1887

Chapter 10 : Transport Mechanisms

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Transport Mechanisms, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818388/9781555810535_Chap10-1.gif /docserver/preview/fulltext/10.1128/9781555818388/9781555810535_Chap10-2.gif

Abstract:

Since representatives of most classes of permeases have been characterized more extensively in gram-negative bacteria or eukaryotes than in gram-positive bacteria, this chapter provides comparative information with a focus on the unique features of specific well-characterized transport systems in representative gram-positive bacteria. These transport systems are energized by ATP hydrolysis, consumption of chemiosmotic energy in the form of ion gradients and membrane potentials, or phosphoryl transfer from PEP to the sugar substrate in the phosphotrans-ferase-catalyzed group translocation process. All three types of systems are found in gram-negative bacteria as well as in gram-positive bacteria, and representatives within all permease classes except the group translocating PTS permeasesare also found in eukaryotes. Although the transport proteins derived from grampositive bacteria are, in general, related to transport proteins of other bacteria and eukaryotes, the grampositive bacterial systems exhibit some unique properties. In some cases, these systems are characterized well enough that they provide information that clearly complements or contrasts with that obtained from the study of related transport systems of other organisms.

Citation: Saier, Jr. M, Fagan M, Hoischen C, Reizef J. 1993. Transport Mechanisms, p 133-156. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch10

Key Concept Ranking

Bacterial Proteins
0.46096626
Integral Membrane Proteins
0.40537512
0.46096626
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Generalized structure of the large subunit of P-type (E1E2) ATPases of bacteria and eukaryotes. The enzymes are embedded in the phospholipid bilayer of the membrane (shaded area), with six to eight putative membrane-spanning helices (1 through VI, which are observed in most P-type ATPases, and two or more additional transmembrane helices that are present in most eukaryotic enzymes but are absent from the bacterial enzymes [boxed area at the С terminus]). Both the N terminus (N) and the С terminus (C) are on the cytoplasmic side of the membrane for those enzymes localized to the cytoplasmic membrane of the cell. Highly conserved regions, circled in the figure, include the following: 1, a region possibly involved in cation binding; 2, the aspartyl phosphorylation site (DKTGTI/LT); and 3, the ATP-binding site. Transmembrane helices I and II make up hairpin structure a, while transmembrane helices III and IV form hairpin structure b. Segment 1, used for phylogenetic tree construction (see text and reference ), includes hairpin structures a and b as well as the included cytoplasmic loop between transmembrane helices II and III. Segment 2 includes the large cytoplasmic loop between transmembrane helices IV and V. The C-terminal regions of the proteins, from transmembrane helix V on, are poorly conserved in or absent from the bacterial enzymes. The sequenced P-type ATPases found in gram-positive bacteria include the Cd ATPase of . and the K ATPase of (Reproduced from an article by W. Epstein [326:479-486, 1990] with permission of the Royal Society.)

Citation: Saier, Jr. M, Fagan M, Hoischen C, Reizef J. 1993. Transport Mechanisms, p 133-156. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Three antiporters found in gram-positive bacteria and their roles in cellular metabolic function. (A) The arginine/ornithine antiporter and the arginine deiminase pathway of gram-positive bacteria such as (B) The sugar-6-phosphate/phosphate antiporter, illustrating its two transport modes. (C) The lactose/galactose antiporter and its involvement in sugar metabolism (modified from reference with permission). Abbreviations: ADI, arginine deiminase; OCT, ornithine carbamoyltransferase; CK, carbamoyl kinase; HG6P, protonated glucose 6-phosphate; G6P, nonprotonated glucose 6-phosphate.

Citation: Saier, Jr. M, Fagan M, Hoischen C, Reizef J. 1993. Transport Mechanisms, p 133-156. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Generalized phosphoryl transfer reactions catalyzed by the proteins of the PTS. (A) Linear scheme indicating the proteins but not the nature of their derivatives. (B) Reaction scheme illustrating the individual phosphoryl transfer reactions and the residues phosphorylated within each protein. For definitions of the proteins involved, see reference , where alternative protein (domain) designations for these proteins have been used. Thus, HA has been called enzyme III, IIB has been called enzyme IV, and IIC has been called enzyme II. For some systems, fused IIA-IIB domains have been referred to as enzymes III, fused IIB-IIC domains have been referred to as enzymes II, and fused IIA-IIB-IIC domains have been referred to as enzymes II. Regardless of the state of fusion of the IIA, IIB, and IIC proteins-domains, they are referred to collectively as the enzyme II complexes. MTP and DTP are the multiphosphoryl transfer protein and diphosphoryl transfer protein, respectively, of the fructose-specific phosphotransferases of and respectively.

Citation: Saier, Jr. M, Fagan M, Hoischen C, Reizef J. 1993. Transport Mechanisms, p 133-156. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Phylogenetic tree of 10 sequenced proteins that make up the family of HPr proteins and HPr protein domains. Relative evolutionary distances are given adjacent to the branches. The programs of Doolittle and Feng ( ) and Feng and Doolittle ( ) were used to calculate relative distances. The HPr protein domains of the diphosphoryl transfer protein (DTP) and the multiphosphoryl transfer protein (MTP) encoded within the fructose operons of and respectively, are denoted (Fru.). Four main clusters are apparent: (i) HPr proteins of gram-positive bacteria, i.e., ( ), ( ), ( ), and ( ); (ii) HPr proteins of enteric bacteria, i.e., ( ), ( ), and ( ); (iii) HPr protein domains of the DTP and MTP proteins of ( ) and ( ), respectively; and (iv) HPr of ( ).

Citation: Saier, Jr. M, Fagan M, Hoischen C, Reizef J. 1993. Transport Mechanisms, p 133-156. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

Schematic depiction of representative gram-positive bacterial PTS permeases showing the different known permutations of the constituent proteins and domains. Portions or domains of the various permeases are indicated as follows: transmembrane hydrophobic domain (IIC) ( ), domain bearing the first phosphorylation site (IIA) ( ), domain bearing the second phosphorylation site (IIB) ( ), transmembrane partially hydrophobic domain of unknown function (IID) ( ), and nonhomologous domain or region of unknown function ( ). All permeases shown except the last two exhibit convincing regions of homology. The uniform domain nomenclature is provided below the bars, which represent the various domains-proteins (see reference for discussion of PTS protein nomenclature). Alternative designations for the proteins are given above the bars. References for most of the permeases shown can be found in Saier et al. ( ) and Lengeler et al. ( ) with the following exceptions: the glucitol permease of ( ), the mannitol permease of ( ), and the fructose permease (forming fructose 6-phosphate) of ( ). The C' domain in the glucitol enzyme II refers to the second half of the hydrophobic (IIC) domain.

Citation: Saier, Jr. M, Fagan M, Hoischen C, Reizef J. 1993. Transport Mechanisms, p 133-156. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818388.chap10
1. Albertini, A. M.,, T. CaramorI,, W. D. Crabb,, F. Scoffone,, and A. Gallzzi. 1991. The flaA locus of Bacillus subtilis is part of a large operon coding for flagellar structures, motility functions, and an ATPase-like polypeptide. J. Bacteriol. 173:35733579.
2. Alloing, G.,, M.-C. Trombe,, and J.-P. Claverys. 1990. The ami locus of the Gram-positive bacterium Streptococcus pneumoniae is similar to binding protein-dependent transport operons of Gram-negative bacteria. Mol. Microbiol. 4:633644.
