J. Fiscus. 1987a. Polyanionic agents as inhibitors of phagosome-lysosome fusion in cultured macrophages: evolution of an alternative interpretation. J. Leukocyte Biol. 41:111121.
87. Goren, M. B.,, A. E. Vatter,, and J. Fiscus. 1987b. Polyanionic agents do not inhibit phagosome-lysosome fusion in cultured macrophages. J. Leukocyte Biol. 41:122129.
88. Griffiths, E.,, H. J. Rogers,, and J. J. Bullen. 1980. Iron, plasmids and infection. Nature (London) 284:508509.
89. Gros, P.,, E. Skamene,, and A. Forget. 1983. Cellular mechanisms of genetically controlled host resistance to Mycobacterium bovis (BCG). J. Immunol. 131:19661973.
90. Hamilton, T. A.,, and D. O. Adams. 1987. Molecular mechanisms of signal transduction in macrophages. Immunol. Today 8:151158.
91. Hamilton, T. A.,, D. L. Becton,, S. D. Somers,, P. W. Gray,, and D. O. Adams. 1984. Interferon-γ modulates protein kinase C activity in murine peritoneal macrophages. J. Biol. Chem. 260:13781381.
92. Heinzel, F. P.,, D. S. Schoenhaut,, R. M. Rerko,, L. E. Rosser,, and M. K. Gately. 1993. Recombinant interleukin 12 cures mice infected with Leishmania major. J. Exp. Med. 177:15051509.
93. Helmholz, H. F. 1909. Uber passive Ubertragung der Tuberkulin-Uberempfindlichkeit bei Meerschweinchen. Z. Immunitaetsforsch. 3:371375.
94. Hibbs, J. B.,, C. Westenfelder,, R. Taintor,, Z. Vavrin,, C. Kablitz,, R. L. Baranowski,, J. H. Ward,, R. L. Menlove,, M. P. McMurry,, J. P. Kushner,, and W. E. Samlowski. 1992. Evidence for cytokine-inducible nitric oxide synthesis from L-arginine in patients receiving interleukin-2 therapy. J. Clin. Invest. 89: 867877.
95. Hunter, S. W.,, and P. J. Brennan. 1981. A novel phenolic glycolipid from Mycobacterium leprae possibly involved in immunogenicity and pathogenicity. J. Bacteriol. 147:728735.
96. Hunter, S. W.,, and P. J. Brennan. 1991. Evidence for the presence of a phosphatidylinositol anchor on the lipoarabinomannan and lipomannan of Mycobacterium tuberculosis. J. Biol. Chem. 265:92729279.
97. Hunter, S. W.,, T. Fujiwara,, and P. J. Brennan. 1982. Structure and antigenicity of the major specific glycolipid antigen of Mycobacterium leprae. J. Biol. Chem. 257:1507215078.
98. Hunter, S. W.,, H. Gay lord,, and P. J. Brennan. 1986. Structure and antigenicity of the phosphorylated lipopolysaccharide antigens from the leprosy and tubercle bacilli. J. Biol. Chem. 261:1234512351.
99. Huygen, K.,, P. Vandenbussche,, and H. Heremans. 1991. Interleukin-6 production in Mycobacterium bovis BCG-infected mice. Cell. Immunol. 137:224231.
100. Inoue, T.,, Y. Yoshikai,, G. Matsuzaki,, and K. Nomoto. 1991. Early appearing γ/δ-bearing T cells during infection with Calmette Gugrin bacillus. J. Immunol. 146:27542762.
101. Isberg, R. R. 1991. Discrimination between intracellular uptake and surface adhesion of bacterial pathogens. Science 252:934938.
102. Iyer, G. Y. N.,, M. F. Islam,, and J. H. Quastel. 1961. Biochemical aspects of phagocytosis. Nature (London) 192:535541.
103. Izzo, A. A.,, and R. J. North. 1992. Evidence for an α/β T cell-independent mechanism of resistance to mycobacteria. Bacillus-Calmette-Guenn causes progressive infection in severe combined immunodeficient mice, but not in nude mice or in mice depleted of CD4+ and CD8+ T cells. J. Exp. Med. 176:581586.
104. Janis, E. M.,, S. H. E. Kaufmann,, R. H. Schwartz,, and A. M. Pardoll. 1989. Activation of γ/δ T cells in the primary immune response to Mycobacterium tuberculosis. Science 244:713717.
