1887

Chapter 3 : Detection of Cholera Toxin Genes

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Detection of Cholera Toxin Genes, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818364/9781555810672_Chap03-1.gif /docserver/preview/fulltext/10.1128/9781555818364/9781555810672_Chap03-2.gif

Abstract:

Laboratory diagnosis of cholera has traditionally been based on the phenotypic characteristics of O1, expressed as its morphologic, physiologic, and biochemical properties, including its antigenic composition. Assays based on DNA hybridization, polymerase chain reaction (PCR), and DNA sequencing have been developed for the detection and characterization of the gene. The chapter describes and discusses the advantages and disadvantages of using these techniques in the diagnosis of cholera. Nucleic acid hybridization technology offers distinct advantages over phenotypic identification systems because of its specificity and sensitivity. The format of the hybridization test is important for the practical application of DNA probes for diagnostic purposes. The colony blot system has a great potential for screening a large number of colonies but gives little additional molecular information. A colony blot hybridization assay employing an alkaline phosphatase-labeled 23-bp oligonucleotide probe (CTAP) derived from a specific sequence of was used by Wright and coworkers on a strain collection representing 11 species and toxigenic and nontoxigenic strains of . Nucleic acid-sequencing methods have developed so rapidly over the past 2 decades that comparative sequencing of homologous genes has become almost a standard method in systematic classification of bacteria. The progress in nucleic acid-based methods in recent years has demonstrated that the molecular approach to diagnosis of cholera could very well be the diagnostic choice of the future. Automation and standardization of molecular methods have also increased reproducibility and improved the quality of the laboratory test results.

Citation: Popovic T, Fields P, Olsvik Ø. 1994. Detection of Cholera Toxin Genes, p 41-52. In Wachsmuth I, Blake P, Olsvik Ø (ed), and Cholera. ASM Press, Washington, DC. doi: 10.1128/9781555818364.ch3

Key Concept Ranking

Clinical and Public Health
0.8641053
Chromosomal DNA
0.47321242
Enzyme-Linked Immunosorbent Assay
0.4382782
0.8641053
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

CT genes. Numbers designate nucleotide positions, starting with the first nucleotide of the initiation codon ATG of (nucleotide 1) and ending with the third nucleotide of the last codon AAT of (nucleotide 1145).

Citation: Popovic T, Fields P, Olsvik Ø. 1994. Detection of Cholera Toxin Genes, p 41-52. In Wachsmuth I, Blake P, Olsvik Ø (ed), and Cholera. ASM Press, Washington, DC. doi: 10.1128/9781555818364.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Analysis of PCR products from the genes. Lanes: A, Ol, C9505, human, Mexico, 1992; B, Ol, C9380, human, Mexico, 1992; C, Ol, A1261, human, Bangladesh, 1980; D, Ol, A1263, human, Bangladesh, 1980; E, Ol, C9606, human, Paraguay, 1993; F, Ol, C9607, human, Paraguay, 1993; G, Ol, C9608, human, United States, 1993 H, Ol, C8129, human, Peru, 1992; I, Ol, C8155, human, Peru, 1992; J, C. jejuni, D116, human, United States, 1982; K, Ol, ATCC 14035, human, India, 1949; L, molecular size ladder.

