1887

Chapter 10 : Transport Mechanisms

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Transport Mechanisms, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818388/9781555810535_Chap10-1.gif /docserver/preview/fulltext/10.1128/9781555818388/9781555810535_Chap10-2.gif

Abstract:

Since representatives of most classes of permeases have been characterized more extensively in gram-negative bacteria or eukaryotes than in gram-positive bacteria, this chapter provides comparative information with a focus on the unique features of specific well-characterized transport systems in representative gram-positive bacteria. These transport systems are energized by ATP hydrolysis, consumption of chemiosmotic energy in the form of ion gradients and membrane potentials, or phosphoryl transfer from PEP to the sugar substrate in the phosphotrans-ferase-catalyzed group translocation process. All three types of systems are found in gram-negative bacteria as well as in gram-positive bacteria, and representatives within all permease classes except the group translocating PTS permeasesare also found in eukaryotes. Although the transport proteins derived from grampositive bacteria are, in general, related to transport proteins of other bacteria and eukaryotes, the grampositive bacterial systems exhibit some unique properties. In some cases, these systems are characterized well enough that they provide information that clearly complements or contrasts with that obtained from the study of related transport systems of other organisms.

Citation: Saier, Jr. M, Fagan M, Hoischen C, Reizef J. 1993. Transport Mechanisms, p 133-156. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch10

Key Concept Ranking

Bacterial Proteins
0.46096626
Integral Membrane Proteins
0.40537512
0.46096626
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Generalized structure of the large subunit of P-type (E1E2) ATPases of bacteria and eukaryotes. The enzymes are embedded in the phospholipid bilayer of the membrane (shaded area), with six to eight putative membrane-spanning helices (1 through VI, which are observed in most P-type ATPases, and two or more additional transmembrane helices that are present in most eukaryotic enzymes but are absent from the bacterial enzymes [boxed area at the С terminus]). Both the N terminus (N) and the С terminus (C) are on the cytoplasmic side of the membrane for those enzymes localized to the cytoplasmic membrane of the cell. Highly conserved regions, circled in the figure, include the following: 1, a region possibly involved in cation binding; 2, the aspartyl phosphorylation site (DKTGTI/LT); and 3, the ATP-binding site. Transmembrane helices I and II make up hairpin structure a, while transmembrane helices III and IV form hairpin structure b. Segment 1, used for phylogenetic tree construction (see text and reference ), includes hairpin structures a and b as well as the included cytoplasmic loop between transmembrane helices II and III. Segment 2 includes the large cytoplasmic loop between transmembrane helices IV and V. The C-terminal regions of the proteins, from transmembrane helix V on, are poorly conserved in or absent from the bacterial enzymes. The sequenced P-type ATPases found in gram-positive bacteria include the Cd ATPase of . and the K ATPase of (Reproduced from an article by W. Epstein [326:479-486, 1990] with permission of the Royal Society.)

Citation: Saier, Jr. M, Fagan M, Hoischen C, Reizef J. 1993. Transport Mechanisms, p 133-156. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Three antiporters found in gram-positive bacteria and their roles in cellular metabolic function. (A) The arginine/ornithine antiporter and the arginine deiminase pathway of gram-positive bacteria such as (B) The sugar-6-phosphate/phosphate antiporter, illustrating its two transport modes. (C) The lactose/galactose antiporter and its involvement in sugar metabolism (modified from reference with permission). Abbreviations: ADI, arginine deiminase; OCT, ornithine carbamoyltransferase; CK, carbamoyl kinase; HG6P, protonated glucose 6-phosphate; G6P, nonprotonated glucose 6-phosphate.

Citation: Saier, Jr. M, Fagan M, Hoischen C, Reizef J. 1993. Transport Mechanisms, p 133-156. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Generalized phosphoryl transfer reactions catalyzed by the proteins of the PTS. (A) Linear scheme indicating the proteins but not the nature of their derivatives. (B) Reaction scheme illustrating the individual phosphoryl transfer reactions and the residues phosphorylated within each protein. For definitions of the proteins involved, see reference , where alternative protein (domain) designations for these proteins have been used. Thus, HA has been called enzyme III, IIB has been called enzyme IV, and IIC has been called enzyme II. For some systems, fused IIA-IIB domains have been referred to as enzymes III, fused IIB-IIC domains have been referred to as enzymes II, and fused IIA-IIB-IIC domains have been referred to as enzymes II. Regardless of the state of fusion of the IIA, IIB, and IIC proteins-domains, they are referred to collectively as the enzyme II complexes. MTP and DTP are the multiphosphoryl transfer protein and diphosphoryl transfer protein, respectively, of the fructose-specific phosphotransferases of and respectively.

Citation: Saier, Jr. M, Fagan M, Hoischen C, Reizef J. 1993. Transport Mechanisms, p 133-156. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Phylogenetic tree of 10 sequenced proteins that make up the family of HPr proteins and HPr protein domains. Relative evolutionary distances are given adjacent to the branches. The programs of Doolittle and Feng ( ) and Feng and Doolittle ( ) were used to calculate relative distances. The HPr protein domains of the diphosphoryl transfer protein (DTP) and the multiphosphoryl transfer protein (MTP) encoded within the fructose operons of and respectively, are denoted (Fru.). Four main clusters are apparent: (i) HPr proteins of gram-positive bacteria, i.e., ( ), ( ), ( ), and ( ); (ii) HPr proteins of enteric bacteria, i.e., ( ), ( ), and ( ); (iii) HPr protein domains of the DTP and MTP proteins of ( ) and ( ), respectively; and (iv) HPr of ( ).

Citation: Saier, Jr. M, Fagan M, Hoischen C, Reizef J. 1993. Transport Mechanisms, p 133-156. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

Schematic depiction of representative gram-positive bacterial PTS permeases showing the different known permutations of the constituent proteins and domains. Portions or domains of the various permeases are indicated as follows: transmembrane hydrophobic domain (IIC) ( ), domain bearing the first phosphorylation site (IIA) ( ), domain bearing the second phosphorylation site (IIB) ( ), transmembrane partially hydrophobic domain of unknown function (IID) ( ), and nonhomologous domain or region of unknown function ( ). All permeases shown except the last two exhibit convincing regions of homology. The uniform domain nomenclature is provided below the bars, which represent the various domains-proteins (see reference for discussion of PTS protein nomenclature). Alternative designations for the proteins are given above the bars. References for most of the permeases shown can be found in Saier et al. ( ) and Lengeler et al. ( ) with the following exceptions: the glucitol permease of ( ), the mannitol permease of ( ), and the fructose permease (forming fructose 6-phosphate) of ( ). The C' domain in the glucitol enzyme II refers to the second half of the hydrophobic (IIC) domain.

Citation: Saier, Jr. M, Fagan M, Hoischen C, Reizef J. 1993. Transport Mechanisms, p 133-156. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818388.chap10
1. Albertini, A. M.,, T. CaramorI,, W. D. Crabb,, F. Scoffone,, and A. Gallzzi. 1991. The flaA locus of Bacillus subtilis is part of a large operon coding for flagellar structures, motility functions, and an ATPase-like polypeptide. J. Bacteriol. 173: 3573 3579.
2. Alloing, G.,, M.-C. Trombe,, and J.-P. Claverys. 1990. The ami locus of the Gram-positive bacterium Streptococcus pneumoniae is similar to binding protein-dependent transport operons of Gram-negative bacteria. Mol. Microbiol. 4: 633 644.
3. Amann, R.,, W. Ludwig,, and K. H. Schleifer. 1988. β subunit of ATP synthase: a useful marker for studying the phylogenetic relationship of eubacteria. J. Gen. Microbiol. 134: 2815 2821.