3. Amann, R.,, W. Ludwig,, and K. H. Schleifer. 1988. β subunit of ATP synthase: a useful marker for studying the phylogenetic relationship of eubacteria. J. Gen. Microbiol. 134:28152821.
4. Ambudkar, S. V.,, A. R. Lynn,, P. C. Maloney,, and B. P. Rosen. 1986. Reconstitution of ATP-dependent calcium transport from streptococci. J. Biol. Chem. 261:1559615600.
5. Ambudkar, S. V.,, L. A. Sonna,, and P. C. Maloney. 1986. Variable stoichiometry of phosphate-linked anion exchange in Streptococcus lactis: implications for the mechanism of sugar phosphate transport by bacteria. Proc. Natl. Acad. Sci. USA 83:280284.
6. Amster-Choder, O.,, F. Houman,, and A. Wright 1989. Protein phosphorylation regulates transcription of the beta-glucoside utilization operon in E. coli. Cell 58:847855.
7. Amster-Choder, O.,, and A. Wright. 1990. Regulation of activity of a transcriptional anti-terminator in E. coli by phosphorylation in vivo. Science. 249:540542.
8. Anraku, Y.,, N. Umemoto,, R. Hirata,, and Y. Wada. 1989. Structure and function of the yeast vacuolar membrane proton ATPase. J. Bioenerg. Biomembr. 21: 589603.
9. Bakker, E. P.,, A. Borchard,, M. Michels,, K. Altendorf,, and A. Siebers. 1987. High-affinity potassium uptake system in Bacillus acidocaldarius showing immunological cross-reactivity with the Kdp system from Escherichia coli. J. Bacteriol. 169:43424348.
10. Baxter, L.,, S. Torrie,, and M. McKillen. 1974. D-G1U-conate transport in Bacillus subtilis. Biochem. Soc. Trans. 2:13701372.
10a. Bennett, G. Personal communication.
11. Berman-Kurtz, M.,, E. C. C. Lin,, and D. P. Richey. 1971. Promoter-like mutant with increased expression of the glycerol kinase operon of Escherichia coli. J. Bacteriol. 106:724731.
12. Booth, I. R.,, and J. G. Morris. 1975. Proton-motive force in the obligately anaerobic bacterium Clostridium pasteurianum: a role in galactose and gluconate uptake. FEBS Lett. 59:153157.
13. Bröer, S.,, and R. Krämer. 1990. Lysine uptake and exchange in Corynebacterium glutamicum. J. Bacteriol. 172:72417248.
14. Bröer, S.,, and R. Krämer. 1991. Lysine excretion by Corynebacterium glutamicum. I. Identification of a specific secretion carrier system. Eur. J. Biochem. 202:131135.
15. Bröer, S.,, and R. Krämer. 1991. Lysine excretion by Corynebacterium glutamicum. II. Energetics and mechanism of the transport system. Eur. J. Biochem. 202: 137143.
16. Brusilow, W. S.,, M. A. Scarpetta,, C. A. Hawthorne,, and W. P. Clark. 1989. Organization and sequence of the genes coding for the proton-translocating ATPase of Bacillus megaterium. J. Biol. Chem. 264:15281533.
17. Bunch, A. W.,, and R. E. Harris. 1986. The manipulation of microorganisms for the production of secondary metabolites. Biotechnol. Genet. Eng. Rev. 4:117144.
18. Byrne, C. R.,, R. S. Monroe,, K. A. Ward,, and N. M. Kredlch. 1988. DNA sequences of the cysK regions of Salmonella typhimurium and Escherichia coli and linkage of the cysK regions to ptsH. J. Bacteriol. 170:31503157.
19. Carrasco, N.,, L. M. Antes,, M. S. Poonian,, and H. R. Kaback. 1986. Lac permease of Escherichia coli histidine-322 and glutamic acid-325 may be components of a charge-relay system. Biochemistry 25:44864488.
20. Carrasco, N.,, I. B. Püttner,, L. M. Antes,, J. A. Lee,, J. D. Larlgan,, J. S. Lolkema,, P. D. Roepe,, and H. R. Kaback. 1989. Characterization of site-directed mutants in the lac permease of Escherichia coli. 2. Glutamate-325 replacements. Biochemistry 28:25332539.
21. Chalumeau, H.,, A. Delobbe,, and P. Gay. 1978. Biochemical and genetic study of D-glucitol transport and catabolism in Bacillus subtilis. J. Bacteriol. 134:920928.
22. Chen, C.-M.,, T. K. Misra,, S. Silver,, and B. P. Rosen. 1986. Nucleotide sequence of the structural genes for an anion pump. The plasmid-encoded arsenical resistance operon. J. Biol. Chem. 261:1503015038.
23. Chung, Y.,, and M. R. Salton. 1988. Purification and properties of the latent F0F1-ATPase from Micrococcus lysodeikticus. Mikrobios 54:187205.
24. Clarke, D. J.,, F. M. Fuller,, and J. G. Morris. 1979. The proton-translocating adenosine triphosphatase of the obligately anaerobic bacterium Clostridium pasteurianum. 1. ATPase phosphohydrolase activity. Eur. J. Biochem. 98:597612.
25. Clarke, D. J.,, and J. G. Morris. 1979. The proton-translocating adenosine triphosphatase of the obligately anaerobic bacterium Clostridium pasteurianum. 2. ATP synthetase activity. Eur. J. Biochem. 98:613620.
26. Clement, Y.,, B. Escoffier,, M. C. Trombe,, and G. Lanéelle. 1984. Is glutamate excreted by its uptake system in Corynebacterium glutamicum? A working hypothesis. J. Gen. Microbiol. 130:25892594.
27. Cozzarelli, N. R.,, W. B. Freedberg,, and E. C.. C. Lin. 1968. Genetic control of the L-α-glycerophosphate system in Escherichia coli. J. Mol. Biol. 31:371387.
28. Crutz, A. M.,, M. Steinmetz,, S. Aymerich,, R. Richter,, and D. Le Coq. 1990. Induction of levansucrase in Bacillus subtilis: an antitermination mechanism negatively controlled by the phosphotransferase system. J. Bacteriol. 172:10431050.
29. Dean, D. A.,, J. Reizer,, H. Nikaido,, and M. H. Saler, Jr. 1990. Regulation of the maltose transport system of Escherichia coli by the glucose-specific enzyme III of the PTS: characterization of inducer exclusion-resistant mutants and reconstitution of inducer exclusion in proteoliposomes. J. Biol. Chem. 265:2100521010.
30. Debarbouille, M.,, M. Arnaud,, A. Fouet,, A. Klier,, and G. Rapoport. 1990. The sacT gene regulating the sacPA operon in Bacillus subtilis shares strong homology with transcriptional antiterminators. J. Bacteriol. 172:39663973.
31. Demain, A. L.,, and J. Birnbaum. 1968. Alteration of permeability for the release of metabolites from the microbiol cell. . Curr. Top. Microbiol. Immunol. 46:125.
32. Denda, K.,, J. Konlshl,, K. Hajiro,, T. Oshima,, T. Date,, and M. Yoshida. 1990. Structure of an ATPase operon of an acidothermophilic archaebacterium, Sulfolobus aci-docaldarius. J. Biol. Chem. 265:2150921513.
33. De Reuse, H.,, A. Roy,, and A. Danchin. 1985. Analysis of the ptsH-ptsI-crr region in Escherichia coli K-12: nucleotide sequence of the ptsH gene. Gene 35:199207.
