1887

Chapter 6 : Molecular Basis for O-Antigen Biosynthesis in O1: Ogawa-Inaba Switching

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Molecular Basis for O-Antigen Biosynthesis in O1: Ogawa-Inaba Switching, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818364/9781555810672_Chap06-1.gif /docserver/preview/fulltext/10.1128/9781555818364/9781555810672_Chap06-2.gif

Abstract:

is divided into more than 130 O serogroups; however, only organisms of the O1 serogroup have so far been associated with cholera in humans. O1 strains of both biotypes have been further subdivided into three serotypes, designated Inaba, Ogawa, and Hikojima, grouped according to the structure of the O antigens on the lipopolysaccharide (LPS). The LPS of gram-negative bacteria is the most abundant molecule on the cell surface, where it provides a protective barrier to hydrophobic agents and detergents. The most common sugars found in the O polysaccharide are perosamine and quinovosamine. A number of studies designed to correlate the various O-antigen polysaccharides with particular antigenic specificities have been carried out. The genes involved in O-antigen biosynthesis in O1 strains 569B (Inaba, classical) and O17 (Ogawa, EI Tor) have been cloned and expressed in K-12. The RfaD is an ADP-L-glycero-D-mannoheptose epimerase and is one of the critical proteins involved in the synthesis of the core oligosaccharide of the LPS in . Genetic complementation studies have suggested that the determinant responsible for Ogawa specificity lies at the distal end of the region, an area in which no readily detectable differences could be discerned.

Citation: Manning P, Stroeher U, Morona R. 1994. Molecular Basis for O-Antigen Biosynthesis in O1: Ogawa-Inaba Switching, p 77-94. In Wachsmuth I, Blake P, Olsvik Ø (ed), and Cholera. ASM Press, Washington, DC. doi: 10.1128/9781555818364.ch6

Key Concept Ranking

Nuclear Magnetic Resonance Spectroscopy
0.40179458
0.40179458
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Schematic representation of O1 LPS, which comprises three distinct regions: lipid A, the core oligosaccharide, and the O antigen. The O antigen is a polymer of perosamine substituted with 3-de-oxy-,-tetronic acid. The A, B, and C antigenic determinants are associated with the O antigen, but the nature of the structures they recognize is unknown.

Citation: Manning P, Stroeher U, Morona R. 1994. Molecular Basis for O-Antigen Biosynthesis in O1: Ogawa-Inaba Switching, p 77-94. In Wachsmuth I, Blake P, Olsvik Ø (ed), and Cholera. ASM Press, Washington, DC. doi: 10.1128/9781555818364.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Quantitation of the relative levels of A, B, and C antigenic determinants by immunoelectron microscopy. Whole cells of either CA411 (classical, Ogawa) or 569B (classical, Inaba) were incubated with monoclonal antibodies to the A, B, or C determinants and then with protein A-gold complexes. The cells were then examined in the electron microscope, and the gold particles in random grids were counted. Relative amounts of the determinants are shown by an arbitrary scale on the axis.

Citation: Manning P, Stroeher U, Morona R. 1994. Molecular Basis for O-Antigen Biosynthesis in O1: Ogawa-Inaba Switching, p 77-94. In Wachsmuth I, Blake P, Olsvik Ø (ed), and Cholera. ASM Press, Washington, DC. doi: 10.1128/9781555818364.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Genetic organization of the 20-kb I (I) fragment of the chromosome encoding the region responsible for O-antigen biosynthesis and assembly. Boxes indicate the extents of the various genes, and horizontal arrows show directions of transcription. The predicted functions of the regions within are shown at the bottom of the diagram, and a partial restriction map of the entire fragment is shown at the top. The sequence of the entire region from the El Tor Ogawa strain is available in the EMBL/GenBank/DDBJ database under the accession number X59554 (ID=VCAT).