4. Ambudkar, S. V.,, A. R. Lynn,, P. C. Maloney,, and B. P. Rosen. 1986. Reconstitution of ATP-dependent calcium transport from streptococci. J. Biol. Chem. 261: 15596 15600.
5. Ambudkar, S. V.,, L. A. Sonna,, and P. C. Maloney. 1986. Variable stoichiometry of phosphate-linked anion exchange in Streptococcus lactis: implications for the mechanism of sugar phosphate transport by bacteria. Proc. Natl. Acad. Sci. USA 83: 280 284.
6. Amster-Choder, O.,, F. Houman,, and A. Wright 1989. Protein phosphorylation regulates transcription of the beta-glucoside utilization operon in E. coli. Cell 58: 847 855.
7. Amster-Choder, O.,, and A. Wright. 1990. Regulation of activity of a transcriptional anti-terminator in E. coli by phosphorylation in vivo. Science. 249: 540 542.
8. Anraku, Y.,, N. Umemoto,, R. Hirata,, and Y. Wada. 1989. Structure and function of the yeast vacuolar membrane proton ATPase. J. Bioenerg. Biomembr. 21: 589 603.
9. Bakker, E. P.,, A. Borchard,, M. Michels,, K. Altendorf,, and A. Siebers. 1987. High-affinity potassium uptake system in Bacillus acidocaldarius showing immunological cross-reactivity with the Kdp system from Escherichia coli. J. Bacteriol. 169: 4342 4348.
10. Baxter, L.,, S. Torrie,, and M. McKillen. 1974. D-G1U-conate transport in Bacillus subtilis. Biochem. Soc. Trans. 2: 1370 1372.
10a. Bennett, G. Personal communication.
11. Berman-Kurtz, M.,, E. C. C. Lin,, and D. P. Richey. 1971. Promoter-like mutant with increased expression of the glycerol kinase operon of Escherichia coli. J. Bacteriol. 106: 724 731.
12. Booth, I. R.,, and J. G. Morris. 1975. Proton-motive force in the obligately anaerobic bacterium Clostridium pasteurianum: a role in galactose and gluconate uptake. FEBS Lett. 59: 153 157.
13. Bröer, S.,, and R. Krämer. 1990. Lysine uptake and exchange in Corynebacterium glutamicum. J. Bacteriol. 172: 7241 7248.
14. Bröer, S.,, and R. Krämer. 1991. Lysine excretion by Corynebacterium glutamicum. I. Identification of a specific secretion carrier system. Eur. J. Biochem. 202: 131 135.
15. Bröer, S.,, and R. Krämer. 1991. Lysine excretion by Corynebacterium glutamicum. II. Energetics and mechanism of the transport system. Eur. J. Biochem. 202: 137 143.
16. Brusilow, W. S.,, M. A. Scarpetta,, C. A. Hawthorne,, and W. P. Clark. 1989. Organization and sequence of the genes coding for the proton-translocating ATPase of Bacillus megaterium. J. Biol. Chem. 264: 1528 1533.
17. Bunch, A. W.,, and R. E. Harris. 1986. The manipulation of microorganisms for the production of secondary metabolites. Biotechnol. Genet. Eng. Rev. 4: 117 144.
18. Byrne, C. R.,, R. S. Monroe,, K. A. Ward,, and N. M. Kredlch. 1988. DNA sequences of the cysK regions of Salmonella typhimurium and Escherichia coli and linkage of the cysK regions to ptsH. J. Bacteriol. 170: 3150 3157.
19. Carrasco, N.,, L. M. Antes,, M. S. Poonian,, and H. R. Kaback. 1986. Lac permease of Escherichia coli histidine-322 and glutamic acid-325 may be components of a charge-relay system. Biochemistry 25: 4486 4488.
20. Carrasco, N.,, I. B. Püttner,, L. M. Antes,, J. A. Lee,, J. D. Larlgan,, J. S. Lolkema,, P. D. Roepe,, and H. R. Kaback. 1989. Characterization of site-directed mutants in the lac permease of Escherichia coli. 2. Glutamate-325 replacements. Biochemistry 28: 2533 2539.
21. Chalumeau, H.,, A. Delobbe,, and P. Gay. 1978. Biochemical and genetic study of D-glucitol transport and catabolism in Bacillus subtilis. J. Bacteriol. 134: 920 928.
22. Chen, C.-M.,, T. K. Misra,, S. Silver,, and B. P. Rosen. 1986. Nucleotide sequence of the structural genes for an anion pump. The plasmid-encoded arsenical resistance operon. J. Biol. Chem. 261: 15030 15038.
23. Chung, Y.,, and M. R. Salton. 1988. Purification and properties of the latent F 0F1-ATPase from Micrococcus lysodeikticus. Mikrobios 54: 187 205.
24. Clarke, D. J.,, F. M. Fuller,, and J. G. Morris. 1979. The proton-translocating adenosine triphosphatase of the obligately anaerobic bacterium Clostridium pasteurianum. 1. ATPase phosphohydrolase activity. Eur. J. Biochem. 98: 597 612.
25. Clarke, D. J.,, and J. G. Morris. 1979. The proton-translocating adenosine triphosphatase of the obligately anaerobic bacterium Clostridium pasteurianum. 2. ATP synthetase activity. Eur. J. Biochem. 98: 613 620.
26. Clement, Y.,, B. Escoffier,, M. C. Trombe,, and G. Lanéelle. 1984. Is glutamate excreted by its uptake system in Corynebacterium glutamicum? A working hypothesis. J. Gen. Microbiol. 130: 2589 2594.
27. Cozzarelli, N. R.,, W. B. Freedberg,, and E. C.. C. Lin. 1968. Genetic control of the L-α-glycerophosphate system in Escherichia coli. J. Mol. Biol. 31: 371 387.
28. Crutz, A. M.,, M. Steinmetz,, S. Aymerich,, R. Richter,, and D. Le Coq. 1990. Induction of levansucrase in Bacillus subtilis: an antitermination mechanism negatively controlled by the phosphotransferase system. J. Bacteriol. 172: 1043 1050.
29. Dean, D. A.,, J. Reizer,, H. Nikaido,, and M. H. Saler, Jr. 1990. Regulation of the maltose transport system of Escherichia coli by the glucose-specific enzyme III of the PTS: characterization of inducer exclusion-resistant mutants and reconstitution of inducer exclusion in proteoliposomes. J. Biol. Chem. 265: 21005 21010.
30. Debarbouille, M.,, M. Arnaud,, A. Fouet,, A. Klier,, and G. Rapoport. 1990. The sacT gene regulating the sacPA operon in Bacillus subtilis shares strong homology with transcriptional antiterminators. J. Bacteriol. 172: 3966 3973.
31. Demain, A. L.,, and J. Birnbaum. 1968. Alteration of permeability for the release of metabolites from the microbiol cell. . Curr. Top. Microbiol. Immunol. 46: 1 25.
32. Denda, K.,, J. Konlshl,, K. Hajiro,, T. Oshima,, T. Date,, and M. Yoshida. 1990. Structure of an ATPase operon of an acidothermophilic archaebacterium, Sulfolobus aci-docaldarius. J. Biol. Chem. 265: 21509 21513.
33. De Reuse, H.,, A. Roy,, and A. Danchin. 1985. Analysis of the ptsH-ptsI-crr region in Escherichia coli K-12: nucleotide sequence of the ptsH gene. Gene 35: 199 207.
33a. Deutscher, J., et al. Unpublished data.