33a. Deutscher, J., et al. Unpublished data.
34. Deutscher, J.,, and R. Engelmann. 1984. Purification and characterization of an ATP-dependent protein kinase from Streptococcus faecalis. FEMS Microbiol. Lett. 23:157162.
35. Deutscher, J.,, U. Kessler,, A. Alpert,, and W. Hengstenberg. 1984. Bacterial phosphoenolpyruvate-dependent phosphotransferase system: P-Ser-HPr and its possible regulatory function. Biochemistry 23:44554460.
36. Deutscher, J.,, B. Pevec,, K. Beyreuther,, H.-H. Klltz,, and W. Hengstenberg. 1986. Streptococcal phosphoenol-pyruvate-sugar phosphotransferase system: amino acid sequence and site of ATP-dependent phosphorylation of HPr. Biochemistry 25:65436551.
37. Doolittle, R. F.,, K. L. Anderson,, and D.-F. Feng,. 1989. Estimating the prokaryote-eukaryote divergence time from protein sequences, p. 7385. In B. Fernholm,, K. Bremer,, and H. Jörnvall (ed.), The Hierarchy of Life. Elsevier Science Publishing, Inc., New York.
38. Doolittle, R. F.,, and D.-F. Feng. 1990. Nearest neighbor procedure for relating progressively aligned amino acid sequences. Methods Enzymol. 183:659669.
39. Driessen, A. J. M.,, D. Molenaar,, and W. N. Konings. 1989. Kinetic mechanism and specificity of the arginine-ornithine antiporter of Lactococcus lactis. J. Biol. Chem. 264:1036110370.
40. Driessen, A. J. M.,, E. J. Smid,, and W. N. Konings. 1988. Transport of diamines by Enterococcus faecalis is mediated by an agmatine-putrescine antiporter. J. Bacteriol. 170:45224527.
41. Dudler, T.,, C. Schmidhauser,, R. W. Parish,, R. E. H. Wettenhall,, and T. Schmidt. 1988. A mycoplasma high-affinity transport system and the in vivo invasiveness of mouse sarcoma cells. EMBO J. 7:39633970.
42. Duplay, P.,, H. Bedouelle,, A. Fowler,, I. Zabin,, W. Saurín,, and M. Hofnung. 1984. Sequences of the malE gene and of its product, the maltose-binding protein of Escherichia coli K12. J. Biol. Chem. 259:1060610613.
42a. Dyke, K. G. H. Unpublished data.
43. Ebbighausen, H.,, B. Weil,, and R. Krämer. 1989. Transport of branched-chain amino acids in Corynebacterium glutamicum. Arch. Microbiol. 151:238244.
44. Ebbighausen, H.,, B. Weil,, and R. Kramer. 1989. Isole-ucine excretion in Corynebacterium glutamicum: evidence for a specific efflux carrier system. Appl. Microbiol. Biotechnol. 31:184190.
45. Eiserman, R.,, R. Fischer,, U. Kessler,, A. Neubauer,, and W. Henstenberg. 1991. Staphylococcal phosphoenolpyruvate-dependent phosphotransferase system. Purification and protein sequencing of the Staphylococcus camosus histidine-containing protein, and cloning and DNA sequencing of the ptsH gene. Eur. J. Biochem. 197:914.
46. Epstein, W., 1990. Bacterial transport ATPases, p. 87110. In T. A. Krulwich (ed.), The Bacteria, vol. 12. Academic Press, Inc., San Diego, Calif.
47. Fagan, M. J.,, and M. H. Saler, Jr. P-type ATPases of eukaryotes and bacteria: sequence comparisons and construction of phylogenetic trees. Submitted for publication.
48. Fairbrother, W. J.,, J. Cavanagh,, H. J. Dyson,, A. G. Palmer III,, S. L. Sutrina,, J. Reizer,, M. H. Saier, Jr.,, and P. E. Wright. 1991. Polypeptide backbone resonance assignments and secondary structure of Bacillus subtilis enzyme IIIglc determined by two-dimensional and three-dimensional heteronuclear NMR spectroscopy. Biochemistry 30:68966907.
49. Fairbrother, W. J.,, G. P. Gippert,, J. Reizer,, M. H. Saier, Jr.,, and P. E. Wright. 1992. Low resolution solution structure of the Bacillus subtilis glucose permease IIA domain derived from heteronuclear three-dimensional NMR spectroscopy. FEBS Lett. 296:148152.
50. Fairbrother, W. J.,, A. G. Palmer III,, M. Ranee,, J. Reizer,, M. H. Saier, Jr.,, and P. E. Wright. 1992. Assignment of the aliphatic 1H and 13C resonances of the Bacillus subtilis glucose permease IIA domain using double- and triple-resonance heteronuclear three-dimensional NMR spectroscopy. Biochemistry 31:44134425.
51. Feng, D.-F.,, and R. F. Doolittle. 1990. Progressive alignment and phylogenetic tree construction of protein sequences. Methods Enzymol. 183:375387.
52. Flkes, J. D.,, and P. J. Bassford, Jr. 1987. Export of unprocessed precursor maltose-binding proteins to the periplasm of Escherichia coli cells. J. Bacteriol. 169: 23522359.
53. Fujita, Y.,, T. Fujita,, Y. Miwa,, J. Nihashi,, and Y. Aratani. 1986. Organization and transcription of the gluconate operon, gnt, of Bacillus subtilis. J. Biol. Chem. 261:1374413753.
54. Furlong, C. E., 1987. Osmotic-shock-sensitive transport systems, p. 768796. In F. C. Neidhardt,, J. L. Ingraham,, K. B. Low,, B. Magasanik,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia colt and Salmonella typhimurium: cellular and molecular biology, vol. 1. American Society for Microbiology, Washington, D.C.
55. Fürst, P.,, and M. Solioz. 1987. Formation of a β-aspartyl phosphate intermediate by the vanadate-sensitive ATPase of Streptococcus faecalis. J. Biol. Chem. 260:5052.
56. Futal, M.,, T. Nouml,, and M. Maeda. 1989. ATP synthase (H+-ATPase): results by combined biochemical and molecular biological approaches. Annu. Rev. Biochem. 58:111136.
57. Gagnon, G.,, C. Vadeboncoeur,, R. C. Lévesque,, and M. Frenette. 1992. Cloning, sequencing and expression in Escherichia colt of the ptsI gene encoding for the enzyme I phosphoenolpyruvate:sugar phosphotransferase transport system from Streptococcus salivarius. Gene 121:7178.
58. Gardell, C.,, K. Johnson,, A. Jacq,, and J. Beckwith. 1990. The secD locus of E. coli codes for two membrane proteins required for protein export. EMBO J. 9:32093216.
59. Geerse, R. H.,, F. Izzo,, and P. W. Postma. 1989. The PEP:fructose phosphotransferase system in Salmonella typhimurium: FPr combines enzyme IIIFru and pseudo-HPr activities. Mol. Gen. Genet. 216:517525.
60. Gibson, M. M.,, M. Price,, and C. F. Higgins. 1984. Genetic characterization and molecular cloning of the tripeptide permease (tpp) genes of Salmonella typhimurium. J. Bacteriol. 160:122130.
61. Gilson, E.,, G. Alloing,, T. Schmidt,, J.-P. Claverys,, R. Dudler,, and M. Hofnung. 1988. Evidence for high affinity binding-protein dependent transport systems in Gram-positive bacteria and in mycoplasma. EMBO J. 7:39713974.