Citation: Popovic T, Fields P, Olsvik Ø. 1994. Detection of Cholera Toxin Genes, p 41-52. In Wachsmuth I, Blake P, Olsvik Ø (ed), and Cholera. ASM Press, Washington, DC. doi: 10.1128/9781555818364.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818364.chap3
1. Almeida, R. J.,, D. N. Cameron,, W. L. Cook,, and I. K. Wachsmuth. 1992. Vibriophage VcA-3 as an epidemic strain marker for the U.S. Gulf Coast Vibrio cholerae O1 clone. J. Clin. Microbiol. 30:300304.
2. Blake, P. A.,, K. Wachsmuth,, B. R. Davis,, C. A. Bopp,, B. P. Chaiken,, and J. V. Lee. 1983. Toxigenic V. cholerae Ol strains from Mexico identical to United States isolates. Lancet ii:912.
3. Brickman, T. J.,, M. Boesman-Finkelstein,, R. A. Finkelstein,, and M. A. Mcintosh. 1990. Molecular cloning and nucleotide sequence analysis of cholera toxin genes of the CtxA- Vibrio cholerae strains Texas Star-SR. Infect. Immun. 58:41424144.
4. Centers for Disease Control. 1991. Cholera-New York, 1991. Morbid. Mortal. Weekly Rep. 40:516518.
5. Colwell, R. R.,, R. J. Seidler,, J. B. Kaper,, S. W. Joseph,, S. Garges,, H. Lockman,, D. Maneval,, H. Bradford,, N. Roberts,, E. Remmers,, I. Huq,, and A. Huq. 1981. Occurrence of Vibrio cholerae serotype Ol in Maryland and Louisiana estuaries. Appl. Environ. Microbiol. 41:555558.
6. Cook, W. L.,, K. Wachsmuth,, S. R. Johnson,, K. A. Birkness,, and A. R. Samadi. 1984. Persistence of plasmids, cholera toxin genes and prophage DNA in classical Vibrio cholerae Ol. Infect. Immun. 45:222226.
7. Dallas, W. S.,, and S. Falkow. 1980. Amino acid sequence homology between cholera toxin and Escherichia coli heat-labile toxin. Nature (London) 288:499501.
8. Dams, E.,, M. De Wolf,, and W. Dierick. 1991. Nucleotide sequence analysis of the CT operon of the Vibrio cholerae classical strain 569B. Biochim. Biophys. Acta 1090:139141.
9. Desmarchelier, P. M.,, and C. R. Senn. 1989. A molecular epidemiological study of V. cholerae in Australia. Med. J. Austr. 150:631634.
10. Duffy, J. K.,, J. W. Peterson,, and A. Kurosky. 1981. Isolation and characterization of a precursor form of the A subunit of cholera toxin. FEBS Lett. 126:187190.
11. Fields, P. I.,, T. Popovic,, K. Wachsmuth, and 0. Olsvik. 1992. Use of polymerase chain reaction for detection of toxigenic Vibrio cholerae Ol strains from the Latin American cholera epidemic. J. Clin. Microbiol. 30:21182121.
12. Gennaro, M. L.,, and P. J. Greenaway. 1983. Nucleotide sequence within the cholera toxin operon. Nucleic Acids Res. 12:38553861.
12a. Hill, W. (Food and Drug Administration, Seattle, Wash.). Unpublished data.
13. Homes, E.,, Y. Wasteson,, and O. Olsvik. 1991. Detection of Escherichia coli heat-stable enterotoxin genes in pig stool specimens by an immobilized, colorimetric nested polymerase chain reaction. J. Clin. Microbiol. 29:23752379.
14. Kaper, J. B.,, H. B. Bradford,, N. C. Roberts,, and S. Falkow. 1982. Molecular epidemiology of Vibrio cholerae in the U.S. Gulf Coast. J. Clin. Microbiol. 16:129134.
15. Kaper, J. B.,, J. G. Morris,, and M. Nishibuchi,. 1989. DNA probes for pathogenic Vibrio species, p. 6577. In F. C. Tenover (ed.), DNA Probes for Infectious Diseases. CRC Press, Inc., Boca Raton, Fl.
16. Kaper, J. B.,, S. L. Moseley,, and S. Falkow. 1981. Molecular characterization of environmental and nontoxigenic strains of Vibrio cholerae. Infect. Immun. 32:661667.
17. Karasawa, T.,, T. Mihara,, H. Kurazono,, G. B. Nair,, S. Garg,, T. Ramamurthy,, and Y. Takeda. 1993. Distribution of the zot (zonula occludens toxin) gene among strains of Vibrio cholerae Ol and non-Ol. FEMSMicrobiol. Lett. 106:143146.
