1887

Chapter 12 : Glycolysis

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Glycolysis, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818388/9781555810535_Chap12-1.gif /docserver/preview/fulltext/10.1128/9781555818388/9781555810535_Chap12-2.gif

Abstract:

In eubacteria , the glycolytic pathway is the central and constitutive route of carbohydrate metabolism. The reactions of glycolysis have been extensively summarized for and . The enzymic reactions of glycolysis and associated pathways are shown in this chapter. The transport of glucose by the phosphotransferase system (PTS) system yields glucose 6-phosphate as the intracellular precursor(s) for all subsequent steps in glycolysis. Glucose induces a specific permease. The capacity for this induction declines after exponential growth ceases in nutrient sporulation medium (NSM). Therefore, glucose has to be present during growth to repress sporulation; if added at the onset of stationary phase or later, no inhibitory action of glucose is observed. As expected, enzyme I-deficient mutants do not grow on the sugars transported by the PTS system, and their sporulation in complex media is not inhibited by these sugars.

Citation: Fortnagel P. 1993. Glycolysis, p 171-180. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch12

Key Concept Ranking

Acetyl Coenzyme A
0.5092593
0.5092593
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Glycolytic pathway and side reactions in Numbers represent the mutants available in the Ernst Freese strain collection. The Freese mutant nomenclature is used throughout, although some of the mutants originated in different laboratories. Acetyl-CoA, acetyl coenzyme A.

Citation: Fortnagel P. 1993. Glycolysis, p 171-180. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch12
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Influence of glucose and malate added to NSM on growth of 3-phosphoglycerate mutant 61 111. The growth rate increased and growth reached a higher optical density in NSM plus 10 mM malate (□) than in NSM alone (●), but lysis occurred after the end of growth. In NSM supplemented with 10 mM malate and 50 mM glucose (○), this lysis did not occur. Addition to NSM of 50 mM glucose alone (Δ)caused a twofold reduction in the growth rate. OD578, optical density at 578 nm.