105. Joiner, K. A.,, S. A. Fuhrman,, H. M. Miettinen,, L. H. Kasper,, and I. Mellman. 1990. Toxoplasma gondii: fusion competence of parasitophorous vacuoles in Fc receptor-transfected fibroblasts. Science 249: 641646.
106. Kabelitz, D.,, A. Bender,, S. Schondeimaier,, B. Schoel,, and S. H. E. Kaufmann. 1990. A large fraction of human peripheral blood γ/δ+ T cells is activated by Mycobacterium tuberculosis but not by its 65-kD heat shock protein. J. Exp. Med. 171:667679.
107. Kamijo, R.,, J. Le,, D. Shapiro,, E. A. Havell,, S. Huang,, M. Aguet,, M. Bosland,, and J. Vilcek. 1993. Mice that lack the interferon-7 receptor have profoundly altered responses to infection with Bacillus Calmette-Guerin and subsequent challenge with lipopolysaccharide. J. Exp. Med. 178:14351440.
108. Kasahara, K.,, K. Kobayashi,, Y. Shikama,, I. Yoneya,, K. Soezima,, H. Ide,, and T. Takahashi. 1988. Direct evidence for granuloma-inducing activity of inter-leukin-1. Induction of experimental pulmonary granuloma formation in mice by interleukin-l-coupled beads. Am. J. Pathol. 130:629638.
109. Kaufmann, S. H. E. 1988. CD8+ T lymphocytes in intracellular microbial infections. Immunol. Today 9:168174.
110. Kaufmann, S. H. E.,, C. Blum,, and S. Yamamoto. 1993. Crosstalk between α/β T cells and α/βT cells in vivo: activation of α/β T cell responses after α/β T cell modulation with the monoclonal antibody GL3. Proc. Natl. Acad. Sci. USA 90:96209624.
111. Kaufmann, S. H. E.,, and I. Flesch. 1986. Function and antigen recognition pattern of L3T4+ T cell clones from Mycobacterium tuberculosis-immune mice. Infect. Immun. 54:291296.
112. Kaufmann, S. H. E.,, M. E. Munk,, T. Koga, et al. 1989. Effector T cells in bacterial infections, p. 963970. In F. Melchers (ed.), Progress in Immunology. Spring Verlag, Stuttgart, Germany.
113. Kaufmann, S. H. E.,, H. R. Rodewald,, E. Hug,, and G. DeLibero. 1988. Cloned Listeria monocytogenes specific non-MHC-restricted Lyt2+ T cells with cytolytic and protective activity. J. Immunol. 140: 31733179.
114. Kindler, V.,, A.-P. Sappino,, G. E. Gran,, P.-F. Piquet,, and P. Vassalli. 1989. The inducing role of tumor necrosis factor in the development of bactericidal granulomas during BCG infection. Cell 56:731740.
115. King, C.,, M. Sathish,, J. T. Crawford,, and T. M. Shinnick. 1993. Expression of contact-dependent cytolytic activity of Mycobacterium tuberculosis and isolation of the locus encoding the activity. Infect. Immun. 61:27082712.
116. Klebanoff, S. J., 1980. In R. Van Furth (ed.), Mononuclear Phagocytes, Functional Aspects, part 2, p. 11051141. Nijhoff, Boston.
117. Klun, C. L.,, and G. P. Youmans. 1973a. The effect of lymphocyte supernatant fluids on the intracellular growth of virulent tubercle bacilli. J. Reticuloendothel. Soc. 13:263274.
118. Klun, C. L.,, and G. P. Youmans. 1973b. The induction by Listeria monocytogenes and plant mitogens of lymphocyte supernatant fluids which inhibit the growth of Mycobacterium tuberculosis within macrophages in vitro. J. Reticuloendothel. Soc. 13:275285.
119. Kobayashi, K.,, C. Allred,, S. Cohen,, and T. Yoshida. 1985. Role of interleukin 1 in experimental granuloma in mice. J. Immunol. 134:358364.
120. Kobayashi, M.,, L. Fitz,, M. Ryan,, R. M. Hewick,, S. C. Clark,, S. Chan,, R. Loudon,, F. Sherman,, B. Perussia,, and G. Trinchieri. 1989. Identification and purification of natural killer cell stimulatory factor (NKSF), a cytokine with multiple biologic effects on human lymphocytes. J. Exp. Med. 170:827.