62. Gogarten, J. P.,, H. Kibak,, P. Dittrich,, L. Taiz,, E. J. Bowman,, B. J. Bowman,, M. F. Manolson,, R. J. Poole,, T. Date,, T. Oshima,, J. Konishi,, K. Denda,, and M. Yoshida. 1989. Evolution of the vacuolar H+-ATPase: implications for the origin of eukaryotes. Proc. Natl. Acad. Sci. USA 86:66616665.
63. Gonzy-Tréboul, G.,, M. Zagorec,, M.-C. Rain-Gion,, and M. Steinmetz. 1989. Phosphoenolpyruvate:sugar phosphotransferase system of Bacillus subtilis: nucleotide sequence of ptsX, ptsH, and the 5′-end of ptsI and evidence for a ptsHI operon. Mol. Microbiol. 3:103112.
64. Goodell, E. W.,, and C. F. Higgins. 1987. Uptake of cell wall peptides by Salmonella typhimurium and Escherichia coli. J. Bacteriol. 169:38613865.
65. Grossman, A. D.,, and R. Losick. 1988. Extracellular control of spore formation in Bacillus subtilis. Proc. Natl. Acad. Sci. USA 85:43694373.
66. Guilfoile, P. G.,, and C. R. Hutchinson. 1991. A bacterial analog of the mdr gene of mammalian tumor cells is present in Streptomyces peucetius, the producer of daunorubicin and doxorubicin. Proc. Natl. Acad. Sci. USA 88:85538557.
67. Guyer, C. A.,, D. G. Morgan,, N. Osheroff,, and J. V. Staros. 1985. Purification and characterization of a periplasmic oligopeptide binding protein from Escherichia coli. J. Biol. Chem. 260:1081210816.
68. Hafer, J.,, A. Slebers,, and E. P. Bakker. 1989. The high-affinity K+-translocating ATPase complex from Bacillus acidocaldarius consists of three subunits. Mol. Microbiol. 3:487495.
69. Hayashi, S.,, and E. C. C. Lin. 1965. Product induction of glycerol kinase in Escherichia coli. J. Mol. Biol. 14:515521.
70. Hays, J. B., 1978. Group translocation transport systems, p. 43. In B. P. E. Rosen (ed.), Microbiology Series, Vol. 4. Bacterial Transport. Marcel Dekker, New York.
71. Heefner, D. L.,, and F. M. Harold. 1980. ATP-linked sodium transport in Streptococcus faecalis. J. Biol. Chem. 255:1139611402.
72. Heefner, D. L.,, and F. M. Harold. 1982. ATP-driven sodium pump in Streptococcus faecalis. Proc. Natl. Acad. Sci. USA 79:27982802.
73. Heller, K. B.,, E. C. C. Lin,, and T. H. Wilson. 1980. Substrate specificity and transport properties of the glycerol facilitator of Escherichia coli. J. Bacteriol. 144: 274278.
74. Henderson, P. J. F. 1990. The homologous glucose transport proteins of prokaryotes and eukaryotes. Res. Microbiol. 141:316328.
75. Hengstenberg, W. 1977. Enzymology of carbohydrate transport in bacteria. Curr. Top. Microbiol. Immunol. 77:97.
76. Hensel, M.,, G. Deckers-Hebestreit,, and K. Altendorf. 1991. Purification and characterization of the F1 portion of the ATP synthase (F1F0) of Streptomyces lividans. Eur. J. Biochem. 202:13131319.
77. Herzberg, O.,, P. Reddy,, J. Reizer,, and G. Kapadia. 1992. Structure of the histidine-containing phosphocar-rier protein HPr from Bacillus subtilis at 2.0 Å resolution. Proc. Natl. Acad. Sci. USA 89:24992503.
78. Hicks, D. B.,, and T. A. Krulwich. 1990. Purification and reconstitution of the F1F0 ATP synthase from alkalophilic Bacillus firmis 0F4. Evidence that the enzyme translocates H+ but not Na+. J. Biol. Chem. 265:2054720554.
79. Hiles, I. D.,, M. P. Gallagher,, D. J. Jamieson,, and C. F. Higgins. 1987. Molecular characterization of the oligopeptide permease of Salmonella typhimurium. J. Mol. Biol. 195:125142.
80. Hiles, I. D.,, and C. F. Higgins. 1986. Peptide transport by Salmonella typhimurium: the periplasmic oligopep-tide-binding protein. Eur. J. Biochem. 158:561567.
81. Hoch, J. A. 1976. Genetics of bacterial sporulation. Adv. Genet. 18:6999.
82. Hoffmann, A.,, and P. Dimroth. 1990. The ATPase of Bacillus alcalophilus. Purification and properties of the enzyme. Eur. J. Biochem. 194:423430.
83. Hoffmann, A.,, and P. Dimroth. 1991. The ATPase of Bacillus alcalophilus. Reconstitution of energy-transducing functions. Eur. J. Biochem. 196:493497.
84. Hoischen, C.,, and R. Krämer. 1989. Evidence for an efflux carrier system involved in the secretion of glutamate by Corynebacterium glutamicum. Arch. Microbiol. 151:342347.
85. Hoischen, C.,, and R. Kramer. 1990. Membrane alteration is necessary but not sufficient for effective glutamate secretion in Corynebacterium glutamicum. J. Bacteriol. 172:34093416.
86. Holmberg, C.,, L. Beijer,, B. Rutberg,, and L. Rutberg. 1990. Glycerol catabolism in Bacillus subtilis: nucleotide sequence of the genes encoding glycerol kinase iglpK) and glycerol-3-phosphate dehydrogenase (glpD). J. Gen. Microbiol. 136:23672375.
86a. Honeyman, A. Personal communication.
87. Houng, H.,, A. R. Lynn,, and B. P. Rosen. 1986. ATPdriven calcium transport in membrane vesicles of Streptococcus sanguis. J. Bacteriol. 168:10401044.
88. Hutkins, R. W.,, and C. Ponne. 1991. Lactose uptake driven by galactose efflux in Streptococcus thermophilus: evidence for a galactose-lactose antiporter. Appl. Environ. Microbiol. 57:941944.
89. Ivey, D. M.,, and L. G. Ljungdahl. 1986. Purification and characterization of the F,-ATPase from Clostridium thermoaceticum. J. Bacteriol. 165:252257.
90. Jamieson, D. J.,, and C. F. Higgins. 1984. Anaerobic and leucine-dependent expression of a peptide transport gene in Salmonella typhimurium. J. Bacteriol. 160:131136.
90a. Ji, G.,, and S. Silver. 1992. Reduction of arsenate to arsenite by the ArsC protein of the arsenic resistance operon of Staphylococcus aureus plasmid pI258. Proc. Natl. Acad. Sci. USA 89:94749478.
91. Kakinuma, Y.,, and K. Igarashi. 1990. Amplification of the Na+-ATPase of Streptococcus faecalis at alkaline pH. FEBSLett. 261:135138.
92. Kakinuma, Y.,, and K. Igarashi. 1990. Mutants of Streptococcus faecalis sensitive to alkaline pH lack Na+-ATPase. J. Bacteriol. 172:17321735.
93. Kakinuma, Y.,, and K. Igarashi. 1990. Release of the component of Streptococcus faecalis Na+-ATPase from the membranes. FEBS Lett. 271:102105.
94. Kakinuma, Y.,, and K. Igarashi. 1990. Some features of the Streptococcus faecalis Na+-ATPase resemble those of the vacuolar type ATPases. FEBS Lett. 271:102105.