Citation: Manning P, Stroeher U, Morona R. 1994. Molecular Basis for O-Antigen Biosynthesis in O1: Ogawa-Inaba Switching, p 77-94. In Wachsmuth I, Blake P, Olsvik Ø (ed), and Cholera. ASM Press, Washington, DC. doi: 10.1128/9781555818364.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Identification of the T protein in El Tor Ogawa strain 017 and classical Inaba strain 569B. An antiserum to the Ogawa T protein was generated by using purified T protein. This antiserum was used to identify the T proteins by Western blot (im-munoblof) analysis of sodium dodecyl sulfate-poly-acrylamide gels transferred to nitrocellulose filters. The Ogawa protein has an MW of 32,000, and this Inaba protein is truncated to 27,000 as the consequence of a single base deletion that results in a frameshift leading to translation termination.

Citation: Manning P, Stroeher U, Morona R. 1994. Molecular Basis for O-Antigen Biosynthesis in O1: Ogawa-Inaba Switching, p 77-94. In Wachsmuth I, Blake P, Olsvik Ø (ed), and Cholera. ASM Press, Washington, DC. doi: 10.1128/9781555818364.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure A1
Figure A1

Analysis of LPSs by using proteinase K-treated whole-cell lysates and silver staining following sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The serotypes of the strains are shown and the corresponding strains are shown in square brackets. 569B- and 569B- and two defined mutants of the O1 strain 569B and lack the O antigen.