121. Koch, R. 1882. Die Atiologie der Tuberkulose. Berliner Klin. Wochenschr. 19:221230.
122. Koch, R. 1890. Weitere Mitteilungen uber ein Heilmittel gegen Tuberkulose. Dtsch. Med. Wochenschr. 16:10291032.
123. Koeffler, H. P.,, H. Reichel,, J. E. Bishop,, and A. W. Norman. 1985. Gamma interferon stimulates production of 1,25-dihydroxyvitamin D3 by normal human macrophages. Biochem. Biophys. Res. Commun. 127:596603.
124. Kornfeld, S. 1987. Trafficking of lysosomal enzymes. FASEB J. 1:462468.
125. Kurlander, R. J.,, S. M. Shawar,, M. L. Brown,, and R. R. Rich. 1992. Specialized role for a murine class I-b MHC molecule in prokaryotic host defenses. Science 257:678679.
126. Kwon, N. S.,, C. F. Nathan,, and D. J. Stuehr. 1989. Reduced biopterin as a cofactor in the generation of nitrogen oxides by murine macrophages. J. Biol. Chem. 264:2049620501.
127. Ladel, C.,, and S. H. E. Kaufmann. Unpublished data.
128. Larsen, C. A.,, A. O. Anderson,, E. Apella,, J. J. Oppenheim,, and K. Matsushima. 1989. The neutrophil-activating protein (NAP-1) is also chemotactic for T lymphocytes. Science 243:1464.
129. Leake, E. S.,, Q. N. Myrvik,, and M. J. Wright. 1984. Phagosomal membranes of Mycobacterium bovis BCG-immune alveolar macrophages are resistant to disruption by Mycobacterium tuberculosis. Infect. Immun. 45:443446.
130. Li, Y.,, A. Severn,, M. V. Rogers,, R. M. J. Palmer,, S. Moncada,, and F. Y. Liew. 1992. Catalase inhibits nitric oxide synthesis and the killing of intracellular Leishmania major in murine macrophages. Eur. J. Immunol. 22:441446.
131. Liew, F. Y.,, and F. E. G. Cox. 1991. Nonspecific defence mechanism: the role of nitric oxide. Immunol. Today 12A:1721.
132. Liew, F. Y.,, Y. Li,, A. Severn,, S. Millott,, J. Schmidt,, M. Salter,, and S. Moncada. 1991. A possible novel pathway of regulation by murine T helper type-2 (Th2) cells of a Thl cell activity via the modulation of the induction of nitric oxide synthase on macrophages. J. Immunol. 21:24892494.
133. Locksley, R. M. 1993. Interleukin 12 in host defense against microbial pathogens. Proc. Natl. Acad. Sci. USA 90:58795880.
134. Lurie, M. B. 1942. Studies on the mechanism of immunity in tuberculosis. The fate of tubercle bacilli ingested by mononuclear phagocytes derived from normal and immunized animals. J. Exp. Med. 75:247.
135. Lurie, M. B. 1964. Resistance to Tuberculosis. Harvard University Press, Cambridge, Mass.
136. Mackaness, G. B. 1969. The influence of immunologically committed lynphoid cells on macrophage activation in vivo. J. Exp. Med. 129:973.
137. Mackaness, G. B.,, and R. V. Blanden. 1967. Cellular immunity. Prog. Allergy 11:89140.
138. Mathew, R. C., , S. Ragheb,, and D. L. Boros. 1990. Recombinant IL-2 therapy reverses diminished granulomatous responsiveness in anti-L3T4-treated, Schistosoma mansoni-infected mice. J. Immunol. 144:43564361.
139. McDonough, K. A.,, Y. Kress,, and B. R. Bloom. 1993. Pathogenesis of tuberculosis: interaction of Mycobacterium tuberculosis with macrophages. Infect. Immun. 61:27632773.
140. Mclnnes, A.,, and D. M. Rennick. 1988. Interleukin 4 induces cultured monocytes/macrophages to form giant multinucleated cells. J. Exp. Med. 167:598611.
141. Metchnikoff, E. 1905. Immunity to Infectious Diseases. Cambridge University Press, London.
142. Middlebrook, G.,, C. M. Coleman,, and W. B. Schaeffer. 1959. Sulfolipid from virulent tubercle bacilli. Proc. Natl. Acad. Sci. USA 45:18011804.