95. Karkarla, C. E.,, and B. P. Rosen. 1990. Mutagenesis of a nucleotide binding site of an anion-translocating ATPase. J. Biol. Chem. 265:78327836.
96. Klnoshita, S., 1985. Glutamic acid bacteria, p. 115142. In A. Demain, and N. Solomon (ed.), Biology of Industrial Microorganisms. The Benjamin/Cummings Publishing Co., Redwood City, Calif.
97. Klnoshita, S.,, S. Udaka,, and M. Shimino. 1957. Studies on amino acid fermentation. I. Production of L-glutamic acid by various microorganisms. J. Gen. Appl. Microbiol. 3:193205.
98. Klnoshita, N.,, T. Unemoto,, and H. Kobayashi. 1984. Sodium-stimulated ATPase in Streptococcus faecalis. J. Bacteriol. 158:844848.
99. Kobayashi, H.,, J. V. Brunt,, and F. M. Harold. 1978. ATP-linked calcium transport in vesicles of Streptococcus faecalis. J. Biol. Chem. 253:20852092.
99a. Koch, S., et al. Unpublished data.
100. Kohlbrecher, D.,, R. Eisermann,, and W. Hengstenberg. 1992. Staphylococcal phosphoenolpyruvate-dependent phosphotransferase system: molecular cloning and nucleotide sequence of the Staphylococcus camosus ptsl gene and expression and complementation studies of the gene product. J. Bacteriol. 174:22082214.
101. Konings, W. N.,, B. Poolman,, and A. J. Driessen. 1989. Bioenergetics and solute transport in lactococci. Crit. Rev. Microbiol. 16:419476.
102. Krämer, R.,, and C. Lambert. 1990. Uptake of glutamate in Corynebacterium glutamicum. II. Evidence for a primary active transport system. Eur. J. Biochem. 194: 937944.
103. Krämer, R.,, C. Lambert,, C. Hoischen,, and H. Ebbighausen. 1990. Uptake of glutamate in Corynebacterium glutamicum. I. Kinetic properties and regulation by internal pH and potassium. Eur. J. Biochem. 194:929935.
103a. Krulwich, T. Personal communication.
104. Krulwich, T. A.,, D. B. Hicks,, D. Seto-Young,, and A. A. Guffanti. 1988. The bioenergetics of alkalophilic bacilli. Crit. Rev. Microbiol. 16:1536.
105. Lengeler, J. W.,, F. Titgemeyer,, A. P. Vogler,, and B. M. Wöhrl. 1990. Structures and homologies of carbohydrate:phosphotransferase system (PTS) proteins. Phil. Trans. R. Soc. Lond. B. 326:489504.
106. Leonard, J. E.,, C. Lee,, A. Apperson,, S. S. Dills,, and M. H. Saler, Jr., 1981. The role of membranes in the transport of small molecules, p. 152. In B. K. Gosh (ed.), Organization of Prokaryotic Cell Membranes, vol. I. CRC Press, Boca Raton, Fla.
107. Liao, D.-I.,, G. Kapadia,, P. Reddy,, M. H. Saier, Jr.,, J. Reizer,, and O. Herzberg. 1991. Structure of the IIA domain of the glucose permease of Bacillus subtilis at 2.2 Å resolution. Biochemistry 30:95839594.
108. LiCalsi, C.,, T. S. Crocenzi,, E. Freiré,, and S. Roseman. 1991. Sugar transport by the bacterial phosphotransferase system: structural and thermodynamic domains of enzyme I of Salmonella typhimurium. J. Biol. Chem. 266:1951919527.
109. Lin, E. C. C. 1976. Glycerol dissimilation and its regulation in bacteria. Annu. Rev. Microbiol. 30:535578.
110. Lin, E. C. C. 1977. Glycerol utilization and its regulation in mammals. Annu. Rev. Microbiol. 46:765795.
111. Luntz, M. G.,, H. I. Zhdanova,, and G. I. Bourd. 1986. Transport and excretion of L-lysine in Corynebacterium glutamicum. J. Gen. Microbiol. 132:21372146.
112. Maloney, P. C. 1990. A consensus structure for membrane transport. Res. Microbiol. 141:374383.
113. Maloney, P. C.,, S. V. Ambudkar,, V. Anantharam,, L. A. Sonna,, and A. Varadhachary. 1990. Anion-exchange mechanisms in bacteria. Microbiol. Rev. 54:117.
114. Maloney, P. C.,, S. V. Ambudkar,, J. Thomas,, and L. Schiller. 1984. Phosphate/hexose 6-phosphate antiport in Streptococcus lactis. J. Bacteriol. 158:238245.
115. Mandei, K. G.,, and T. A. Krulwich. 1979. D-Gluconate transport in Arthrobacter pyridinolis: metabolic trapping of a protonated solute. Biochim. Biophys. Acta 552:478491.
115a. Marger, M. D.,, and M. J. Saier, Jr. 1993. A major superfamily of transmembrane facilitators that catalyze uniport, symport and antiport. Trends Biol. Sci. 18:1320.
116. Martin-Verstraete, L.,, M. Débarbouille,, A. Klier,, and G. Rapoport. 1990. Levanase operon of Bacillus subtilis includes a fructose-specific phosphotransferase system regulating the expression of the operon. J. Mol. Biol. 214:657671.
117. Mathiopoulos, C.,, J. P. Mueller,, F. J. Slack,, C. G. Murphy,, S. Patankar,, G. Bukusoglu,, and A. L. Sonen-shein. 1991. A Bacillus subtilis dipeptide transport system expressed early during sporulation. Mol. Microbiol. 5:19031913.
118. Mayo, B.,, J. Kok,, K. Venema,, W. Bockelmann,, M. Teuber,, H. Relnke,, and G. Venema. 1991. Molecular cloning and sequence analysis of the X-prolyl dipepti-dyl aminopeptidase gene from Lactococcus lactis subsp. cremoris. Appl. Environ. Microbiol. 57:3844.
119. McKlllen, M. N.,, and J. H. Rountree. 1973. D-Gluconate transport in Bacillus subtilis. Biochem. Soc. Trans. 1:442445.
120. Mei-Hsu, C.,, P. Kaur,, C. E. Karkaria,, R. F. Steiner,, and B. P. Rosen. 1991. Substrate-induced dimerization of the ArsA protein, the catalytic component of an anion-translocating ATPase. J. Biol. Chem. 266:23272332.
121. Mileykovskaya, E. I.,, A. N. Abuladze,, S. S. Kormer,, and D. N. Ostrovsky. 1987. Some peculiarities of functioning of H+-ATPase from the membranes of the anaerobic bacterium Lactobacillus casei. Eur. J. Biochem. 167: 367370.
122. Mileykovskaya, E. I.,, A. N. Abuladze,, and D. N. Ostrovsky. 1987. Subunit composition of the H+-ATPase complex from anaerobic bacterium Lactobacillus casei. Eur. J. Biochem. 168:703708.
123. Milner, J. L.,, L. B. Vink,, and J. M. Wood. 1987. Transmembrane amino acid flux in bacterial cells. Crit. Rev. Biotechnol. 5:147.
123a. Mlnton, N. Personal communication.
124. Muntyan, M. A.,, I. V. Mesyanzhinova,, Y. M. Milgrom,, and V. P. Skulachev. 1990. The F1-type ATPase in anaerobic Lactobacillus casei. Biochim. Biophys. Acta 1016:371377.