18. Kazemi, M.,, and R. A. Finkelstein. 1990. Study of epitopes of cholera enterotoxin-related enterotoxins by checkerboard immunoblotting. Infect. Immun. 58:23522360.
19. Klontz, K. C.,, R. V. Tauxe,, W. L. Cook,, W. H. Riley,, and I. K. Wachsmuth. 1987. Cholera after consumption of raw oysters. Ann. Intern. Med. 107:846848.
20. Kobayashi, K.,, K. Seto,, and M. Makino. 1990. Detection of toxigenic Vibrio cholerae Ol using polymerase chain reaction for amplifying the cholera enterotoxin gene. J. Jpn. Assoc. Infect. Dis. 64:13231329. (In Japanese.)
21. Koch, W. H.,, W. L. Payne,, B. A. Wentz,, and T. A. Cebula. 1993. Rapid polymerase chain reaction method for detection of Vibrio cholerae in foods. Appl. Environ. Microbiol. 59:556560.
22. Kurosky, A.,, D. E. Market,, and W. M. Finch. 1977. Primary structure of cholera toxin beta chain. A glycoprotein analog? Science 195:299301.
23. Kurosky, A.,, D. E. Markel,, and J. W. Peterson. 1977. Covalent structure of the beta chain of cholera enterotoxin. J. Biol. Chem. 252:72577264.
24. Lai, C.-Y. 1977. Determination of the primary structure of cholera toxin B subunit. J. Biol. Chem. 252:72497256.
25. Lockman, H.,, and J. B. Kaper. 1983. Nucleotide sequence analysis of the A2 and B subunits of Vibrio cholerae enterotoxin. J. Biol. Chem. 258:1372213726.
26. Lockman, H. A.,, J. E. Galen,, and J. B. Kaper. 1984. Vibrio cholerae enterotoxin genes: nucleotide sequence analysis of DNA encoding ADP-ribosyltransferase. J. Bacteriol. 159:10861089.
27. Mekalanos, J. J. 1983. Duplication and amplification of toxin genes in Vibrio cholerae. Cell 35:253263.
28. Mekalanos, J. J.,, D. J. Swartz,, G. D. N. Person,, N. Harford,, F. Groyne,, and M. deWilde. 1983. Cholera toxin genes: nucleotide sequence, deletion analysis and vaccine development. Nature (London) 306: 551557.
29. Minami, A.,, S. Hashimoto,, H. Abe,, M. Arita,, T. Taniguchi,, T. Honda,, T. Miwatani,, and M. Nishibuchi. 1991. Cholera enterotoxin production in Vibrio cholerae Ol strains isolated from the environment and from humans in Japan. J. Environ. Microbiol. 57:21522157.
30. Miyagi, K.,, Y. Matsumoto,, K. Hayashi,, Y. Tak-arada,, S. Shibata,, M. Yoh,, K. Yamamoto,, and T. Honda. 1992. Cholera diagnosed in clinical laboratory by DNA hybridization. Lancet 339:988989.
31. Moseley, S. L.,, and S. Falkow. 1980. Nucleotide sequence homology between the heat-labile enterotoxin of Escherichia coli and Vibrio cholerae deoxyribonucleic acid. J. Bacteriol. 144:444446.
32. Olsvik, Ø. Unpublished data.
33. Olsvik, Ø.,, T. Popovic,, and P. I. Fields,. 1993. Polymerase chain reaction for detection of toxin genes in strains of Vibrio cholerae Ol, p. 573583. In D. H. Persing,, F. C. Tenover,, T. F. Smith,, and T. J. White (ed.), Diagnostic Molecular Microbiology, American Society for Microbiology, Washington, D.C.
34. Olsvik, Ø.,, J. Wahlberg,, B. Petterson,, M. Uhlen,, T. Popovic,, I. K. Wachsmuth,, and P. I. Fields. 1993. Use of automated sequencing of PCR-generated amplicons to identify three types of cholera toxin subunit B in Vibrio cholerae Ol strains. J. Clin. Microbiol. 31:2225.
35. Peter, J. B. 1990. The polymerase chain reaction: amplifying our options. Rev. Infect. Dis. 13:166171.
36. Saunders, D. W.,, K. J. Schanbacher,, and M. G. Bramucci. 1982. Mapping of a gene in Vibrio cholerae that determines the antigenic structure of cholera toxin. Infect. Immun. 38:11091116.