Citation: Manning P, Stroeher U, Morona R. 1994. Molecular Basis for O-Antigen Biosynthesis in O1: Ogawa-Inaba Switching, p 77-94. In Wachsmuth I, Blake P, Olsvik Ø (ed), and Cholera. ASM Press, Washington, DC. doi: 10.1128/9781555818364.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818364.chap6
1. Armstrong, J. L.,, and J. W. Redmond. 1973. The fatty acids present in the lipopolysaccharide of Vibrio cholerae 568B (Inaba). Biochim. Biophys. Acta 348:302305.
2. Attridge, S. R.,, and D. Rowley. 1983. The role of the flagellum in the adherence of Vibrio cholerae. J. Infect. Dis. 147:873881.
3. Banoub, J. H.,, and H. J. Hodder. 1985. Structural investigation of the lipopolysaccharide core isolated from a virulent strain of Vibrio ordalii. Can. J. Biochem. Cell. Biol. 63:11991205.
4. Barksdale, L.,, and S. B. Arden. 1974. Persisting bacteriophage infections, lysogeny and phage conversions. Annu. Rev. Microbiol. 28:265299.
5. Becker-Andre, M.,, P. Schulze-Lefert,, and K. Hahlbrock. 1991. Structural comparison, modes of expression, and putative cis-acting element of the two 4-coumerate-CoA ligase genes in potato. J. Biol. Chem. 266:85518559.
6. Bhaskaran, K. 1959. Observations of the nature of genetic recombination in Vibrio cholerae. Indian J. Med. Res. 47:253260.
7. Bhaskaran, K. 1960. Recombination of characters between mutant stocks of Vibrio cholerae strain 162. J. Gen. Microbiol. 23:4754.
8. Bhaskaran, K.,, and R. H. Gorrill. 1957. A study of antigenic variation in Vibrio cholerae. J. Gen. Microbiol. 16:721729.
9. Bhaskaran, K.,, and V. B. Sinha. 1971. Transmissible plasmid factors and fertility inhibition in Vibrio cholerae. J. Gen. Microbiol. 69:8997.
10. Booth, B. A.,, C. V. Sciortino,, and R. A. Fin-kelstein,. 1985. Adhesins of Vibrio cholerae, p. 169182. In D. Mirelman (ed.), Microbial Lectins and Agglutinins. John Wiley & Sons, New York.
11. Brade, H. 1985. Occurrence of 2-keto-deoxyoc-tonic 5-phosphate in lipopolysaccharides of Vibrio cholerae Ogawa and Inaba. J. Bacteriol. 161:795798.
12. Broady, K. W.,, E. Rietschel,, and O. Lüderitz. 1981. The chemical structure of the lipid A component of lipopolysaccharides from Vibrio cholerae. Eur. J. Biochem. 115:463468.
13. Burrows, W.,, A. N. Mather,, V. G. McGann,, and S. M. Wagner. 1946. Studies on immunity to Asiatic cholera. Part I. Introduction. J. Infect. Dis. 79:159167.
14. Burrows, W.,, A. N. Mather,, V. G. McGann,, and S. M. Wagner. 1946. Studies on immunity to Asiatic cholera. Part II. The O and H antigenic structure of the cholera and related vibrios. J. Infect. Dis. 79:168179.
15. Cameron, D. N.,, T. Popovic,, I. K. Wachsmuth,, and P. I. Fields. Personal communication.
16. Chitnis, D. S.,, K. D. Sharma,, and R. S. Koy-nat. 1982. Role of somatic antigen of Vibrio cholerae in adhesion to intestinal mucosa. J. Med. Microbiol. 5:5361.
17. 16a. Cholera Working Group, International Centre for Diarrhoeal Diseases Research, Bangladesh. 1993. Large epidemic of cholera-like disease in Bangladesh caused by Vibrio cholerae 0139 synonym Bengal. Lancet 342:387390.
17. Clark, C. A.,, J. Beltrame,, and P. A. Manning. 1991. The oac gene encoding a lipopolysaccharide O-antigen acetylase maps adjacent to the integrase encoding gene on the genome of Shigella flexneri bacteriophage Sf6. Gene 107:4352.
18. Coleman, W. G. 1983. The rfaD gene encodes for ADP-L-glycero-D-mannoheptose-6-epimerase. J. Biol. Chem. 258:19851990.
19. Cronan, J. E., Jr.,, and M. Rawlings. 1992. The gene encoding Escherichia coli acyl carrier protein lies within a cluster of fatty acid biosynthetic genes. J. Biol. Chem. 267:57515754.