34. Deutscher, J.,, and R. Engelmann. 1984. Purification and characterization of an ATP-dependent protein kinase from Streptococcus faecalis. FEMS Microbiol. Lett. 23: 157 162.
35. Deutscher, J.,, U. Kessler,, A. Alpert,, and W. Hengstenberg. 1984. Bacterial phosphoenolpyruvate-dependent phosphotransferase system: P-Ser-HPr and its possible regulatory function. Biochemistry 23: 4455 4460.
36. Deutscher, J.,, B. Pevec,, K. Beyreuther,, H.-H. Klltz,, and W. Hengstenberg. 1986. Streptococcal phosphoenol-pyruvate-sugar phosphotransferase system: amino acid sequence and site of ATP-dependent phosphorylation of HPr. Biochemistry 25: 6543 6551.
37. Doolittle, R. F.,, K. L. Anderson,, and D.-F. Feng,. 1989. Estimating the prokaryote-eukaryote divergence time from protein sequences, p. 73 85. In B. Fernholm,, K. Bremer,, and H. Jörnvall (ed.), The Hierarchy of Life. Elsevier Science Publishing, Inc., New York.
38. Doolittle, R. F.,, and D.-F. Feng. 1990. Nearest neighbor procedure for relating progressively aligned amino acid sequences. Methods Enzymol. 183: 659 669.
39. Driessen, A. J. M.,, D. Molenaar,, and W. N. Konings. 1989. Kinetic mechanism and specificity of the arginine-ornithine antiporter of Lactococcus lactis. J. Biol. Chem. 264: 10361 10370.
40. Driessen, A. J. M.,, E. J. Smid,, and W. N. Konings. 1988. Transport of diamines by Enterococcus faecalis is mediated by an agmatine-putrescine antiporter. J. Bacteriol. 170: 4522 4527.
41. Dudler, T.,, C. Schmidhauser,, R. W. Parish,, R. E. H. Wettenhall,, and T. Schmidt. 1988. A mycoplasma high-affinity transport system and the in vivo invasiveness of mouse sarcoma cells. EMBO J. 7: 3963 3970.
42. Duplay, P.,, H. Bedouelle,, A. Fowler,, I. Zabin,, W. Saurín,, and M. Hofnung. 1984. Sequences of the malE gene and of its product, the maltose-binding protein of Escherichia coli K12. J. Biol. Chem. 259: 10606 10613.
42a. Dyke, K. G. H. Unpublished data.
43. Ebbighausen, H.,, B. Weil,, and R. Krämer. 1989. Transport of branched-chain amino acids in Corynebacterium glutamicum. Arch. Microbiol. 151: 238 244.
44. Ebbighausen, H.,, B. Weil,, and R. Kramer. 1989. Isole-ucine excretion in Corynebacterium glutamicum: evidence for a specific efflux carrier system. Appl. Microbiol. Biotechnol. 31: 184 190.
45. Eiserman, R.,, R. Fischer,, U. Kessler,, A. Neubauer,, and W. Henstenberg. 1991. Staphylococcal phosphoenolpyruvate-dependent phosphotransferase system. Purification and protein sequencing of the Staphylococcus camosus histidine-containing protein, and cloning and DNA sequencing of the ptsH gene. Eur. J. Biochem. 197: 9 14.
46. Epstein, W., 1990. Bacterial transport ATPases, p. 87 110. In T. A. Krulwich (ed.), The Bacteria, vol. 12. Academic Press, Inc., San Diego, Calif.
47. Fagan, M. J.,, and M. H. Saler, Jr. P-type ATPases of eukaryotes and bacteria: sequence comparisons and construction of phylogenetic trees. Submitted for publication.
48. Fairbrother, W. J.,, J. Cavanagh,, H. J. Dyson,, A. G. Palmer III,, S. L. Sutrina,, J. Reizer,, M. H. Saier, Jr.,, and P. E. Wright. 1991. Polypeptide backbone resonance assignments and secondary structure of Bacillus subtilis enzyme IIIglc determined by two-dimensional and three-dimensional heteronuclear NMR spectroscopy. Biochemistry 30: 6896 6907.
49. Fairbrother, W. J.,, G. P. Gippert,, J. Reizer,, M. H. Saier, Jr.,, and P. E. Wright. 1992. Low resolution solution structure of the Bacillus subtilis glucose permease IIA domain derived from heteronuclear three-dimensional NMR spectroscopy. FEBS Lett. 296: 148 152.
50. Fairbrother, W. J.,, A. G. Palmer III,, M. Ranee,, J. Reizer,, M. H. Saier, Jr.,, and P. E. Wright. 1992. Assignment of the aliphatic 1H and 13C resonances of the Bacillus subtilis glucose permease IIA domain using double- and triple-resonance heteronuclear three-dimensional NMR spectroscopy. Biochemistry 31: 4413 4425.
51. Feng, D.-F.,, and R. F. Doolittle. 1990. Progressive alignment and phylogenetic tree construction of protein sequences. Methods Enzymol. 183: 375 387.
52. Flkes, J. D.,, and P. J. Bassford, Jr. 1987. Export of unprocessed precursor maltose-binding proteins to the periplasm of Escherichia coli cells. J. Bacteriol. 169: 2352 2359.
53. Fujita, Y.,, T. Fujita,, Y. Miwa,, J. Nihashi,, and Y. Aratani. 1986. Organization and transcription of the gluconate operon, gnt, of Bacillus subtilis. J. Biol. Chem. 261: 13744 13753.
54. Furlong, C. E., 1987. Osmotic-shock-sensitive transport systems, p. 768 796. In F. C. Neidhardt,, J. L. Ingraham,, K. B. Low,, B. Magasanik,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia colt and Salmonella typhimurium: cellular and molecular biology, vol. 1. American Society for Microbiology, Washington, D.C.
55. Fürst, P.,, and M. Solioz. 1987. Formation of a β-aspartyl phosphate intermediate by the vanadate-sensitive ATPase of Streptococcus faecalis. J. Biol. Chem. 260: 50 52.
56. Futal, M.,, T. Nouml,, and M. Maeda. 1989. ATP synthase (H+-ATPase): results by combined biochemical and molecular biological approaches. Annu. Rev. Biochem. 58: 111 136.
57. Gagnon, G.,, C. Vadeboncoeur,, R. C. Lévesque,, and M. Frenette. 1992. Cloning, sequencing and expression in Escherichia colt of the ptsI gene encoding for the enzyme I phosphoenolpyruvate:sugar phosphotransferase transport system from Streptococcus salivarius. Gene 121: 71 78.
58. Gardell, C.,, K. Johnson,, A. Jacq,, and J. Beckwith. 1990. The secD locus of E. coli codes for two membrane proteins required for protein export. EMBO J. 9: 3209 3216.
59. Geerse, R. H.,, F. Izzo,, and P. W. Postma. 1989. The PEP:fructose phosphotransferase system in Salmonella typhimurium: FPr combines enzyme IIIFru and pseudo-HPr activities. Mol. Gen. Genet. 216: 517 525.
60. Gibson, M. M.,, M. Price,, and C. F. Higgins. 1984. Genetic characterization and molecular cloning of the tripeptide permease (tpp) genes of Salmonella typhimurium. J. Bacteriol. 160: 122 130.
61. Gilson, E.,, G. Alloing,, T. Schmidt,, J.-P. Claverys,, R. Dudler,, and M. Hofnung. 1988. Evidence for high affinity binding-protein dependent transport systems in Gram-positive bacteria and in mycoplasma. EMBO J. 7: 3971 3974.