37. Schultz, A. J.,, and B. A. McCardeU. 1988. DNA homology and immunological cross-reactivity between Aeromonas hydrophila cytotoxic toxin and cholera toxin. J. Clin. Microbiol. 26:5761.
38. Shirai, H.,, M. Nishibuchi,, T. Ramamurthy,, S. K. Bhattacharya,, S. C. Pal,, and Y. Takada. 1991. Polymerase chain reaction for detection of cholera enterotoxin operon of Vibrio cholerae. J. Clin. Microbiol. 29:25172521.
39. Spangler, B. D. 1992. Structure and function of cholera toxin and related Escherichia coli heat-labile enterotoxin. Microbiol. Rev. 56:622647.
40. Sporecke, I.,, D. Castro,, and J. J. Mekalanos. 1984. Genetic mapping of Vibrio cholerae enterotoxin structural genes. J. Bacteriol. 157:253261.
41. Takao, Y.,, H. Watanabe,, and Y. Shimonishi. 1985. Facile identification of protein sequences by mass spectrometry. Eur. J. Biochem. 146:503508.
42. Takeda, T.,, Y. Peina,, A. Ogawa,, S. Dohi,, H. Abe,, G. B. Nair,, and S. C. Pal. 1991. Detection of heat-stable enterotoxin in a cholera toxin gene-positive strain of V. cholerae Ol. FEMSMicrobiol. Lett. 80:2328.
43. Tenover, F. C. 1988. Diagnostic deoxyribonucleic acid probes for infectious diseases. Clin. Microbiol. Rev. 1:82101.
44. Varela, P.,, M. Rivas,, N. Binsztein,, M. L. Cremona,, P. Herrmann,, O. Burrone,, R. A. Ugalde,, and A. C. C. Frasch. 1993. Identification of toxigenic Vibrio cholerae from the Argentine outbreak by PCR for ctxAl and ctxA2-B. FEBSLett. 315:7476.
45. Wachsmuth, I. K.,, C. A. Bopp,, and P. I. Fields. 1991. Difference between toxigenic Vibrio cholerae Ol from South America and the US Gulf Coast. Lancet i:10971098.
46. Wachsmuth, I. K.,, G. M. Evins,, P. I. Fields,, Ø. Olsvik,, T. Popovic,, C. A. Bopp,, J. G. Wells,, C. Carrillo,, and P. A. Blake. 1993. The molecular epidemiology of cholera in Latin America. J. Infect. Dis.. 167:621626.
47. Wolcott, M. J. 1992. Advances in nucleic acid-based detection methods. Clin. Microbiol. Rev. 5:370386.
48. Wright, A. C.,, Y. Guo,, J. Johnson,, J. P. Nataro,, and J. G. Morris. 1992. Development and testing of a nonradioactive DNA oligonucleotide probe that is specific for Vibrio cholerae cholera toxin. J. Clin. Microbiol. 30:23022306.
49. Yamamoto, T.,, T. Nakazawa,, T. Miyata,, and T. Yokota. 1984. Evolution and structure of two ADP-ribosylation enterotoxins, Escherichia coli heat-labile toxin and cholera toxin. FEBS Lett. 169:241246.
50. Yoh, M.,, K. Miyagi,, Y. Matsumoto,, K. Hayashi,, Y. Takarada,, K. Yamamoto,, and T. Honda. 1993. Development of an enzyme-labeled oligonucleotide probe for the cholera toxin gene. J. Clin. Microbiol. 31:13121314.

Tables

Generic image for table
Table 1

DNA probes for detection of CT genes

Citation: Popovic T, Fields P, Olsvik Ø. 1994. Detection of Cholera Toxin Genes, p 41-52. In Wachsmuth I, Blake P, Olsvik Ø (ed), and Cholera. ASM Press, Washington, DC. doi: 10.1128/9781555818364.ch3
Generic image for table
Table 2

PCR for detection of CT genes

Citation: Popovic T, Fields P, Olsvik Ø. 1994. Detection of Cholera Toxin Genes, p 41-52. In Wachsmuth I, Blake P, Olsvik Ø (ed), and Cholera. ASM Press, Washington, DC. doi: 10.1128/9781555818364.ch3
Generic image for table
Table 3

Sequence differences in B subunits of CT genes

Citation: Popovic T, Fields P, Olsvik Ø. 1994. Detection of Cholera Toxin Genes, p 41-52. In Wachsmuth I, Blake P, Olsvik Ø (ed), and Cholera. ASM Press, Washington, DC. doi: 10.1128/9781555818364.ch3

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error