125. Muramatsu, S.,, and T. Mizuno. 1989. Nucleotide sequence of the region encompassing the glpKF operon and its upstream region containing a bent DNA sequence of Escherichia coli. Nucleic Acids Res. 17:4378.
126. Nelson, N. 1989. Structure, molecular genetics, and evolution of vacuolar H+-ATPases. J. Bioenerg. Biomembr. 21:553571.
127. Nielsen, J. B. K.,, M. P. Caulfield,, and J. O. Lampen. 1981. Lipoprotein nature of Bacillus licheniformis membrane penicillinase. Proc. Natl. Acad. Sci. USA 78:35113515.
128. Nielsen, J. B. K.,, and J. O. Lampen. 1982. Glyceride-cysteine lipoproteins and secretion by gram-positive bacteria. J. Bacteriol. 152:315322.
129. Nucífera, G.,, L. Chu,, T. K. Misra, and S. Silver. 1989. Cadmium resistance from Staphylococcus aureus plasmid pI258 cadA gene results from cadmium-efflux ATPase. Proc. Natl. Acad. Sci. USA 86:35443548.
130. Ochman, H.,, and A. C. Wilson. 1987. Evolution in bacteria: evidence for a universal substitution rate in cellular genomes. J. Mol. Evol. 26:7486.
131. Olson, E. R.,, D. S. Dunyak,, L. M. Jurss,, and R. A. Poorman. 1991. Identification and characterization of dppA, and Escherichia coli gene encoding a periplasmic dipeptide transport protein. J. Bacteriol. 173:234244.
132. Pao, G. M.,, L.-F. Wu,, K. D. Johnson,, H. Höfte,, M. J. Chrispeels,, G. Sweet,, N. N. Sandal,, and M. H. Saier, Jr. 1991. Evolution of the MIP family of integral membrane transport proteins. Mol. Microbiol. 5:3337.
133. Payne, J. W.,, and C. Gilvarg. 1968. Size restriction on peptide utilization in Escherichia coli. J. Biol. Chem. 243:63916399.
134. Pelton, J. G.,, D. A. Torchia,, N. D. Meadow,, C. Y. Wong,, and S. Roseman. 1991. 1H, 15N, and 13C NMR signal assignments of IIIGlc, a signal-transducing protein of Escherichia coli, using three-dimensional triple-resonance techniques. Biochemistry 30:1004310057.
135. Pelton, J. G.,, D. A. Torchia,, N. D. Meadow,, C. Y. Wong,, and S. Roseman. 1991. Secondary structure of the phosphocarrier protein IIIGlc, a signal-transducing protein of Escherichia coli, determined by heteronuclear three-dimensional NMR spectroscopy. Proc. Natl. Acad. Sci. USA 88:34793483.
136. Perego, M.,, C. F. Higgins,, S. R. Pearce,, M. P. Gallagher,, and J. A. Hoch. 1991. The oligopeptide transport system of Bacillus subtilis plays a role in the initiation of sporulation. Mol. Microbiol. 5:173185.
137. Poolman, B.,, A. J. M. Driessen,, and W. N. Konings. 1987. Regulation of arginine-ornithine exchange and the arginine deiminase pathway in Streptococcus lactis. J. Bacteriol. 169:55975604.
138. Poolman, B.,, R. Modderman,, and J. Reizer. 1992. Lactose transport system of Streptococcus thermophilus: the role of histidine residues. J. Biol. Chem. 267:91509157.
139. Poolman, B.,, T. J. Royer,, S. E. Malnzer,, and B. F. Schmidt. 1989. Lactose transport system of Streptococcus thermophilus: a hybrid protein with homology to the melibiose carrier and enzyme III of phosphoenol-pyruvate-dependent phosphotransferase systems. J. Bacteriol. 171:244253.
140. Postma, P. W.,, and J. W. Lengeler. 1985. Phosphoenol-pyruvatexarbohydrate phosphotransferase system of bacteria. Microbiol. Rev. 49:232269.
141. Fourcher, T.,, H. K. Sarkar,, M. Bassilana,, H. R. Kaback,, and G. Leblanc. 1990. Histidine-94 is the only important histidine residue in the melibose permease of Escherichia coli. Proc. Natl. Acad. Sci. USA 87:468472.
142. Powers, D. A.,, and S. Roseman. 1984. The primary structure of Salmonella typhimurium HPr, a phospho-carrier protein of the phosphoenolpyruvate:glycose phosphotransferase system. J. Biol. Chem. 259:1521215214.
143. Presper, K. A.,, C. Y. Wong,, L. Liu,, N. D. Meadow,, and S. Roseman. 1989. Site-directed mutagenesis of the phosphocarrier protein IIIGlc, a major signal-transducing protein in Escherichia coli. Proc. Natl. Acad. Sci. USA 86:40524055.
144. Pries, A.,, H. Priefert,, N. Kruger,, and A. Steinbuchel. 1991. Identification and characterization of two Alcali-genes eutrophus gene loci relevant to the poly(β-hydroxybutyric acid)-leaky phenotype which exhibit homology to ptsH and ptsl of Escherichia coli. J. Bacteriol. 173:58435853.
145. Quivey, R. G., Jr.,, R. C. Faustoferrl,, W. A. Belli,, and J. S. Flores. 1991. Polymerase chain reaction amplification, cloning, sequence determination and homologies of streptococcal ATPase-encoding DNAs. Gene 97: 6368.
145a. Rapaport, G. Personal communication.
146. Reizer, A.,, J. Deutscher,, M. H. Saier, Jr.,, and J. Reizer. 1991. Analysis of the gluconate ignt) operon of Bacillus subtilis. Mol. Microbiol. 5:10811089.
147. Reizer, A.,, G. M. Pao,, and M. H. Saier, Jr. 1991. Evolutionary relationships among the permease proteins of the bacterial phosphoenolpyravate:sugar phosphotransferase system. Construction of phylogenetic trees and possible relatedness to proteins of eukaryotic mitochondria. J. Mol. Evol. 33:179193.
147a. Reizer, A.,, J. Reizer,, and M. H. Saier, Jr. Unpublished data.
148. Reizer, J. 1989. Regulation of sugar uptake and efflux in Gram-positive bacteria. FEMS Microbiol. Rev. 63:149156.
149. Reizer, J.,, J. Deutscher,, F. Grenier,, J. Thompson,, W. Hengstenberg,, and M. H. Saier, Jr. 1988. The phosphoenolpyruvate:sugar phosphotransferase system in Gram-positive bacteria: properties, mechanism and regulation. Crit. Rev. Microbiol. 15:297338.
150. Reizer, J.,, J. Deutscher,, and M. H. Saier, Jr. 1989. Metabolite-sensitive, ATP-dependent, protein kinase-catalyzed phosphorylation of HPr, a phosphocarrier protein of the phosphotransferase system in Gram-positive bacteria. Biochimie 71:989991.
151. Reizer, J.,, M. J. Novotny,, W. Hengstenberg,, and M. H. Saier, Jr. 1984. Properties of ATP-dependent protein kinase from Streptococcus pyogenes that phosphoiylates a seryl residue in HPr, a phosphocarrier protein of the phosphotransferase system. J. Bacteriol. 160:333340.
152. Reizer, J.,, and K. Peterkofsky,. 1987. Regulatory mechanism for sugar transport in Gram-positive bacteria, p. 333364. In J. Reizer, and A. Peterkofsky (ed.), Sugar Transport and Metabolism in Gram-Positive Bacteria. Ellis Horwood, Chichester, England.