62. Gogarten, J. P.,, H. Kibak,, P. Dittrich,, L. Taiz,, E. J. Bowman,, B. J. Bowman,, M. F. Manolson,, R. J. Poole,, T. Date,, T. Oshima,, J. Konishi,, K. Denda,, and M. Yoshida. 1989. Evolution of the vacuolar H +-ATPase: implications for the origin of eukaryotes. Proc. Natl. Acad. Sci. USA 86: 6661 6665.
63. Gonzy-Tréboul, G.,, M. Zagorec,, M.-C. Rain-Gion,, and M. Steinmetz. 1989. Phosphoenolpyruvate:sugar phosphotransferase system of Bacillus subtilis: nucleotide sequence of ptsX, ptsH, and the 5′-end of ptsI and evidence for a ptsHI operon. Mol. Microbiol. 3: 103 112.
64. Goodell, E. W.,, and C. F. Higgins. 1987. Uptake of cell wall peptides by Salmonella typhimurium and Escherichia coli. J. Bacteriol. 169: 3861 3865.
65. Grossman, A. D.,, and R. Losick. 1988. Extracellular control of spore formation in Bacillus subtilis. Proc. Natl. Acad. Sci. USA 85: 4369 4373.
66. Guilfoile, P. G.,, and C. R. Hutchinson. 1991. A bacterial analog of the mdr gene of mammalian tumor cells is present in Streptomyces peucetius, the producer of daunorubicin and doxorubicin. Proc. Natl. Acad. Sci. USA 88: 8553 8557.
67. Guyer, C. A.,, D. G. Morgan,, N. Osheroff,, and J. V. Staros. 1985. Purification and characterization of a periplasmic oligopeptide binding protein from Escherichia coli. J. Biol. Chem. 260: 10812 10816.
68. Hafer, J.,, A. Slebers,, and E. P. Bakker. 1989. The high-affinity K +-translocating ATPase complex from Bacillus acidocaldarius consists of three subunits. Mol. Microbiol. 3: 487 495.
69. Hayashi, S.,, and E. C. C. Lin. 1965. Product induction of glycerol kinase in Escherichia coli. J. Mol. Biol. 14: 515 521.
70. Hays, J. B., 1978. Group translocation transport systems, p. 43. In B. P. E. Rosen (ed.), Microbiology Series, Vol. 4. Bacterial Transport. Marcel Dekker, New York.
71. Heefner, D. L.,, and F. M. Harold. 1980. ATP-linked sodium transport in Streptococcus faecalis. J. Biol. Chem. 255: 11396 11402.
72. Heefner, D. L.,, and F. M. Harold. 1982. ATP-driven sodium pump in Streptococcus faecalis. Proc. Natl. Acad. Sci. USA 79: 2798 2802.
73. Heller, K. B.,, E. C. C. Lin,, and T. H. Wilson. 1980. Substrate specificity and transport properties of the glycerol facilitator of Escherichia coli. J. Bacteriol. 144: 274 278.
74. Henderson, P. J. F. 1990. The homologous glucose transport proteins of prokaryotes and eukaryotes. Res. Microbiol. 141: 316 328.
75. Hengstenberg, W. 1977. Enzymology of carbohydrate transport in bacteria. Curr. Top. Microbiol. Immunol. 77: 97.
76. Hensel, M.,, G. Deckers-Hebestreit,, and K. Altendorf. 1991. Purification and characterization of the F1 portion of the ATP synthase (F 1F0) of Streptomyces lividans. Eur. J. Biochem. 202: 1313 1319.
77. Herzberg, O.,, P. Reddy,, J. Reizer,, and G. Kapadia. 1992. Structure of the histidine-containing phosphocar-rier protein HPr from Bacillus subtilis at 2.0 Å resolution. Proc. Natl. Acad. Sci. USA 89: 2499 2503.
78. Hicks, D. B.,, and T. A. Krulwich. 1990. Purification and reconstitution of the F 1F0 ATP synthase from alkalophilic Bacillus firmis 0F4. Evidence that the enzyme translocates H + but not Na +. J. Biol. Chem. 265: 20547 20554.
79. Hiles, I. D.,, M. P. Gallagher,, D. J. Jamieson,, and C. F. Higgins. 1987. Molecular characterization of the oligopeptide permease of Salmonella typhimurium. J. Mol. Biol. 195: 125 142.
80. Hiles, I. D.,, and C. F. Higgins. 1986. Peptide transport by Salmonella typhimurium: the periplasmic oligopep-tide-binding protein. Eur. J. Biochem. 158: 561 567.
81. Hoch, J. A. 1976. Genetics of bacterial sporulation. Adv. Genet. 18: 69 99.
82. Hoffmann, A.,, and P. Dimroth. 1990. The ATPase of Bacillus alcalophilus. Purification and properties of the enzyme. Eur. J. Biochem. 194: 423 430.
83. Hoffmann, A.,, and P. Dimroth. 1991. The ATPase of Bacillus alcalophilus. Reconstitution of energy-transducing functions. Eur. J. Biochem. 196: 493 497.
84. Hoischen, C.,, and R. Krämer. 1989. Evidence for an efflux carrier system involved in the secretion of glutamate by Corynebacterium glutamicum. Arch. Microbiol. 151: 342 347.
85. Hoischen, C.,, and R. Kramer. 1990. Membrane alteration is necessary but not sufficient for effective glutamate secretion in Corynebacterium glutamicum. J. Bacteriol. 172: 3409 3416.
86. Holmberg, C.,, L. Beijer,, B. Rutberg,, and L. Rutberg. 1990. Glycerol catabolism in Bacillus subtilis: nucleotide sequence of the genes encoding glycerol kinase iglpK) and glycerol-3-phosphate dehydrogenase ( glpD) . J. Gen. Microbiol. 136: 2367 2375.
86a. Honeyman, A. Personal communication.
87. Houng, H.,, A. R. Lynn,, and B. P. Rosen. 1986. ATPdriven calcium transport in membrane vesicles of Streptococcus sanguis. J. Bacteriol. 168: 1040 1044.
88. Hutkins, R. W.,, and C. Ponne. 1991. Lactose uptake driven by galactose efflux in Streptococcus thermophilus: evidence for a galactose-lactose antiporter. Appl. Environ. Microbiol. 57: 941 944.
89. Ivey, D. M.,, and L. G. Ljungdahl. 1986. Purification and characterization of the F,-ATPase from Clostridium thermoaceticum. J. Bacteriol. 165: 252 257.
90. Jamieson, D. J.,, and C. F. Higgins. 1984. Anaerobic and leucine-dependent expression of a peptide transport gene in Salmonella typhimurium. J. Bacteriol. 160: 131 136.
90a. Ji, G.,, and S. Silver. 1992. Reduction of arsenate to arsenite by the ArsC protein of the arsenic resistance operon of Staphylococcus aureus plasmid pI258. Proc. Natl. Acad. Sci. USA 89: 9474 9478.
91. Kakinuma, Y.,, and K. Igarashi. 1990. Amplification of the Na+-ATPase of Streptococcus faecalis at alkaline pH. FEBSLett. 261: 135 138.
92. Kakinuma, Y.,, and K. Igarashi. 1990. Mutants of Streptococcus faecalis sensitive to alkaline pH lack Na +-ATPase. J. Bacteriol. 172: 1732 1735.
93. Kakinuma, Y.,, and K. Igarashi. 1990. Release of the component of Streptococcus faecalis Na +-ATPase from the membranes. FEBS Lett. 271: 102 105.
94. Kakinuma, Y.,, and K. Igarashi. 1990. Some features of the Streptococcus faecalis Na +-ATPase resemble those of the vacuolar type ATPases. FEBS Lett. 271: 102 105.