143. Modlin, R. L.,, C. Pirmez,, F. M. Hofmann,, V. Torigian,, K. Uyemura,, T. H. Rea,, B. R. Bloom,, and M. B. Brenner. 1989. Lymphocytes bearing antigen-specific c/d T-cell receptors accumulate in human infectious disease lesions. Nature (London) 339:544548.
144. Molloy, A.,, P. A. Meyn,, K. D. Smith,, and G. Kaplan. 1993. Recognition and destruction of bacillus Calmette-GueYin-infected human monocytes. J. Exp. Med. 177:16911698.
145. Mombaerts, P.,, J. Arnoldi,, F. Russ,, S. Tonegawa,, and S. H. E. Kaufmann. 1993. Differential roles of α/β and γ/δ T cells in immunity against an intracellular bacterial pathogen. Nature (London) 365:5356.
146. Mombaerts, P.,, A. R. Clarke,, M. A. Rudnicki,, J. Iacomini,, S. Itohara,, J. J. Lafaille,, L. Wang,, Y. Ichikawa,, R. Jaenisch,, M. L. Hooper,, and S. Tonegawa. 1992. Mutations in T-cell antigen receptor genes a and b block thymocyte development at different stages. Nature (London) 360:225231.
147. Mosser, D. M.,, and P. J. Edelson. 1987. The third component of complement (C3) is responsible for the intracellular survival of Leishmania major. Nature (London) 327:329331.
148. Motulsky, A. G. 1979 Human Genetics. Raven Press, Inc., New York.
149. Muller, I.,, S. P. Cobbold,, H. Waldmann,, and S. H. E. Kaufmann. 1987. Impaired resistance against Mycobacterium tuberculosis infection after selective in vivo depletion of L3T4+ and Lyt2+ T cells. Infect. Immun. 55:20372041.
150. Munk, M. E.,, A. Gat rill,, and S. H. E. Kaufmann. 1990. Antigen-specific target cell lysis and interleukin-2 secretion by Mycobacterium tuberculosis-acliv&ted γ/δ T cells. J. Immunol. 145:24342439.
151. Muroaka, S.,, K. Takeya,, and K. Nomoto. 1976a. In vitro studies on the mechanism of acquired resistance to tuberculous infection. I. The relationship between lymphocytes and macrophages in cellular immunity to tuberculous infection. Jpn. J. Microbiol. 20:115122.
152. Muroaka, S.,, K. Takeya,, and K. Nomoto. 1976b. In vitro studies on the mechanism of acquired resistance to tuberculous infection. II. The effects of the culture supernatants of specifically-sensitized lymphocytes on the growth of tubercle bacilli within macrophages. Jpn. J. Microbiol. 20:365373.
153. Murray, C. J. L.,, K. Styblo,, and A. Rouillon. 1990. Tuberculosis in developing countries: burden, intervention, and cost. Bull. Int. Union Tuberc. 65:2.
154. Myrvik, Q. N.,, E. S. Leake,, and M. J. Wright. 1984. Disruption of phagosomal membranes of normal alveolar macrophages by the H37Rv strain of Mycobacterium tuberculosis. Am. Rev. Respir. Dis. 129:322328.
155. Nathan, C. 1992. Nitric oxide as a secretory product of mammalian cells. FASEB J. 6:30513064.
156. Nathan, C. F.,, and J. B. Hibbs, Jr. 1991. Role of nitric oxide synthesis in macrophage antimicrobial activity. Curr. Opin. Immunol. 3:65.
157. Neilands, J. B. 1981. Microbial iron compounds. Annu. Rev. Biochem. 50:715731.
158. Neill, M. A.,, and S. J. Klebanoff. 1988. The effect of phenolic glycolipid-I from Mycobacterium leprae on the antimicrobial activity of human macrophages. J. Exp. Med. 167:3042.
159. Nelson, B. J.,, P. Ralph,, S. J. Green,, and C. A. Nacy. 1991. Differential susceptibility of activated macrophage cytotoxic effector reactions to the suppressive effects of transforming growth factorβ1. J. Immunol. 146:18491857.