20. Darzins, A.,, B. Frantz,, R. I. Vanags,, and A. M. Chakrabarty. 1986. Nucleotide sequence analysis of the phosphomannose isomerase gene (pmi) of Pseudomonas aeruginosa and comparison with the corresponding Escherichia coli gene manA. Gene 42:293302.
21. Dhillon, N.,, R. S. Hale,, J. Cortes,, and P. F. Leadlay. 1989. Molecular characterization of a gene from Saccharopolyspora erythraea (Streptomyces erythraeus) which is involved in erythromycin biosynthesis. Mol. Microbiol. 3:14051414.
22. Eubanks, E. R.,, M. N. Guentzel,, and L. J. Berry. 1977. Evaluation of surface components of Vibrio cholerae as protective immunogens. Infect. Immun. 15:533538.
23. Faast, R.,, M. A. Ogierman,, U. H. Stroeher,, and P. A. Manning. 1989. Nucleotide sequence of the structural gene, tcpA, for a major pilin subunit in Vibrio cholerae. Gene 85:229233.
24. Fuerst, J. A.,, and J. W. Perry. 1988. Demonstration of lipopolysaccharide on sheathed flagella of Vibrio cholerae O1 by protein A-gold immu-noelectron microscopy. J. Bacteriol. 170:14881494.
25. Gan, K. H.,, and S. K. Tjia. 1963. A new method for the differentiation of Vibrio comma and Vibrio El Tor. Am. J. Hyg. 77:184186.
26. Gangarosa, E. J.,, A. Sonati,, H. Saghari,, and J. C. Feeley. 1967. Multiple serotypes of Vibrio cholerae from a case of cholera. Lancet i:646648.
27. Gardner, A. D.,, and K. V. Venkatraman. 1935. The antigens of the cholera group of vibrios. J. Hyg. 25:262282.
28. Guhathakurta, B.,, M. Majumdar,, A. K. Sen,, D. Sasmal,, A. K. Mukherjee,, and A. Datta. 1986. Immunochemical properties of the lipopolysaccharide O-antigen of Vibrio cholerae Ol in relation to its chemical structure. J. Gen. Microbiol. 132:16411646.
29. Guidolin, A.,, and P. A. Manning. 1985. Vibrio cholerae bacteriophage CP-T1: characterization of the receptor. Eur. J. Biochem. 153:8994.
30. Guidolin, A.,, and P. A. Manning. 1987. Genetics of Vibrio cholerae and its bacteriophages. Microbiol. Rev. 51:285298.
31. Guidolin, A.,, G. Morelli,, M. Kamke,, and P. A. Manning. 1984. Vibrio cholerae bacteriophage CP-T1: characterization of phage DNA and restriction analysis. J. Virol. 51:163169.
32. Gustafsson, B.,, and T. Holme. 1985. Immunological characterization of Vibrio cholerae O1 lipopolysaccharide, O-side chain, and the core with monoclonal antibodies. Infect. Immun. 49:275280.
33. Hisatsune, K.,, M. Hayashi,, Y. Haishima,, and S. Kondo. 1989. Relationship between structure and antigenicity of O1 Vibrio cholerae lipopolysaccharide. J. Gen. Microbiol. 135:19011907.
34. Hisatsune, K.,, and S. Kondo. 1980. Lipopolysaccharides of R mutants isolated from Vibrio cholerae. Biochem. J. 185:7781.
35. Hisatsune, K.,, S. Kondo,, and T. Iguchi. 1978. Further chemical and immunochemical characterization of lipopolysaccharides of Vibrio cholerae including their R-mutants, p. 171181. In 14th Joint Conference U.S.-Japan Cooperative Medical Science Program. National Institutes of Health, Bethesda, Md.
36. Hisatsune, K.,, S. Kondo,, T. Iguchi,, M. Mu-chida,, S. Asou,, M. Inaguma,, and F. Yama-moto,. 1983. Sugar composition of lipopolysaccharides of family Vibrionaceae: absence of 2-keto-2-deoxyoctonate (KDO) except in Vibrio parahaemolyticus 06 and Plesiomonas shigelloides, p. 5974. In S. Kumahara, and N. F. Pierce (ed.), Advances in Research on Cholera and Related Diarrheas, vol. 1. Martinus Nijhoff Publisher, The Hague.
36a. Hisatsune, K.,, S. Kondo,, Y. Isshiki,, T. Iguchi,, Y. Kawamata,, and T. Shimada. 1993. Chemical study of Ogawa antigen factor B of Vibrio cholerae and lipopolysaccharide [LPS] isolated from non-O1 Vibrio cholerae 0139 Bengal, a new epidemic strain for recent cholera endemics in the Indian subcontinent, p. 2934. In 29th Joint Conference on Cholera and Related Diarrheal Diseases. U.S.-Japan Cooperative Medical Science Program.