95. Karkarla, C. E.,, and B. P. Rosen. 1990. Mutagenesis of a nucleotide binding site of an anion-translocating ATPase. J. Biol. Chem. 265: 7832 7836.
96. Klnoshita, S., 1985. Glutamic acid bacteria, p. 115 142. In A. Demain, and N. Solomon (ed.), Biology of Industrial Microorganisms. The Benjamin/Cummings Publishing Co., Redwood City, Calif.
97. Klnoshita, S.,, S. Udaka,, and M. Shimino. 1957. Studies on amino acid fermentation. I. Production of L-glutamic acid by various microorganisms. J. Gen. Appl. Microbiol. 3: 193 205.
98. Klnoshita, N.,, T. Unemoto,, and H. Kobayashi. 1984. Sodium-stimulated ATPase in Streptococcus faecalis. J. Bacteriol. 158: 844 848.
99. Kobayashi, H.,, J. V. Brunt,, and F. M. Harold. 1978. ATP-linked calcium transport in vesicles of Streptococcus faecalis. J. Biol. Chem. 253: 2085 2092.
99a. Koch, S., et al. Unpublished data.
100. Kohlbrecher, D.,, R. Eisermann,, and W. Hengstenberg. 1992. Staphylococcal phosphoenolpyruvate-dependent phosphotransferase system: molecular cloning and nucleotide sequence of the Staphylococcus camosus ptsl gene and expression and complementation studies of the gene product. J. Bacteriol. 174: 2208 2214.
101. Konings, W. N.,, B. Poolman,, and A. J. Driessen. 1989. Bioenergetics and solute transport in lactococci. Crit. Rev. Microbiol. 16: 419 476.
102. Krämer, R.,, and C. Lambert. 1990. Uptake of glutamate in Corynebacterium glutamicum. II. Evidence for a primary active transport system. Eur. J. Biochem. 194: 937 944.
103. Krämer, R.,, C. Lambert,, C. Hoischen,, and H. Ebbighausen. 1990. Uptake of glutamate in Corynebacterium glutamicum. I. Kinetic properties and regulation by internal pH and potassium. Eur. J. Biochem. 194: 929 935.
103a. Krulwich, T. Personal communication.
104. Krulwich, T. A.,, D. B. Hicks,, D. Seto-Young,, and A. A. Guffanti. 1988. The bioenergetics of alkalophilic bacilli. Crit. Rev. Microbiol. 16: 15 36.
105. Lengeler, J. W.,, F. Titgemeyer,, A. P. Vogler,, and B. M. Wöhrl. 1990. Structures and homologies of carbohydrate:phosphotransferase system (PTS) proteins. Phil. Trans. R. Soc. Lond. B. 326: 489 504.
106. Leonard, J. E.,, C. Lee,, A. Apperson,, S. S. Dills,, and M. H. Saler, Jr., 1981. The role of membranes in the transport of small molecules, p. 1 52. In B. K. Gosh (ed.), Organization of Prokaryotic Cell Membranes, vol. I. CRC Press, Boca Raton, Fla.
107. Liao, D.-I.,, G. Kapadia,, P. Reddy,, M. H. Saier, Jr.,, J. Reizer,, and O. Herzberg. 1991. Structure of the IIA domain of the glucose permease of Bacillus subtilis at 2.2 Å resolution. Biochemistry 30: 9583 9594.
108. LiCalsi, C.,, T. S. Crocenzi,, E. Freiré,, and S. Roseman. 1991. Sugar transport by the bacterial phosphotransferase system: structural and thermodynamic domains of enzyme I of Salmonella typhimurium. J. Biol. Chem. 266: 19519 19527.
109. Lin, E. C. C. 1976. Glycerol dissimilation and its regulation in bacteria. Annu. Rev. Microbiol. 30: 535 578.
110. Lin, E. C. C. 1977. Glycerol utilization and its regulation in mammals. Annu. Rev. Microbiol. 46: 765 795.
111. Luntz, M. G.,, H. I. Zhdanova,, and G. I. Bourd. 1986. Transport and excretion of L-lysine in Corynebacterium glutamicum. J. Gen. Microbiol. 132: 2137 2146.
112. Maloney, P. C. 1990. A consensus structure for membrane transport. Res. Microbiol. 141: 374 383.
113. Maloney, P. C.,, S. V. Ambudkar,, V. Anantharam,, L. A. Sonna,, and A. Varadhachary. 1990. Anion-exchange mechanisms in bacteria. Microbiol. Rev. 54: 1 17.
114. Maloney, P. C.,, S. V. Ambudkar,, J. Thomas,, and L. Schiller. 1984. Phosphate/hexose 6-phosphate antiport in Streptococcus lactis. J. Bacteriol. 158: 238 245.
115. Mandei, K. G.,, and T. A. Krulwich. 1979. D-Gluconate transport in Arthrobacter pyridinolis: metabolic trapping of a protonated solute. Biochim. Biophys. Acta 552: 478 491.
115a. Marger, M. D.,, and M. J. Saier, Jr. 1993. A major superfamily of transmembrane facilitators that catalyze uniport, symport and antiport. Trends Biol. Sci. 18: 13 20.
116. Martin-Verstraete, L.,, M. Débarbouille,, A. Klier,, and G. Rapoport. 1990. Levanase operon of Bacillus subtilis includes a fructose-specific phosphotransferase system regulating the expression of the operon. J. Mol. Biol. 214: 657 671.
117. Mathiopoulos, C.,, J. P. Mueller,, F. J. Slack,, C. G. Murphy,, S. Patankar,, G. Bukusoglu,, and A. L. Sonen-shein. 1991. A Bacillus subtilis dipeptide transport system expressed early during sporulation. Mol. Microbiol. 5: 1903 1913.
118. Mayo, B.,, J. Kok,, K. Venema,, W. Bockelmann,, M. Teuber,, H. Relnke,, and G. Venema. 1991. Molecular cloning and sequence analysis of the X-prolyl dipepti-dyl aminopeptidase gene from Lactococcus lactis subsp. cremoris. Appl. Environ. Microbiol. 57: 38 44.
119. McKlllen, M. N.,, and J. H. Rountree. 1973. D-Gluconate transport in Bacillus subtilis. Biochem. Soc. Trans. 1: 442 445.
120. Mei-Hsu, C.,, P. Kaur,, C. E. Karkaria,, R. F. Steiner,, and B. P. Rosen. 1991. Substrate-induced dimerization of the ArsA protein, the catalytic component of an anion-translocating ATPase. J. Biol. Chem. 266: 2327 2332.
121. Mileykovskaya, E. I.,, A. N. Abuladze,, S. S. Kormer,, and D. N. Ostrovsky. 1987. Some peculiarities of functioning of H +-ATPase from the membranes of the anaerobic bacterium Lactobacillus casei. Eur. J. Biochem. 167: 367 370.
122. Mileykovskaya, E. I.,, A. N. Abuladze,, and D. N. Ostrovsky. 1987. Subunit composition of the H +-ATPase complex from anaerobic bacterium Lactobacillus casei. Eur. J. Biochem. 168: 703 708.
123. Milner, J. L.,, L. B. Vink,, and J. M. Wood. 1987. Transmembrane amino acid flux in bacterial cells. Crit. Rev. Biotechnol. 5: 1 47.
123a. Mlnton, N. Personal communication.
124. Muntyan, M. A.,, I. V. Mesyanzhinova,, Y. M. Milgrom,, and V. P. Skulachev. 1990. The F1-type ATPase in anaerobic Lactobacillus casei. Biochim. Biophys. Acta 1016: 371 377.