160. Neu, H. C. 1992. The crisis in antibiotic resistance. Science 257:10641073.
161. Nussler, A.,, M. Di Silvio,, T. R. Billiar,, R. A. Hoffman,, D. A. Gelier,, R. Selby,, J. Madariaga,, and R. L. Simmons. 1992. Stimulation of nitric oxide synthase pathway in human hepatocytes by cytokines and endotoxin. J. Exp. Med. 176:261266.
162. Ochoa, J. B.,, B. Curti,, A. B. Peitzman,, R. L. Simmons,, T. R. Billiar,, R. Hoffman,, R. Rault,, D. L. Longo,, W. J. Urba,, and A. C. Ochoa. 1992. Increased circulating nitrogen oxides after human tumor immunotherapy: correlation with toxic hemodynamic changes. J. Natl. Cancer Inst. 84:864867.
163. Ochoa, J. B.,, A. O. Udekwu,, T. R. Billiar,, R. D. Cur ran,, F. B. Cerra,, R. L. Simmons,, and A. B. Peitzman. 1991. Nitrogen oxide levels in patients after trauma and during sepsis. Ann. Surg. 214:621626.
164. Ohkuma, S.,, Y. Moriyama,, and T. Takano. 1982. Identification and characterization of a proton pump on lysosomes by fluorescein isothiocyanate-dextran fluorescence. Proc. Natl. Acad. Sci. USA 79:27582762.
165. Ohkuma, S.,, and B. Poole. 1978. Fluorescence probe measurement of the intralysosomal pH in living cells and the perturbation of pH by various agents. Proc. Natl. Acad. Sci. USA 75:33273331.
166. Oppenheim, J. J.,, C. O. C. Zachariae,, N. Mukaida,, and K. Matsushima. 1991. Properties of the novel proinflammatory supergene "intercrine" cytokine family. Annu. Rev. Immunol. 9:617648.
167. Orme, I. M. 1987. The kinetics of emergence and loss of mediator T lymphocytes acquired in response to infection with Mycobacterium tuberculosis. J. Immunol. 138:293298.
168. Orme, I. M.,, and F. M. Collins. 1984. Adoptive protection of the Mycobacterium tuberculosis-infected lung. Dissociation between cells that passively transfer protective immunity and those that transfer delayed type hypersensitivity to tuberculin. Cell. Immunol. 84:113120.
169. Oswald, I. P.,, R. T. Gazzinelli,, A. Sher,, and S. L. James. 1992. IL-10 synergizes with IL-4 and transforming growth factor-beta to inhibit macrophage cytotoxic activity. J. Immunol. 148:35783582.
170. Ottenhoff, T. H. M.,, A. B. Kale,, J. D. A. Van Embden,, J. E. R. Thole,, and R. Kiessling. 1988. The recombinant 65 kD heat shock protein of Mycobacterium bovis BCG/M. tuberculosis is a target molecule for CD4+ cytotoxic T lymphocytes that lyse human monocytes. J. Exp. Med. 168:19471952.
171. Pabst, M. J.,, J. M. Gross,, J. P. Prozna,, and M. B. Goren. 1988. Inhibition of macrophage priming by sulfatide from Mycobacterium tuberculosis. J. Immunol. 140:634640.
172. Pamer, E. G.,, M. J. Bevan,, and K. Fischer Lindahl. 1993. Do nonclassical, class lb MHC molecules present bacterial antigens to T cells? Trends Microbiol. 1:3538.
173. Pamer, E. G.,, C.-R. Wang,, L. Flaherty,, K. Fischer Lindahl,, and M. J. Bevan. 1992. H-2M3 presents a Listeria monocytogenes peptide to cytotoxic T lymphocytes. Cell 70:215223.
174. Patterson, R. J.,, and G. P. Youmans. 1970. Demonstration in tissue culture of lymphocyte-mediated immunity to tuberculosis. Infect. Immun. 1:600603.
175. Payne, N. R.,, and M. A. Horwitz. 1987. Phagocytosis of Legionella pneumophila is mediated by human monocyte complement receptors. J. Exp. Med. 166: 13771389.
176. Pedrazzini, T.,, K. Hug,, and J. A. Louis. 1987. Importance of L3T4+ and Lyt-2+ cells in the immunologic control of infection with Mycobacterium bovis strain bacillus Calmette-Guenn in mice. Assessment by elimination of T cell subsets in vivo. J. Immunol. 139:20322037.