37. Hitchcock, P. J.,, L. Leive,, P. H. Mäkelä,, E. T. Reitschel,, W. Strittmatten,, and D. C. Morrison. 1986. Lipopolysaccharide nomenclature: past, present, and future. J. Bacteriol. 166:699705.
38. Holme, T.,, and B. Gustafsson,. 1985. Monoclonal antibodies against group and type specific antigens of Vibrio cholerae O:1, p. 167189. In A. J. L. Macario, and E. Conway de Macario (ed.), Monoclonal Antibodies and Bacteria, vol. 1. Academic Press, Orlando, Fla.
39. Hranitzsky, K. W.,, A. Mulholland,, A. D. Larson,, E. R. Eubanks,, and L. T. Hart. 1980. Characterization of a flagella sheath protein of Vibrio cholerae. Infect. Immun. 27:597603.
40. Iseki, S.,, and S. Hamano. 1959. Conversion of type antigen IV in Shigella flexneri by bacteriophage. Proc. Jpn. Acad. 35:407412.
41. Iseki, S.,, and K. Kashiwagi. 1937. Lysogenic conversion and transduction of genetic characters by temperate phage Iota in Salmonella. I. Lysogenic conversion with regard to somatic antigen 1 in Salmonella groups A, B and D. Proc. Jpn. Acad. 33:481485.
42. Jann, B.,, K. Jann,, and G. O. Beyaert. 1973. 2-Amino-2,6-dideoxy-D-glucose (D-quinavosa-mine): a constituent of the lipopolysaccharides of Vibrio cholerae. Eur. J. Biochem. 37:531534.
43. Jann, K.,, and O. Westphal. 1975. Microbial polysaccharides, p. 1125. In The Antigen, vol. 3. Academic Press, New York.
44. Jiang, X. M.,, B. Neal,, F. Santiago,, S. J. Lee,, L. K. Romana,, and P. R. Reeves. 1991. Structure and sequence of the rfb (O-antigen) gene cluster of Salmonella serovar typhimurium (strain LT2). Mol. Microbiol. 5:695713.
44a. Johnson, J. A.,, M. J. Albert,, P. Panigrahi,, A. C. Wright,, A. Joseph,, L. Comstock,, M. Trucksis,, J. Michalski,, R. J. Johnson,, J. B. Kaper,, and J. G. Morris, Jr. 1993. Non-O1 Vibrio cholerae (0139 synonym Bengal) from the India/Bangladesh epidemic are encapsulated, p. 3538. In 29th Joint Conference on Cholera and Related Diarrheal Diseases. U.S.-Japan Cooperative Medical Science Program.
45. Johnston, T. C.,, K. S. Hruska,, and L. F. Adams. 1989. The nucleotide sequence of the luxE gene of Vibrio harveyi and a comparison of the amino acid sequences of the acyl-protein synthetases from V. harveyi and V. fischeri. Biochem. Biophys. Res. Commun. 163:93101.
46. Jörnvall, H.,, B. Persson,, and J. Jeffery. 1987. Characteristics of alcohol/polyol dehydrogenases. The zinc containing long-chain alcohol dehydrogenases. Eur. J. Biochem. 167:195201.
47. Kabeshima, T. 1918. On the serology of Vibrio cholerae. Acta Pathol. Microbiol. Scand. 27:282.
48. Kabir, S. 1982. Characterization of the lipopolysaccharide from Vibrio cholerae 395 (Ogawa). Infect. Immun. 38:12631272.
49. Kaca, W.,, L. Brade,, E. T. Rietschel,, and H. Brade. 1986. The effect of removal of D-fructose on the antigenicity of the lipopolysaccharide from a rough mutant of Vibrio cholerae Ogawa. Carbohydr. Res. 149:293298.
50. Karageorgos, L. E.,, M. H. Brown,, U. H. Stroeher,, R. Morona,, and P. A. Manning. A putative pathway for perosamine biosynthesis is the first function encoded within the rfb region of Vibrio cholerae O1. Submitted for publication.
51. Kenne, L.,, B. Lindberg,, P. Unger,, T. Holme,, and J. Holmgren. 1979. Structural studies of the Vibrio cholerae O-antigen. Carbohydr. Res. 68:C16C17.
52. Kenne, L.,, B. Lindberg,, P. Unger,, T. Holme,, and J. Holmgren. 1982. Structural studies of the Vibrio cholerae O-antigen. Carbohydr. Res. 100:341349.
53. KroU, J. S.,, B. Loynds,, L. N. Brophy,, and E. R. Moxon. 1990. The bex locus in encapsulated Haemophilus influenzae: a chromosomal region involved in capsule polysaccharide export. Mol. Microbiol. 4:18531862.