125. Muramatsu, S.,, and T. Mizuno. 1989. Nucleotide sequence of the region encompassing the glpKF operon and its upstream region containing a bent DNA sequence of Escherichia coli. Nucleic Acids Res. 17: 4378.
126. Nelson, N. 1989. Structure, molecular genetics, and evolution of vacuolar H +-ATPases. J. Bioenerg. Biomembr. 21: 553 571.
127. Nielsen, J. B. K.,, M. P. Caulfield,, and J. O. Lampen. 1981. Lipoprotein nature of Bacillus licheniformis membrane penicillinase. Proc. Natl. Acad. Sci. USA 78: 3511 3515.
128. Nielsen, J. B. K.,, and J. O. Lampen. 1982. Glyceride-cysteine lipoproteins and secretion by gram-positive bacteria. J. Bacteriol. 152: 315 322.
129. Nucífera, G.,, L. Chu,, T. K. Misra, and S. Silver. 1989. Cadmium resistance from Staphylococcus aureus plasmid pI258 cadA gene results from cadmium-efflux ATPase. Proc. Natl. Acad. Sci. USA 86: 3544 3548.
130. Ochman, H.,, and A. C. Wilson. 1987. Evolution in bacteria: evidence for a universal substitution rate in cellular genomes. J. Mol. Evol. 26: 74 86.
131. Olson, E. R.,, D. S. Dunyak,, L. M. Jurss,, and R. A. Poorman. 1991. Identification and characterization of dppA, and Escherichia coli gene encoding a periplasmic dipeptide transport protein. J. Bacteriol. 173: 234 244.
132. Pao, G. M.,, L.-F. Wu,, K. D. Johnson,, H. Höfte,, M. J. Chrispeels,, G. Sweet,, N. N. Sandal,, and M. H. Saier, Jr. 1991. Evolution of the MIP family of integral membrane transport proteins. Mol. Microbiol. 5: 33 37.
133. Payne, J. W.,, and C. Gilvarg. 1968. Size restriction on peptide utilization in Escherichia coli. J. Biol. Chem. 243: 6391 6399.
134. Pelton, J. G.,, D. A. Torchia,, N. D. Meadow,, C. Y. Wong,, and S. Roseman. 1991. 1H, 15N, and 13C NMR signal assignments of III Glc, a signal-transducing protein of Escherichia coli, using three-dimensional triple-resonance techniques. Biochemistry 30: 10043 10057.
135. Pelton, J. G.,, D. A. Torchia,, N. D. Meadow,, C. Y. Wong,, and S. Roseman. 1991. Secondary structure of the phosphocarrier protein III Glc, a signal-transducing protein of Escherichia coli, determined by heteronuclear three-dimensional NMR spectroscopy. Proc. Natl. Acad. Sci. USA 88: 3479 3483.
136. Perego, M.,, C. F. Higgins,, S. R. Pearce,, M. P. Gallagher,, and J. A. Hoch. 1991. The oligopeptide transport system of Bacillus subtilis plays a role in the initiation of sporulation. Mol. Microbiol. 5: 173 185.
137. Poolman, B.,, A. J. M. Driessen,, and W. N. Konings. 1987. Regulation of arginine-ornithine exchange and the arginine deiminase pathway in Streptococcus lactis. J. Bacteriol. 169: 5597 5604.
138. Poolman, B.,, R. Modderman,, and J. Reizer. 1992. Lactose transport system of Streptococcus thermophilus: the role of histidine residues. J. Biol. Chem. 267: 9150 9157.
139. Poolman, B.,, T. J. Royer,, S. E. Malnzer,, and B. F. Schmidt. 1989. Lactose transport system of Streptococcus thermophilus: a hybrid protein with homology to the melibiose carrier and enzyme III of phosphoenol-pyruvate-dependent phosphotransferase systems. J. Bacteriol. 171: 244 253.
140. Postma, P. W.,, and J. W. Lengeler. 1985. Phosphoenol-pyruvatexarbohydrate phosphotransferase system of bacteria. Microbiol. Rev. 49: 232 269.
141. Fourcher, T.,, H. K. Sarkar,, M. Bassilana,, H. R. Kaback,, and G. Leblanc. 1990. Histidine-94 is the only important histidine residue in the melibose permease of Escherichia coli. Proc. Natl. Acad. Sci. USA 87: 468 472.
142. Powers, D. A.,, and S. Roseman. 1984. The primary structure of Salmonella typhimurium HPr, a phospho-carrier protein of the phosphoenolpyruvate:glycose phosphotransferase system. J. Biol. Chem. 259: 15212 15214.
143. Presper, K. A.,, C. Y. Wong,, L. Liu,, N. D. Meadow,, and S. Roseman. 1989. Site-directed mutagenesis of the phosphocarrier protein III Glc, a major signal-transducing protein in Escherichia coli. Proc. Natl. Acad. Sci. USA 86: 4052 4055.
144. Pries, A.,, H. Priefert,, N. Kruger,, and A. Steinbuchel. 1991. Identification and characterization of two Alcali-genes eutrophus gene loci relevant to the poly(β-hydroxybutyric acid)-leaky phenotype which exhibit homology to ptsH and ptsl of Escherichia coli. J. Bacteriol. 173: 5843 5853.
145. Quivey, R. G., Jr.,, R. C. Faustoferrl,, W. A. Belli,, and J. S. Flores. 1991. Polymerase chain reaction amplification, cloning, sequence determination and homologies of streptococcal ATPase-encoding DNAs. Gene 97: 63 68.
145a. Rapaport, G. Personal communication.
146. Reizer, A.,, J. Deutscher,, M. H. Saier, Jr.,, and J. Reizer. 1991. Analysis of the gluconate ignt) operon of Bacillus subtilis. Mol. Microbiol. 5: 1081 1089.
147. Reizer, A.,, G. M. Pao,, and M. H. Saier, Jr. 1991. Evolutionary relationships among the permease proteins of the bacterial phosphoenolpyravate:sugar phosphotransferase system. Construction of phylogenetic trees and possible relatedness to proteins of eukaryotic mitochondria. J. Mol. Evol. 33: 179 193.
147a. Reizer, A.,, J. Reizer,, and M. H. Saier, Jr. Unpublished data.
148. Reizer, J. 1989. Regulation of sugar uptake and efflux in Gram-positive bacteria. FEMS Microbiol. Rev. 63: 149 156.
149. Reizer, J.,, J. Deutscher,, F. Grenier,, J. Thompson,, W. Hengstenberg,, and M. H. Saier, Jr. 1988. The phosphoenolpyruvate:sugar phosphotransferase system in Gram-positive bacteria: properties, mechanism and regulation. Crit. Rev. Microbiol. 15: 297 338.
150. Reizer, J.,, J. Deutscher,, and M. H. Saier, Jr. 1989. Metabolite-sensitive, ATP-dependent, protein kinase-catalyzed phosphorylation of HPr, a phosphocarrier protein of the phosphotransferase system in Gram-positive bacteria. Biochimie 71: 989 991.
151. Reizer, J.,, M. J. Novotny,, W. Hengstenberg,, and M. H. Saier, Jr. 1984. Properties of ATP-dependent protein kinase from Streptococcus pyogenes that phosphoiylates a seryl residue in HPr, a phosphocarrier protein of the phosphotransferase system. J. Bacteriol. 160: 333 340.
152. Reizer, J.,, and K. Peterkofsky,. 1987. Regulatory mechanism for sugar transport in Gram-positive bacteria, p. 333 364. In J. Reizer, and A. Peterkofsky (ed.), Sugar Transport and Metabolism in Gram-Positive Bacteria. Ellis Horwood, Chichester, England.