177. Pfeffer, K.,, B. Schoel,, H. Guile,, S. H. E. Kaufmann,, and H. Wagner. 1990. Primary responses of human T cells to mycobacteria: a frequent set of γ/δ T cells are stimulated by protease-resistant ligands. Eur. J. Immunol. 20:11751179.
178. Pfeifer, J. D.,, M. J. Wick,, R. L. Robert,, K. Findlay,, S. J. Normark,, and C. V. Harding. 1993. Phagocytic processing of bacterial antigens for class I MHC presentation to T cells. Nature (London) 361:359362.
179. Pontyremoli, S.,, E. Melloni,, F. Salamino,, B. Sparatore,, M. Michetti,, O. Sacco,, and B. L. Horecker. 1986. Activation of NADPH oxidase and phosphorylation of membrane proteins in human neutrophils: coordinate inhibition by a surface antigen-directed monoclonal. Biochem. Biophys. Res. Commun. 140: 11211126.
180. Rao, S. P.,, K. Ogata,, and A. Catanzaro. 1993. Mycobacterium avium-M. intracellular binds to the integrin receptor αvβ3 on human monocytes and monocyte-derived macrophages. Infect. Immun. 61: 663670.
181. Rees, A. D. M.,, A. Scoging,, A. Mehlert,, D. B. Young,, and J. Ivanyi. 1988. Specificity of proliferative response of human CD8 clones to mycobacterial antigens. Eur. J. Immunol. 18:18811887.
182. Reichel, H.,, H. P. Koeffler,, and A. W. Norman. 1987. Synthesis in vitro of 1,25-dihydroxyvitamin D3 and 24,25-dihydroxyvitamin D3 by interferon-γ-stimu-lated normal human bone marrow and alveolar macrophages. J. Biol. Chem. 262:1093110987.
183. Relman, D.,, E. Yuomanen,, S. Falkow,, D. T. Golenbock,, K. Saukkonen,, and S. D. Wright. 1990. Recognition of a bacterial adhesin by an integrin: macrophage CR3 (αMβ2, CDllb/CD18) binds filamentous hemagglutinin of Bordetella pertussis. Cell 61:13751382.
184. Rook, G. A. W. 1988. The role of vitamin D in tuberculosis. Am. Rev. Respir. Dis. 138:768770.
185. Rook, G. A. W. 1990. The role of activated macrophages in protection and immunopathology in tuberculosis. Res. Microbiol. 141:253256.
186. Rook, G. A. W.,, J. Steele,, M. Ainsworth,, and B. R. Champion. 1986. Activation of macrophages to inhibit proliferation of Mycobacterium tuberculosis: comparison of the effects of recombinant gamma interferon on human monocytes and murine peritoneal macrophages. Immunology 59:333338.
187. Russell, D. G.,, and S. D. Wright. 1988. Complement receptor type 3 (CR3) binds to an Arg-Gly-Sap-containing region of the major surface glycoprotein, gp63, of Leishmania promastigotes. J. Exp. Med. 168:279292.
188. Sansonetti, P. J.,, A. Ryer,, P. Clerc,, A. T. Maurelli,, and J. Mounier. 1986. Multiplication of Shigella flexneri within HeLa cells: lysis of the phagocytic vacuole and plasmid-mediated contact hemolysis. Infect. Immun. 51:461469.
189. Sbarra, A. J.,, and M. L. Karnovsky. 1959. The biochemical basis of phagocytosis. I. Metabolic changes during the ingestion of particles by polymorphonuclear leukocytes. J. Biol. Chem. 234: 13551362.
190. Schade, A. L.,, and L. Caroline. 1944. Raw hen egg white and the role of iron in growth inhibition of Shigella dysenteriae, Staphylococcus aureus, Escherichia coli, and Saccharomyces cerevisiae. Science 100:1415.
191. Schlesinger, L. S. 1993. Macrophage phagocytosis of virulent but not attenuated strains of Mycobacterium tuberculosis is mediated by mannose receptors in addition to complement receptors. J. Immunol. 150:29202930.
192. Schlesinger, L. S.,, C. G. Bellinger-Kawahara,, N. R. Payne,, and M. A. Horwitz. 1990. Phagocytosis of Mycobacterium tuberculosis is mediated by human monocyte complement receptors and complement component C3. J. Immunol. 144:27712780.