54. Lin, R.-J.,, M. Capage,, and C. W. Hill. 1984. A repetitive DNA sequence, rhs, responsible for duplications within the Escherichia coli K-12 chromosome. J. Mol. Biol. 177:18.
55. Lindberg, A. A.,, C. G. Hellerquist,, G. Bagdian-Motto,, and P. H. Mäkelä. 1978. Lipopolysaccharide modification accompanying antigenic conversion by phage P22. J. Gen. Microbiol. 107:279287.
56. Lüderitz, O.,, K. Jann,, and R. Wheat,. 1968. Somatic and capsular antigens of gram negative bacteria, p. 105227. In M. Florkin, and E. H. Stotz (ed.), Comprehensive Biochemistry, Extracellular and Supporting Structures, vol. 26A. Elsevier, Amsterdam.
57. Lüderitz, O.,, O. Westphal,, A. M. Staub,, and H. Nikaido,. 1971. Isolation and chemical and immunological characterization of bacterial lipopolysaccharides, p. 145233. In G. Weinbaum,, S. Kadis,, and S. J. Ajl (ed.), Microbial Toxins, vol. 4. Academic Press, New York.
58. Majumdar, M.,, and A. K. Mukherjee. 1983. Studies on the partial structure of the O-antigen of Vibrio cholerae Ogawa G-2102. Carbohydr. Res. 122:209216.
59. Majumdar, M.,, A. K. Mukherjee,, B. Guhathakurta,, A. Dutta,, and D. Sasmal. 1983. Structural investigation on the lipopolysaccharide isolated from Vibrio cholerae G-2102. Carbohydr. Res. 108:269278.
60. Manning, P. A.,, M. W. Heuzenroeder,, J. Yeadon,, D. I. Leavesley,, P. R. Reeves,, and D. Rowley. 1986. Molecular cloning and expression in Escherichia coli K-12 of the O antigens of the Ogawa and Inaba serotypes of the lipopolysaccharides of Vibrio cholerae Ol and their potential for vaccine development. Infect. Immun. 53:272277.
61. Manning, P. A.,, L. E. Karageorgos,, and R. Morona. Putative O-antigen transport genes within the rfb region of Vibrio cholerae O1 are homologous to those for capsule transport. Submitted for publication.
62. Meighen, E. A. 1991. Molecular biology of bacterial bioluminescence. Microbiol. Rev. 55:123142.
63. Myamoto, C. M.,, A. F. Graham,, and E. A. Meighen. 1988. Nucleotide sequence of the luxC gene and the downstream DNA from the bio-luminescent system of Vibrio harveyi. Nucleic Acids Res. 16:15511562.
64. Monod, M.,, S. Mohan,, and D. Dubnau. 1987. Cloning and analysis of ermG, a new macrolide-lincosamide-streptogramin B resistance element from Bacillus sphaericus. J. Bacteriol. 169:340350.
65. Monsur, K. A.,, S. S. H. Rizvi,, M. I. Huq,, and A. S. Beneson. 1965. Effect of Mukerjee's Group IV phage on El Tor vibrios. Bull. W.H. O. 32:211216.
66. Morona, R.,, M. H. Brown,, J. Yeadon,, M. W. Heuzenroeder,, and R. A. Manning. 1991. Effect of lipopolysaccharide core synthesis mutations on the production of Vibrio cholerae O-antigen in Escherichia coli K-12. FEMS Microbiol. Lett. 82:279286.
67. Morona, R.,, L. E. Karageorgos,, and R. A. Manning. A putative pathway for biosynthesis of the O-antigen component, 3-deoxy-L-glycero-tet-ronic acid based on the nucleotide sequence of the Vibrio cholerae O1 rfb region. Submitted for publication.
68. Morona, R.,, M. S. Matthews,, J. K. Morona,, and M. H. Brown. 1990. Regions of the cloned Vibrio cholerae rfb genes needed to determine the Ogawa form of the O-antigen. Mol. Gen. Genet. 224:405412.
69. Mukerjee, S.,, and G. Roy. 1961. Evaluation of tests for differentiating Vibrio cholerae and El Tor vibrios. Annu. Biochem. Exp. Med. 21:129132.
70. Neoh, S. H.,, and D. Rowley. 1972. Protection of infant mice against cholera by antibodies to three antigens of Vibrio cholerae. J. Infect. Dis. 126:4147.
71. Nobechi, K. 1923 Immunological studies upon types of Vibrio cholerae. Sci. Rep. Inst. Infect. Dis. Tokyo Univ. 2:43.