153. Reizer, J.,, and A. Peterkofsky (ed.). 1987. Sugar Transport and Metabolism in Gram-Positive Bacteria. Ellis Horwood, Chichester, England.
154. Reizer, J.,, A. Reizer,, C. Hoischen,, and M. H. Saier, Jr. Nucleotide sequence of the ptsl gene of Bacillus subtilis and phylogenetic relationship with other phosphoenol-pyruvate utilizing and synthesizing enzymes. Protein Sci., in press.
155. Reizer, J.,, A. Reizer,, and M. H. Saier, Jr. Unpublished data.
156. Reizer, J.,, A. Reizer,, and M. H. Saier, Jr. 1992. A new subfamily of bacterial ABC-type transport systems catalyzing export of drugs and carbohydrates. Protein Sci. 1: 1326 1332.
157. Reizer, J.,, A. Reizer,, M. H. Saier, Jr.,, and G. R. Jacobson. 1992. A proposed link between nitrogen and carbon metabolism involving protein phosphorylation in bacteria. Protein Sci. 1: 722 726.
158. Reizer, J.,, S. L. Sutrina,, M. H. Saier, Jr.,, G. C. Stewart,, A. Peterkofsky,, and P. Reddy. 1989. Mechanistic and physiological consequences of HPr(Ser) phosphorylation on the activities of the phosphoenolpyruvate:sugar phosphotransferase system in Gram-positive bacteria: studies with site-specific mutants of HPr. EMBO J. 8: 2111 2120.
159. Reizer, J.,, S. L. Sutrina,, L.-F. Wu,, J. Deutscher,, and M. H. Saier, Jr. 1992. Functional interactions between proteins of the phosphoenolpyruvate:sugar phosphotransferase systems of Bacillus subtilis and Escherichia coli. J. Biol. Chem. 267: 9158 9169.
160. Roeske, C. A.,, R. M. Kutny,, R. J. Budde,, and R. Chollet. 1988. Sequence of the phosphothreonyl regulatory site peptide from inactive maize leaf pyruvate, orthophosphate dikinase. J. Biol. Chem. 263: 6683 6687.
161. Romano, A. H.,, G. Brino,, A. Peterkofsky,, and J. Reizer. 1987. Regulation of β-galactoside transport and accumulation in heterofermentative lactic acid bacteria. J. Bacteriol. 169: 5589 5596.
162. Rosen, B. P. 1990. The plasmid-encoded arsenical resistance pump: an anion-translocating ATPase. Res. Microbiol. 141: 336 341.
163. Rosen, B. P.,, C. Mei-Hsu,, P. Kaur,, C. E. Karkarla,, and R. F. Steiner. 1991. Substrate-induced dimerization of the ArsA protein, the catalytic component of an anion-translocating ATPase. J. Biol. Chem. 266: 2327 2332.
164. Rudner, D. Z.,, J. R. LeDeaux,, K. Ireton,, and A. D. Grossman. 1991. The spoOK locus of Bacillus subtilis is homologous to oligopeptide permease and is required for sporulation and competence. J. Bacteriol. 173: 1388 1398.
165. Saffen, D. W.,, K. A. Presper,, T. L. Doering,, and S. Roseman. 1987. Sugar transport by the bacterial phosphotransferase system. Molecular cloning and structural analysis of the Escherichia coli ptsH, ptsl, and crr genes. J. Biol. Chem. 262: 16241 16253.
166. Saier, M. H., Jr. 1985. Mechanisms and Regulation of Carbohydrate Transport in Bacteria. Academic Press, Inc., Orlando, Fla.
167. Saier, M. H., Jr. 1989. Involvement of the bacterial phosphotransferase system in diverse mechanisms of transcriptional regulation. Res. Microbiol. 140: 349 354.
168. Saier, M. H., Jr. 1989. Protein phosphorylation and allosteric control of inducer exclusion and catabolite repression by the bacterial phosphoenolpyruvate:sugar phosphotransferase system. Microbiol. Rev. 53: 109 120.
169. Saier, M. H., Jr.,, and J. Reizer. 1990. Domain shuffling during evolution of the proteins of the bacterial phosphotransferase system. Res. Microbiol. 141: 1033 1038.
170. Saier, M. H., Jr.,, and J. . 1991. Families and superfamilies of transport proteins common to prokar-yotes and eukaryotes. Curr. Opin. Struct. Biol. 1: 362 368.
171. Saier, M. H., Jr.,, and J. Reizer. 1992. Proposed uniform nomenclature for the proteins and protein domains of the bacterial phosphoenolpyruvate:sugar phosphotransferase system based on structural, evolutionary and functional considerations. J. Bacteriol. 174: 1422 1438.
172. Saier, M. H., Jr.,, L.-F. Wu,, and J. Reizer. 1990. Regulation of bacterial processes by three types of protein phosphorylating systems. Trends Biochem. Sci. 15: 391 395.
173. Saier, M. H., Jr.,, M. Yamada,, B. Erni,, K. Suda,, J. Lengeler,, R. Ebner,, P. Argos,, B. Rak,, K. Schnetz,, C. A. Lee,, G. C. Stewart,, F. Breidt, Jr.,, E. B. Waygood,, K. G. Peri,, and R. F. Doolittle. 1988. Sugar permeases of the bacterial phosphoenolpyruvate-dependent phosphotransferase system: sequence comparisons. FASEB J. 2: 199 208.
174. Sautereau, A. M.,, and M. C. Trombe. 1986. Electric transmembrane potential mutation and resistance to the cationic and amphiphilic antitumoral drugs derived from pyridocarbazole, 2-AT-methylellipticinium and 2- N-methyl-9-hydroxyellipticinium, in Streptococcus pneumoniae. J. Gen. Microbiol. 132: 2637 2641.
175. Schmid, G.,, and G. Auling. 1989. Alterations of the membrane composition induced by manganese depletion are late events in the nucleotide fermentation with Brevibacterium ammoniagenes ATCC 6872. Agrie. Biol. Chem. 53: 1783 1788.
176. Schneider, E.,, and K. Altendorf. 1987. Bacterial adenosine 5′-triphosphate synthase (F 0F1): purification and reconstitution of F 0 complexes and biochemical and functional characterization of their subunits. Microbiol. Rev. 51: 477 497.
177. Schnetz, K.,, and B. Rak. 1990. Beta-glucoside permease represses the bgl operon of Escherichia colt by phosphorylation of the antiterminator protein and also interacts with glucose-specific enzyme-III. The key element in catabolite control. Proc. Natl. Acad. Sci. USA 87: 5074 5078.
178. Senior, A. E. 1990. The proton-translocating ATPase of Escherichia coli. Annu. Rev. Biophys. Biophys. Chem. 19: 7 41.
179. Serrano, R.,, and F. Portillo. 1990. Catalytic and regulatory sites of yeast plasma membrane H +-ATPase studied by directed mutagenesis. Biochim. Biophys. Acta 1018: 195 199.
180. Shimkets, L. J.,, and D. Kaiser. 1982. Murein components rescue developmental sporulation of Myxococcus xanthus. J. Bacteriol. 152: 462 470.
181. Shirvan, M. H.,, S. Schuldiner,, and S. Rottem. 1989. Volume regulation in Mycoplasma gallisepticum: evidence that Na + is extruded via a primary Na + pump. J. Bacteriol. 171: 4417 4424.
182. Sicard, A. M. 1964. A new synthetic medium for Diplococcus pneumoniae and its use for the study of reciprocal transformation at the amiA locus. Genetics 50: 31 44.