193. Schoendon, G.,, J. Troppmair,, A. Fontana,, C. Huber,, H.-C. Curtis,, and A. Neiderwieser. 1987. Biosynthesis and metabolism of pterins in peripheral blood mononuclear cells and leukemia lines of man and mouse. Eur. J. Biochem. 166:303310.
194. Schoenhaut, D. S.,, A. O. Chua,, A. G. Wolitzky,, P. M. Quinn,, C. M. Dwyer,, W. McMomas,, P. C. Familletti,, M. K. Gately,, and U. Gubler. 1992. Cloning and expression of murine IL-12. J. Immunol. 148:34333440.
195. Schurr, E.,, E. Skemene,, K. Morgan,, M.-L. Chu,, and P. Gros. 1990. Mapping of Co13a1 and Col6a3 to proximal murine chromosome 1 identifies conserved linkage of structural protein genes between murine chromosome 1 and human chromosome 2q. Genomics 8:477486.
196. Shank, J. L.,, J. H. Silliker,, and R. H. Harper. 1962. The effect of nitric oxide on bacteria. Appl. Microbiol. 10:185.
197. Sheppard, C. C. 1958. A comparison of the growth of selected mycobacteria in HeLa, monkey kidney, and human amnion cells in tissue culture. J. Exp. Med. 107:237245.
198. Sher, N. A.,, S. D. Chaparas,, L. F. Greenberg,, E. M. Merchant,, and J. H. Vickers. 1975. Response of congenially athymic (nude) mice to infection with Mycobacterium bovis (strain BCG). J. Natl. Cancer Inst. 54:14191426.
199. Sibley, L. D.,, S. W. Hunter,, P. J. Brennan,, and J. L. Krehenbuhl. 1988. Mycobacterial lipoarabinomannan inhibits gamma interferon-mediated activation of macrophages. Infect. Immun. 56:12321236.
200. Sibley, L. D.,, and J. L. Krahenbuhl. 1988. Induction of unresponsiveness to gamma interferon in macrophages infected with Mycobacterium leprae. Infect. Immun. 56:19121919.
201. Skamene, E. 1985. Genetic control of host resistance to infection and malignancy. Prog. Leukocyte Biol. 3:111159.
202. Skamene, E. 1986. Genetic control of resistance to mycobacterial infection. Curr. Top. Microbiol. Immunol. 124:4966.
203. Skamene, E.,, P. Gros,, A. Forget,, P. A. L. Kongshavn,, C. St. Charles, and B. A. Taylor. 1982. Genetic regulation of resistance to intracellular pathogens. Nature (London) 297:506509.
204. Snow, G. A. 1970. Mycobactins: iron-chelating growth factors from mycobacteria. Bacteriol. Rev. 34:99125.
205. Squires, K. E.,, R. D. Schreiber,, M. J. McElrath,, B. Y. Rubin,, S. L. Anderson,, and H. W. Murray. 1989. Experimental visceral leishmaniasis: role of endogenous IFN-γin host defense and tissue granulomatous response. J. Immunol. 143:42444249.
206. Stamler, J. S.,, D. J. Singel,, and J. Loscalzo. 1992. Biochemistry of nitric oxide and its redox-activated forms. Science 258:18981902.
207. Suter, E. 1952. The multiplication of tubercle bacilli within normal phagocytes in tissue cultures. J. Exp. Med. 96:137.
208. Suter, E. 1953. Multiplication of tubercle bacilli within mononuclear phagocytes in tissue cultures derived from normal animals and animals vaccinated with BCG. J. Exp. Med. 97:235.
209. Talamas-Rohana, P.,, S. D. Wright,, M. R. Lennartz,, and D. G. Russell. 1990. Lipophosphoglycan (LPG) from Leishmania mexicana promastigotes binds to members of the CR3, pl50,95 and LFA-1 family of leukocyte integrins. J. Immunol. 144:48174824.
210. Tayeh, M. A.,, and M. A. Marietta. 1989. Macrophage oxidation of L-arginine to nitric oxide, nitrite and nitrate. Tetrahydrobiopterin is required as a cofactor. J. Biol. Chem. 264:1965419658.