72. Nobechi, K.,, and E. Nakano. 1967. Studies on shifting of the serotypes of cholerae vibrios. The first report: studies in vitro, p. 119121. In Symposium on Cholera. National Institutes of Health, Bethesda, Md.
73. Ogg, J. E.,, B. J. Ogg,, M. B. Shrestha,, and L. Poudayl. 1979. Antigenic changes in Vibrio cholerae biotype El Tor serotype Ogawa after bacteriophage infection. Infect. Immun. 24:974978.
74. Ogg, J. E.,, M. B. Shrestha,, and L. Poudayl. 1978. Phage-induced changes in Vibrio cholerae: serotype and biotype conversions. Infect. Immun. 19:231238.
75. Ogg, J. E.,, T. L. Timme,, and M. M. Alemo-hammad. 1981. General transduction in Vibrio cholerae. Infect. Immun. 31:737741.
76. Osborn, M. J., 1979. Biosynthesis and assembly of the lipopolysaccharide of the outer membrane, p. 1534. In M. Inouye (ed.) Bacterial Outer Membranes. John Wiley & Sons, Inc., New York.
77. Packer, N.,, M. Batley,, and J. W. Redmond. Personal communication.
78. Pesigan, T. P.,, C. Z. Gomez,, and D. Gaetos. 1967. Variants of agglutinable Vibrios in the Philippines. Bull. W.H.O. 37:795797.
79. Raetz, C. R. H. 1990. Biochemistry of endotoxins. Annu. Rev. Biochem. 59:129170.
80. Raziuddin, S. 1977. Studies of the polysaccharide fraction form the cell wall lipopolysac-charides (O-antigen) of Vibrio cholerae. Indian J. Biochem. Biophys. 14:262263.
81. Raziuddin, S. 1980. Immunochemical studies of the lipopolysaccharides of Vibrio cholerae: constitution of O-specific side chain and core polysaccharide. Infect. Immun. 27:211215.
82. Redmond, J. W. 1975. 4-Amino-l,6-dideoxy-D-mannose (D-perosamine): a component of the lipopolysaccharide of Vibrio cholerae 569B (Inaba). FEBS Lett. 50:147149.
83. Redmond, J. W. 1978. The 4-amino sugars present in the lipopolysaccharides of Vibrio cholerae and related vibrios. Biochim. Biophys. Acta 542:378384.
84. Redmond, J. W. 1979. The structure of the O-an-tigenic side chain of the lipopolysaccharide of Vibrio cholerae 569B (Inaba). Biochim. Biophys. Acta 584:346352.
85. Redmond, J. W.,, M. J. Korsch,, and G. D. F. Jackson. 1973. Immunochemical studies of the O-antigens of Vibrio cholerae. Partial characterization of an acid-labile antigenic determinant. Aust. J. Exp. Biol. Med. Sci. 51:229235.
86. Rizvi, S.,, M. I. Huq,, and A. S. Beneson. 1965. Isolation of haemagglutinating non-El Tor vibrios. J. Bacteriol. 89:910912.
87. Roy, C.,, K. Mridha,, and S. Mukerjee. 1965. Action of polymyxin on cholera vibrios. Techniques of determination of polymyxin-sensitivity. Proc. Soc. Exp. Biol. Med. 119:893896.
88. Sack, R. B.,, and C. E. Miller. 1969. Progressive changes of vibrio serotypes in germ-free mice infected with Vibrio cholerae. J. Bacteriol. 99:688695.
89. Sakazaki, R.,, and K. Tamura. 1971. Somatic antigen variation in Vibrio cholerae. Jpn. J. Med. Sci. Biol. 24:93100.
90. Salazar-Lindo, E.,, L. Seminario-Carrasco,, C. Carrillo-Parodi,, and A. Gayoso-Villaflor. 1991. The cholera epidemic in Peru, p. 913. In The United States-Japan Cooperative Medical Science Program. Twenty-Seventh Joint Conference on Cholera and Related Diarrheal Diseases. National Institutes of Health, Bethesda, Md.
91. Sen, A. K.,, A. K. Mukherjee,, B. Guhathakurta,, A. Dutta,, and D. Sasmal. 1979. Structural investigation on the lipopolysaccharide isolated from Vibrio cholerae Inaba 569B. Carbohydr. Res. 72:191199.
92. Sen, A. K.,, A. K. Mukherjee,, B. Guhathakurta,, A. Dutta,, and D. Sasmal. 1980. Studies on the partial structure of the O-antigen of Vibrio cholerae 569B. Carbohydr. Res. 86:113121.
93. Sharma, D. P.,, U. H. Stroeher,, C. J. Thomas,, P. A. Manning,, and S. R. Attridge. 1989. The toxin coregulated pilus TCP of Vibrio cholerae: molecular cloning of the genes involved in pilus biosynthesis and evaluation of TCP as a protective antigen in the infant mouse model. Microb. Pathog. 7:437448.