153. Reizer, J.,, and A. Peterkofsky (ed.). 1987. Sugar Transport and Metabolism in Gram-Positive Bacteria. Ellis Horwood, Chichester, England.
154. Reizer, J.,, A. Reizer,, C. Hoischen,, and M. H. Saier, Jr. Nucleotide sequence of the ptsl gene of Bacillus subtilis and phylogenetic relationship with other phosphoenol-pyruvate utilizing and synthesizing enzymes. Protein Sci., in press.
155. Reizer, J.,, A. Reizer,, and M. H. Saier, Jr. Unpublished data.
156. Reizer, J.,, A. Reizer,, and M. H. Saier, Jr. 1992. A new subfamily of bacterial ABC-type transport systems catalyzing export of drugs and carbohydrates. Protein Sci. 1:13261332.
157. Reizer, J.,, A. Reizer,, M. H. Saier, Jr.,, and G. R. Jacobson. 1992. A proposed link between nitrogen and carbon metabolism involving protein phosphorylation in bacteria. Protein Sci. 1:722726.
158. Reizer, J.,, S. L. Sutrina,, M. H. Saier, Jr.,, G. C. Stewart,, A. Peterkofsky,, and P. Reddy. 1989. Mechanistic and physiological consequences of HPr(Ser) phosphorylation on the activities of the phosphoenolpyruvate:sugar phosphotransferase system in Gram-positive bacteria: studies with site-specific mutants of HPr. EMBO J. 8:21112120.
159. Reizer, J.,, S. L. Sutrina,, L.-F. Wu,, J. Deutscher,, and M. H. Saier, Jr. 1992. Functional interactions between proteins of the phosphoenolpyruvate:sugar phosphotransferase systems of Bacillus subtilis and Escherichia coli. J. Biol. Chem. 267:91589169.
160. Roeske, C. A.,, R. M. Kutny,, R. J. Budde,, and R. Chollet. 1988. Sequence of the phosphothreonyl regulatory site peptide from inactive maize leaf pyruvate, orthophosphate dikinase. J. Biol. Chem. 263:66836687.
161. Romano, A. H.,, G. Brino,, A. Peterkofsky,, and J. Reizer. 1987. Regulation of β-galactoside transport and accumulation in heterofermentative lactic acid bacteria. J. Bacteriol. 169:55895596.
162. Rosen, B. P. 1990. The plasmid-encoded arsenical resistance pump: an anion-translocating ATPase. Res. Microbiol. 141:336341.
163. Rosen, B. P.,, C. Mei-Hsu,, P. Kaur,, C. E. Karkarla,, and R. F. Steiner. 1991. Substrate-induced dimerization of the ArsA protein, the catalytic component of an anion-translocating ATPase. J. Biol. Chem. 266:23272332.
164. Rudner, D. Z.,, J. R. LeDeaux,, K. Ireton,, and A. D. Grossman. 1991. The spoOK locus of Bacillus subtilis is homologous to oligopeptide permease and is required for sporulation and competence. J. Bacteriol. 173:13881398.
165. Saffen, D. W.,, K. A. Presper,, T. L. Doering,, and S. Roseman. 1987. Sugar transport by the bacterial phosphotransferase system. Molecular cloning and structural analysis of the Escherichia coli ptsH, ptsl, and crr genes. J. Biol. Chem. 262:1624116253.
166. Saier, M. H., Jr. 1985. Mechanisms and Regulation of Carbohydrate Transport in Bacteria. Academic Press, Inc., Orlando, Fla.
167. Saier, M. H., Jr. 1989. Involvement of the bacterial phosphotransferase system in diverse mechanisms of transcriptional regulation. Res. Microbiol. 140:349354.
168. Saier, M. H., Jr. 1989. Protein phosphorylation and allosteric control of inducer exclusion and catabolite repression by the bacterial phosphoenolpyruvate:sugar phosphotransferase system. Microbiol. Rev. 53:109120.
169. Saier, M. H., Jr.,, and J. Reizer. 1990. Domain shuffling during evolution of the proteins of the bacterial phosphotransferase system. Res. Microbiol. 141:10331038.
170. Saier, M. H., Jr.,, and J. . 1991. Families and superfamilies of transport proteins common to prokar-yotes and eukaryotes. Curr. Opin. Struct. Biol. 1:362368.
171. Saier, M. H., Jr.,, and J. Reizer. 1992. Proposed uniform nomenclature for the proteins and protein domains of the bacterial phosphoenolpyruvate:sugar phosphotransferase system based on structural, evolutionary and functional considerations. J. Bacteriol. 174:14221438.
172. Saier, M. H., Jr.,, L.-F. Wu,, and J. Reizer. 1990. Regulation of bacterial processes by three types of protein phosphorylating systems. Trends Biochem. Sci. 15:391395.
173. Saier, M. H., Jr.,, M. Yamada,, B. Erni,, K. Suda,, J. Lengeler,, R. Ebner,, P. Argos,, B. Rak,, K. Schnetz,, C. A. Lee,, G. C. Stewart,, F. Breidt, Jr.,, E. B. Waygood,, K. G. Peri,, and R. F. Doolittle. 1988. Sugar permeases of the bacterial phosphoenolpyruvate-dependent phosphotransferase system: sequence comparisons. FASEB J. 2:199208.
174. Sautereau, A. M.,, and M. C. Trombe. 1986. Electric transmembrane potential mutation and resistance to the cationic and amphiphilic antitumoral drugs derived from pyridocarbazole, 2-AT-methylellipticinium and 2-N-methyl-9-hydroxyellipticinium, in Streptococcus pneumoniae. J. Gen. Microbiol. 132:26372641.
175. Schmid, G.,, and G. Auling. 1989. Alterations of the membrane composition induced by manganese depletion are late events in the nucleotide fermentation with Brevibacterium ammoniagenes ATCC 6872. Agrie. Biol. Chem. 53:17831788.
176. Schneider, E.,, and K. Altendorf. 1987. Bacterial adenosine 5′-triphosphate synthase (F0F1): purification and reconstitution of F0 complexes and biochemical and functional characterization of their subunits. Microbiol. Rev. 51:477497.
177. Schnetz, K.,, and B. Rak. 1990. Beta-glucoside permease represses the bgl operon of Escherichia colt by phosphorylation of the antiterminator protein and also interacts with glucose-specific enzyme-III. The key element in catabolite control. Proc. Natl. Acad. Sci. USA 87:50745078.
178. Senior, A. E. 1990. The proton-translocating ATPase of Escherichia coli. Annu. Rev. Biophys. Biophys. Chem. 19:741.
179. Serrano, R.,, and F. Portillo. 1990. Catalytic and regulatory sites of yeast plasma membrane H+-ATPase studied by directed mutagenesis. Biochim. Biophys. Acta 1018:195199.
180. Shimkets, L. J.,, and D. Kaiser. 1982. Murein components rescue developmental sporulation of Myxococcus xanthus. J. Bacteriol. 152:462470.
181. Shirvan, M. H.,, S. Schuldiner,, and S. Rottem. 1989. Volume regulation in Mycoplasma gallisepticum: evidence that Na+ is extruded via a primary Na+ pump. J. Bacteriol. 171:44174424.
182. Sicard, A. M. 1964. A new synthetic medium for Diplococcus pneumoniae and its use for the study of reciprocal transformation at the amiA locus. Genetics 50:3144.