211. Tazi, A.,, I. Fajac,, P. Soler,, D. Valeyre,, J. P. Battesti,, and A. J. Hance. 1991. Gamma/delta T lymphocytes are not increased in number in granulomatous lesions of patients with tuberculosis or sarcoidosis. Am. Rev. Respir. Dis. 144:13731375.
212. Tripp, C. S.,, S. F. Wolf,, and E. R. Unanue. 1993. Interleukin 12 and tumor necrosis factor a are costimulators of interferon γ production by natural killer cells in severe combined immunodeficiency mice with listeriosis, and IL-10 is a physiologic antagonist. Proc. Natl. Acad. Sci. USA 90:37253729.
213. Turcotte, R.,, Y. Des Ormeaus,, and A. F. Borduas. 1976. Partial characterization of a factor extracted from sensitized lymphocytes that inhibits the growth of Mycobacterium tuberculosis within macrophages in vitro. Infect. Immun. 14:337344.
214. Vachula, M.,, T. J. Holzer,, and B. R. Anderson. 1989. Suppression of monocyte oxidative response by phenolic glycolipid I of Mycobacterium leprae. J. Immunol. 142:16961701.
215. Vassalli, P. 1992. The pathophysiology of tumor necrosis factors. Annu. Rev. Immunol. 10:411452.
216. Vidal, S. M.,, D. Malo,, K. Vogan,, E. Skamene,, and P. Gros. 1993. Natural resistance to infection with intracellular parasites: isolation of a candidate for Beg. Cell 73:469485.
217. Walker, L.,, and D. B. Lowrie. 1981. Killing of Mycobacterium microti by immunologically activated macrophages. Nature (London) 293:6970.
218. Weinberg, E. D. 1974. Iron and susceptibility to infectious disease. Science 184:952956.
219. Weinberg, E. D. 1978. Iron and infection. Microbiol. Rev. 42:4566.
220. Weinberg, E. D. 1992. Iron depletion: a defense against intracellular infection and neoplasia. Life Sci. 50:12891297.
221. Weiss, G.,, B. Goossen,, W. Doppler,, D. Fuchs,, K. Pantopoulos,, G. Werner-Felmayer,, H. Wachter,, and M. W. Hentze. 1993. Translational regulation via iron-responsive elements by the nitric oxide/NOsynthase pathway. EMBOJ. 12:36513657.
222. Weiss, S. J. 1989. Tissue destruction by neutrophils. N. Engl. J. Med. 320:365376.
223. Werner, E. R.,, G. Verner-Felmayer,, D. Fuchs,, A. Hausen,, G. Reibnegger,, and H. Wachter. 1989. Parallel induction of tetrahydrobiopterin biosynthesis and indoleamine 2,3-dioxygenase activity in human cells and cell lines by interferon-γ. Biochem. J. 262:861866.
224. Wilson, E.,, M. C. Olcott,, R. M. Bell,, A. H. Merrill, Jr.,, and J. D. Lambeth. 1986. Inhibition of the oxidative burst in human neutrophils by sphingoid long-chain bases. J. Biol. Chem. 261:1261612623.
225. Winkler, H. H. 1990. Rickettsia species (as organisms). Annu. Rev. Microbiol. 44:131153.
226. Wolf, S. F.,, P. A. Temple,, M. Kobayashi,, D. Young,, M. Dicig,, L. Lowe,, R. Dzialo,, L. Fitz,, C. Ferenz,, R. M. Hewick,, K. Kelleher,, S. H. Herrmann,, S. C. Clark,, L. Azzoni,, S. H. Chan,, G. Trinchieri,, and B. Perussia. 1991. Cloning of cDNA for natural killer cell stimulatory factor, a heterodimeric cytokine with multiple biologic effects on T and natural killer cells. J. Immunol. 146:30743081.
227. Wright, S. D.,, and S. C. Silverstein. 1983. Receptors for C3b and C3bi promote phagocytosis but not the release of toxic oxygen from human phagocytes. J. Exp. Med. 158:20162023.
228. Xie, Q. W.,, R. Whisnant,, and C. Nathan. 1993. Promoter of the mouse gene encoding calcium-independent nitric oxide synthase confers inducibility by interferon gamma and bacterial lipopolysaccharide. J. Exp. Med. 177:17791784.
229. Zhu, L.,, C. Gunn,, and J. S. Beckman. 1992. Bactericidal activity of peroxynitrite. Arch. Biochem. Biophys. 298:452457.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error