94. Sheehy, T. W.,, H. Sprinz,, W. S. Augerson,, and S. B. Formal. 1966. Laboratory Vibrio cholerae infection in the United States. JAMA 197:321325.
95. Shrivastava, D. L.,, and P. B. White. 1947. Note on the relationship of the so-called Ogawa and Inaba types of V. cholerae. Indian J. Med. Res. 35:117129.
95a. Smith, A. N.,, G. J. Bulnois,, and I. S. Roberts. 1990. Molecular analysis of the Escherichia coli K5 kps locus: identification and characterization of an inner-membrane capsular polysaccharide transport system. Mol. Microbiol. 4:18631869.
96. Stevenson, G.,, S. J. Lee,, L. K. Romana,, and P. R. Reeves. 1991. The cps gene cluster of Salmonella strain LT2 includes a second mannose pathway: sequence of two genes and relationship to the genes in the rfb gene cluster. Mol. Gen. Genet. 227:173180.
97. Stroeher, U. H.,, L. E. Karageorgos,, R. Morona,, and P. A. Manning. Divergent rfa and rfb genes in Vibrio cholerae O1: nucleotide sequence of an rfa homologue. Submitted for publication.
98. Stroeher, U. H.,, L. E. Karageorgos,, R. Morona,, and P. A. Manning. 1992. Serotype conversion in Vibrio cholerae O1. Proc. Natl. Acad. Sci. USA 89:25662570.
99. Stroeher, U. H.,, and P. A. Manning. Unpublished data.
100. Stroeher, U. H.,, H. M. Ward,, C. J. Thomas,, and P. A. Manning. Virulence of rfb mutants, defective in the synthesis of the O-antigen of the lipopolysaccharide of Vibrio cholerae O1. Submitted for publication.
100a. Swerdlow, D. L.,, and A. L. Ries. 1993. Vibrio cholerae non-O1—the eighth pandemic? Lancet 342:382383.
101. Taylor, R. K.,, V. L. Miller,, D. B. Furlong,, and J. J. Mekalanos. 1987. Use of phoA gene fusion to identify a pilus colonization factor coordinately regulated with cholera toxin. Proc. Natl. Acad. Sci. USA 84:28332837.
102. Turgay, K.,, M. Krause,, and M. A. Marhiel. 1992. Four homologous domains in the primary structure of GrsB are related to domains in a super-family of adenylate-forming enzymes. Mol. Microbiol. 6:529546.
103. Verma, N. K.,, and P. R. Reeves. 1989. Identification and sequence of rfbS and rfbE, which determine antigenic specificity of group A and D salmonellae. J. Bacteriol. 171:56945701.
104. Ward, H. M.,, and P. A. Manning. 1989. Mapping of chomosomal loci associated with lipopolysaccharide synthesis and serotype specificity in Vibrio cholerae Ol by transposon mutagenesis using Tn5 and Tn2680. Mol. Gen. Genet. 218:367370.
105. Ward, H. M.,, and P. A. Manning. Unpublished data.
106. Ward, H. M.,, G. Morelli,, M. Kamke,, R. Morona,, J. Yeadon,, J. A. Hackett,, and P. A. Manning. 1987. A physical map of the chromosomal region determining O-antigen biosynthesis in Vibrio cholerae O1. Gene 55:197204.
106a. Weintraub, A. Personal communication.
107. Youngleson, J. S.,, J. D. Santangelo,, D. T. Jones,, and D. R. Woods. 1988. Cloning and expression of Clostridium acetobutylicum dehydrogenase gene in Escherichia coli. Appl. Environ. Microbiol. 54:676682.
108. Zhao, S.,, C. H. Sandt,, G. Feulner,, D. A. Vlazny,, J. A. Gray,, and C. W. Hill. 1993. Rhs elements of Escherichia coli K-12: complex composites of shared and unique components that have different evolutionary histories. J. Bacteriol. 175:27992808.

Tables

Generic image for table
Table 1

Possible functions of gene products in the vicinity of the region

Citation: Manning P, Stroeher U, Morona R. 1994. Molecular Basis for O-Antigen Biosynthesis in O1: Ogawa-Inaba Switching, p 77-94. In Wachsmuth I, Blake P, Olsvik Ø (ed), and Cholera. ASM Press, Washington, DC. doi: 10.1128/9781555818364.ch6

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error