183. Sicard, A. M.,, and H. Ephrussi-Taylor. 1965. Genetic recombination in DNA-induced transformation of pneumococcus. II. Mapping the amiA region. Genetics 52: 1207 1227.
184. Silver, S., 1991. Bacterial heavy metal resistance systems and possibility of bioremediation, p. 265 287. In D. Kamely et al. (ed.). Biotechnology, Bridging Research and Applications. Kluwer Academic Publishers, Norwell, Mass.
185. Silver, S.,, and R. A. Laddaga,. 1990. Molecular genetics of heavy metal resistances in Staphylococcus plasmids, p. 531 549. In R. P. Novik (ed.), Molecular Biology of Staphylococci. VCH Publishers, New York.
186. Silver, S.,, T. K. Misra,, and R. A. Laddaga. 1989. DNA sequence analysis of bacterial toxic heavy metal resistances. Biol. Trace Element Res. 21: 145 163.
187. Silver, S.,, G. Nucifora,, L. Chu,, and T. K. Misra. 1989. Bacterial resistance ATPases: primary pumps for exporting toxic cations and anions. Trends Biochem. Sci. 14: 76 80.
188. Silver, S.,, and M. Walderhaug. 1992. Gene regulation of plasmid- and chromosome-determined inorganic ion transport in bacteria. Microbiol. Rev. 56: 195 228.
189. Slack, F. J.,, J. M. Mueller,, M. A. Strauch,, C. Mathiopoulos,, and A. L. Sonenshein. 1991. Transcriptional regulation of a Bacillus subtilis dipeptide transport operon. Mol. Microbiol. 5: 1903 1913.
190. Smith, C. P.,, and K. F. Chater. 1988. Structure and regulation of controlling sequences for the Streptomyces coelicolor glycerol operon. J. Mol. Biol. 204: 569 580.
191. Solioz, M.,, S. Mathews,, and P. Fürst. 1987. Cloning of the K +-ATPase of Streptococcus faecalis. Structural and evolutionary implications of its homology to the KdpB protein of Escherichia coli. J. Biol. Chem. 262: 7358 7362.
192. Stone, D. K.,, B. P. Crider,, T. C. Südhof,, and X. Xle. 1989. Vacuolar proton pumps. J. Bioenerg. Biomembr. 1: 605 620.
193. Stone, M. J.,, W. J. Fairbrother,, A. G. Palmer III,, J. Reizer,, M. H. Saier, Jr.,, and P. E. Wright. 1992. The backbone dynamics of the Bacillus subtilis glucose permease IIA domain determined from 15N NMR relaxation measurements. Biochemistry 31: 4394 4406.
194. Sutrina, S. L.,, P. Reddy,, M. H. Saier, Jr.,, and J. Reizer. 1990. The glucose permease of Bacillus subtilis is a single polypeptide chain that functions to energize the sucrose permease. J. Biol. Chem. 265: 18581 18589.
194a. Tam, R.,, and M. H. Saier, Jr. 1993. Structural, functional, and evolutionary relationships among the extracellular solute-binding receptors of bacteria. Microbiol. Rev., in press.
195. Teshiba, S.,, and A. Furuya. 1984. Mechanisms of 5'-inosinic acid accumulation by permeability mutants of Brevibacterium ammoniagenes. IV. Excretion mechanisms of 5′-IMP. Agrie. Biol. Chem. 48: 1311 1317.
196. Thompson, J. 1987. Ornithine transport and exchange in Streptococcus lactis. J. Bacteriol. 169: 4147 4153.
197. Titgemeyer, F.,, R. Eisermann,, W. Hengstenberg,, and J. W. Lengeler. 1990. The nucleotide sequence of ptsH gene from Klebsiella pneumoniae. Nucleic Acids Res. 18: 1898.
198. Trombe, M. C., G. Laneelle, and A. M. Sicard. 1984. Characterization of Streptococcus pneumoniae mutant with altered electric transmembrane potential. J. Bacteriol. 158: 1109 1114.
198a. Truniger, V.,, W. Boos,, and G. Sweet. 1992. Molecular analysis of the glpFKX regions of Escherichia coli and Shigella flexneri. J. Bacteriol. 174: 6981 6991.
199. Tynecka, Z.,, Z. Gos,, and J. Zajac. 1981. Energy-dependent efflux of cadmium coded by a plasmid resistance determinant in Staphylococcus aureus. J. Bacteriol. 147: 313 319.
200. Verhoogt, H. J. C.,, H. Smit,, T. Abee,, M. Camper,, A. J. M. Driessen,, D. Haas,, and W. N. Konings. 1992. arcD, the first gene of the arc operon for anaerobic arginine catabolism in Pseudomonas aeruginosa, encodes an arginine-ornithine exchanger. J. Bacteriol. 174: 1568 1573.
201. Vogler, A. P.,, M. Homma,, V. M. Irikura,, and R. M. Macnab. 1991. Salmonella typhimurium mutants defective in flagellar filament regrowth and sequence similarity of Flil to F 0F1, vacuolar, and archaebacterial ATPase subunits. J. Bacteriol. 173: 3564 3572.
202. Wittekind, M.,, J. Reizer,, J. Deutscher,, M. H. Saier, Jr.,, and R. E. Kievit. 1989. Common structural changes accompany the functional inactivation of HPr by seryl phosphorylation or by serine to aspartate substitution. Biochemistry 28: 9908 9912.
203. Wittekind, M.,, J. Reizer,, and R. E. Kievit. 1990. Sequence-specific 1H NMR resonance assignments of Bacillus subtilis HPr: use of spectra obtained from mutants to resolve spectral overlap. Biochemistry 29: 7191 7200.
204. Woese, C. R. 1987. Bacterial evolution. Microbiol. Rev. 51: 221 271.
205. Worthylake, D.,, N. D. Meadow,, S. Roseman,, D. I. Liao,, O. Herzberg,, and S. J. Remington. 1991. 3-Dimensional structure of the Escherichia coli phosphocarrier protein III Glc. Proc. Natl. Acad. Sci. USA 88: 10382 10386.
206. Wu, H. C., 1987. Posttranslational modification and processing of membrane proteins in bacteria, p. 37 71. In M. Inouye (ed.), Bacterial Outer Membranes as Model Systems. Wiley-Interscience, New York.
207. Wu, L.-F., and M. H. Saier, Jr. 1990. On the evolutionary origins of the bacterial phosphoenolpyruvate:sugar phosphotransferase system. Mol. Microbiol. 4: 1219 1222.
208. Wu, L.-F.,, J. M. Tomich,, and M. H. Saier, Jr. 1990. Structure and evolution of a multidomain multiphos-phoryl transfer protein. Nucleotide sequence of the fruB(HI) gene in Rhodobacter capsulatus and comparisons with homologous genes from other organisms. J. Mol. Biol. 213: 687 703.
209. Yamaguchl, K.,, F. Yu,, and M. Inouye. 1988. A single amino acid determinant of the membrane localization of lipoproteins in E. coli. Cell 53: 423 432.
210. Yokoyama, K.,, T. Oshima,, and M. Yoshlda. 1990. Thermus thermophilus membrane-associated ATPase. J. Biol. Chem. 265: 21946 21950.
211. Yoon, K. P.,, and S. Silver. 1991. A second gene in the Staphylococcus aureus cadA cadmium resistance determinant of plasmid pI258. J. Bacteriol. 173: 7636 7642.
212. Zagorec, M.,, and P. W. Postma. 1992. Cloning and nucleotide sequence of the ptsG gene of Bacillus subtilis. Mol. Gen. Genet. 234: 325 328.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error