183. Sicard, A. M.,, and H. Ephrussi-Taylor. 1965. Genetic recombination in DNA-induced transformation of pneumococcus. II. Mapping the amiA region. Genetics 52:12071227.
184. Silver, S., 1991. Bacterial heavy metal resistance systems and possibility of bioremediation, p. 265287. In D. Kamely et al. (ed.). Biotechnology, Bridging Research and Applications. Kluwer Academic Publishers, Norwell, Mass.
185. Silver, S.,, and R. A. Laddaga,. 1990. Molecular genetics of heavy metal resistances in Staphylococcus plasmids, p. 531549. In R. P. Novik (ed.), Molecular Biology of Staphylococci. VCH Publishers, New York.
186. Silver, S.,, T. K. Misra,, and R. A. Laddaga. 1989. DNA sequence analysis of bacterial toxic heavy metal resistances. Biol. Trace Element Res. 21:145163.
187. Silver, S.,, G. Nucifora,, L. Chu,, and T. K. Misra. 1989. Bacterial resistance ATPases: primary pumps for exporting toxic cations and anions. Trends Biochem. Sci. 14:7680.
188. Silver, S.,, and M. Walderhaug. 1992. Gene regulation of plasmid- and chromosome-determined inorganic ion transport in bacteria. Microbiol. Rev. 56:195228.
189. Slack, F. J.,, J. M. Mueller,, M. A. Strauch,, C. Mathiopoulos,, and A. L. Sonenshein. 1991. Transcriptional regulation of a Bacillus subtilis dipeptide transport operon. Mol. Microbiol. 5:19031913.
190. Smith, C. P.,, and K. F. Chater. 1988. Structure and regulation of controlling sequences for the Streptomyces coelicolor glycerol operon. J. Mol. Biol. 204:569580.
191. Solioz, M.,, S. Mathews,, and P. Fürst. 1987. Cloning of the K+-ATPase of Streptococcus faecalis. Structural and evolutionary implications of its homology to the KdpB protein of Escherichia coli. J. Biol. Chem. 262:73587362.
192. Stone, D. K.,, B. P. Crider,, T. C. Südhof,, and X. Xle. 1989. Vacuolar proton pumps. J. Bioenerg. Biomembr. 1:605620.
193. Stone, M. J.,, W. J. Fairbrother,, A. G. Palmer III,, J. Reizer,, M. H. Saier, Jr.,, and P. E. Wright. 1992. The backbone dynamics of the Bacillus subtilis glucose permease IIA domain determined from 15N NMR relaxation measurements. Biochemistry 31:43944406.
194. Sutrina, S. L.,, P. Reddy,, M. H. Saier, Jr.,, and J. Reizer. 1990. The glucose permease of Bacillus subtilis is a single polypeptide chain that functions to energize the sucrose permease. J. Biol. Chem. 265:1858118589.
194a. Tam, R.,, and M. H. Saier, Jr. 1993. Structural, functional, and evolutionary relationships among the extracellular solute-binding receptors of bacteria. Microbiol. Rev., in press.
195. Teshiba, S.,, and A. Furuya. 1984. Mechanisms of 5'-inosinic acid accumulation by permeability mutants of Brevibacterium ammoniagenes. IV. Excretion mechanisms of 5′-IMP. Agrie. Biol. Chem. 48:13111317.
196. Thompson, J. 1987. Ornithine transport and exchange in Streptococcus lactis. J. Bacteriol. 169:41474153.
197. Titgemeyer, F.,, R. Eisermann,, W. Hengstenberg,, and J. W. Lengeler. 1990. The nucleotide sequence of ptsH gene from Klebsiella pneumoniae. Nucleic Acids Res. 18:1898.
198. Trombe, M. C., G. Laneelle, and A. M. Sicard. 1984. Characterization of Streptococcus pneumoniae mutant with altered electric transmembrane potential. J. Bacteriol. 158:11091114.
198a. Truniger, V.,, W. Boos,, and G. Sweet. 1992. Molecular analysis of the glpFKX regions of Escherichia coli and Shigella flexneri. J. Bacteriol. 174:69816991.
199. Tynecka, Z.,, Z. Gos,, and J. Zajac. 1981. Energy-dependent efflux of cadmium coded by a plasmid resistance determinant in Staphylococcus aureus. J. Bacteriol. 147: 313319.
200. Verhoogt, H. J. C.,, H. Smit,, T. Abee,, M. Camper,, A. J. M. Driessen,, D. Haas,, and W. N. Konings. 1992. arcD, the first gene of the arc operon for anaerobic arginine catabolism in Pseudomonas aeruginosa, encodes an arginine-ornithine exchanger. J. Bacteriol. 174: 15681573.
201. Vogler, A. P.,, M. Homma,, V. M. Irikura,, and R. M. Macnab. 1991. Salmonella typhimurium mutants defective in flagellar filament regrowth and sequence similarity of Flil to F0F1, vacuolar, and archaebacterial ATPase subunits. J. Bacteriol. 173:35643572.
202. Wittekind, M.,, J. Reizer,, J. Deutscher,, M. H. Saier, Jr.,, and R. E. Kievit. 1989. Common structural changes accompany the functional inactivation of HPr by seryl phosphorylation or by serine to aspartate substitution. Biochemistry 28:99089912.
203. Wittekind, M.,, J. Reizer,, and R. E. Kievit. 1990. Sequence-specific 1H NMR resonance assignments of Bacillus subtilis HPr: use of spectra obtained from mutants to resolve spectral overlap. Biochemistry 29:71917200.
204. Woese, C. R. 1987. Bacterial evolution. Microbiol. Rev. 51:221271.
205. Worthylake, D.,, N. D. Meadow,, S. Roseman,, D. I. Liao,, O. Herzberg,, and S. J. Remington. 1991. 3-Dimensional structure of the Escherichia coli phosphocarrier protein IIIGlc. Proc. Natl. Acad. Sci. USA 88:1038210386.
206. Wu, H. C., 1987. Posttranslational modification and processing of membrane proteins in bacteria, p. 3771. In M. Inouye (ed.), Bacterial Outer Membranes as Model Systems. Wiley-Interscience, New York.
207. Wu, L.-F., and M. H. Saier, Jr. 1990. On the evolutionary origins of the bacterial phosphoenolpyruvate:sugar phosphotransferase system. Mol. Microbiol. 4:12191222.
208. Wu, L.-F.,, J. M. Tomich,, and M. H. Saier, Jr. 1990. Structure and evolution of a multidomain multiphos-phoryl transfer protein. Nucleotide sequence of the fruB(HI) gene in Rhodobacter capsulatus and comparisons with homologous genes from other organisms. J. Mol. Biol. 213:687703.
209. Yamaguchl, K.,, F. Yu,, and M. Inouye. 1988. A single amino acid determinant of the membrane localization of lipoproteins in E. coli. Cell 53:423432.
210. Yokoyama, K.,, T. Oshima,, and M. Yoshlda. 1990. Thermus thermophilus membrane-associated ATPase. J. Biol. Chem. 265:2194621950.
211. Yoon, K. P.,, and S. Silver. 1991. A second gene in the Staphylococcus aureus cadA cadmium resistance determinant of plasmid pI258. J. Bacteriol. 173:76367642.
212. Zagorec, M.,, and P. W. Postma. 1992. Cloning and nucleotide sequence of the ptsG gene of Bacillus subtilis. Mol. Gen. Genet. 234:325328.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error