Citation: Fortnagel P. 1993. Glycolysis, p 171-180. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch12
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818388.chap12
1. Bach, J. A.,, and H. L. Sadoff. 1962. Aerobic sporulating bacteria. I. Glucose dehydrogenase of Bacillus cereus. J. Bacteriol. 83: 699 707.
2. Boudreaux, D. P.,, E. Eisenstadt,, T. Ijima,, and E. Freese. 1981. Biochemical and genetic characterization of an auxotroph of Bacillus subtilis altered in the acetyl-CoA: acyl-carrier-protein transacetylase. Eur. J. Biochem. 115: 175 181.
3. Branlant, G.,, G. Flesch, and C. Branlant. 1983. Molecular cloning of the glyceraldehyde-3-phosphate dehydrogenase genes of Bacillus stearothermophilus and Escherichia coli and their expression in Escherichia coli. Gene 25: 1 7.
4. Branlant, C.,, T. Oster,, and G. Branlant. 1989. Nucleotide sequence determination of the DNA region coding for Bacillus stearothermophilus glyceraldehyde-3-phosphate dehydrogenase and of the flanking DNA regions required for its expression in Escherichia coli. Gene 75: 145 155.
5. Buxton, R. S. 1978. A heat-sensitive lysis mutant of Bacillus subtilis 168 with a low activity of pyruvate carboxylase. J. Gen. Microbiol. 105: 175 185.
6. Chaudry, G. R.,, Y. S. Halpern,, C. Saunders,, N. Vasantha,, J. B. Schmidt,, and E. Freese. 1984. Mapping of the glucose dehydrogenase gene in Bacillus subtilis. J. Bacteriol. 160: 607 611.
7. Cozzarelli, N. R.,, W. B. Freedberg,, and E. C., C. Lin. 1968. Genetic control of the L-α -glycerolphosphate system in Escherichia coli. J. Mol. Biol. 31: 371 387.
8. Cozzarelli, N. R.,, and E. C., C. Lin. 1966. Chromosomal location of the structural gene for glycerol kinase in Escherichia coli. J. Bacteriol. 91: 1763 1766.
9. Delobbe, A.,, R. Haguenauer,, and G. Rapoport. 1971. Studies on the transport of a-methyl-D-glucopyranoside in Bacillus subtilis 168. Biochimie 53: 1015 1021.
10. Dhaese, P. Unpublished data.
11. Diesterhaft, M. D.,, and E. Freese. 1973. Role of pyruvate carboxylase, phosphoenol-pyruvate carboxykinase, and malic enzyme during growth and sporulation of Bacillus subtilis. J. Biol. Chem. 246: 6062 6070.
12. Fortnagel, P.,, K. A. Lampei,, K.-D. Neitzke,, and E. Freese. 1986. Sequence homologies of glucose-dehydro-genase of Bacillus megaterium and Bacillus subtilis. J. Theor. Biol. 120: 489 497.
13. Fouet, A.,, A. Klier,, and G. Rapoport. 1986. Nucleotide sequence of the sucrase gene of Bacillus subtilis. Gene 45: 221 225.
14. Fraenkel, D. G., 1987. Glycolysis, pentose phosphate pathway, and Entner-Douderoff pathway, p. 142. In F. C. Neidhardt,, J. L. Ingraham,, K. B. Low,, B. Magasanik,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, vol. 1. American Society for Microbiology, Washington, D.C..
15. Freese, E.,, and U. Fortnagel. 1969. Growth and sporulation of Bacillus subtilis mutants blocked in the pyruvate dehydrogenase complex. J. Bacteriol. 99: 745 756.
16. Freese, E.,, and J. E. Heinze,. 1984. Metabolic and genetic control of bacterial sporulation, p. 101 173. In A. Hurst,, G. Gould,, and J. Dring (ed.), The Bacterial Spore, vol. 2. Academic Press, Inc., New York.
17. Freese, E.,, T. Ichikawa,, K. Y. Oh,, E. B. Freese,, and C. Prasad. 1974. Deficiencies or excess of metabolites interfering with differentiation. Proc. Natl. Acad. Sci. USA 71: 4188 4193.
18. Freese, E.,, W. Klofat,, and E. Galliërs. 1970. Commitment to sporulation and induction of glucose-phosphoenol-pyruvate transferase. Biochim. Biophys. Acta 222: 265 289.
19. Freese, E.,, Y. K. Oh,, E. B. Freese,, M. D. Diesterhaft,, and C. Prasad,. 1972. Suppression of sporulation of Bacillus subtilis, p. 212. In H. O. Halvorson,, R. S. Hanson,, and L. L. Campbell (ed.), Spores V. American Society for Microbiology, Washington, D.C..
20. Freese, E. B.,, R. M. Cole,, W. Klofat,, and E. Freese. 1970. Growth, sporulation, and enzyme defects of glucosamine mutants of Bacillus subtilis. J. Bacteriol. 101: 1046 1062.
21. Freese, E. B.,, and Y. K. Oh. 1974. Adenosine 5'-triphos-phate release and membrane collapse in glycerol-requir-ing mutants of Bacillus subtilis. J. Bacteriol. 120: 507 515.
22. Freese, E. B.,, N. Vasantha,, and E. Freese. 1979. Induction of sporulation in developmental mutants of Bacillus subtilis. Mol. Gen. Genet. 170: 67 74.
23. French, A.,, and S. Chang. 1978. The phosphoenolpyru-vate:methyl-α -D-glucoside phosphotransferase system in Bacillus subtilis Marburg: kinetic studies of enzyme II and evidence for a phosphoryl enzyme II intermediate. Biochimie 60: 1283 1287.
24. Fujita, Y.,, and E. Freese. 1979. Purification and properties of fructose-1,6-bisphosphatase of Bacillus subtilis. J. Biol. Chem. 254: 5340 5349.
25. Fujita, Y.,, and E. Freese. 1981. Isolation of a Bacillus subtilis mutant unable to produce fructose-bisphos-phatase. J. Bacteriol. 143: 760 767.
26. Fujita, Y.,, T. Fujita,, Y. Miwa,, J. Nihashi,, and Y. Aratani. 1986. Organization and transcription of the gluconate operon, gnt, of Bacillus subtilis. J. Biol. Chem. 261: 13744 13753.
27. Fujita, Y.,, R. Ramaley,, and E. Freese. 1977. Location and properties of glucose dehydrogenase in sporulating cells and spores of Bacillus subtilis. J. Bacteriol. 132: 282 293.
28. Gay, P.,, H. Chalumeau,, and M. Steinmetz. 1983. Chromosomal localization of gut, fruC, and pfk mutations affecting genes involved in Bacillus subtilis D-glucitol catabolism. J. Bacteriol. 153: 1133 1137.
29. Gay, P.,, P. Cordier,, M. Marquet,, and A. Delobbe. 1973. Carbohydrate metabolism and transport in Bacillus subtilis. A study of ctr mutations. Mol. Gen. Genet. 121: 355 368.
30. Gay, P.,, and A. Delobbe. 1977. Fructose transport in Bacillus subtilis. Eur. J. Biochem. 79: 363 373.
31. Gay, P.,, and G. Rapoport. 1970. Etude des mutants dépourvus de fructose-1-phosphate-kinase chez B. subtilis. CR. Acad. Sci. 271: 374 377.
32. Gonzy-Tréboul, G.,, J. H. Dewaard,, M. Zagorec,, and P. W. Postma. 1991. The glucose permease of the phosphotransferase system of Bacillus subtilis—evidence for ligie and Hlglc domains. Mol. Microbiol. 5: 1241 1249.
33. Gonzy-Tréboul, G.,, and M. Steinmetz. 1987. Phos-phoenolpyruvate:sugar phosphotransferase system of Bacillus subtilis: cloning of the region containing the ptsH and ptsl genes and evidence for a err-like gene. J. Bacteriol. 169: 2287 2290.
34. Gonzy-Tréboul, G.,, M. Zagorec,, M.-C. Raln-Guion,, and M. Steinmetz. 1989. Phosphoenolpyruvate:sugar phosphotransferase system of Bacillus subtilis: nucleotide sequence of ptsX, ptsH and 5' -end of ptsl and evidence for a ptsHI operon. Mol. Microbiol. 3: 103 112.
35. 34a.Hemilfi, H. 1991. Lipoamide dehydrogenase of Staphylococcus aureus: nucleotide sequence and sequence analysis. Biochim. Biophys. Acta 1129: 119123.
35. Hemilâ, H.,, A. Piava,, L. Paulin,, S. Arvidson,, and I. Piava. 1990. Secretory S complex of Bacillus subtilis: sequence analysis and identity to pyruvate dehydrogenase. J. Bacteriol. 172: 5052 5063.
36. Hilt, W.,, G. Pfieiderer,, and P. Fortnagel. 1991. Glucose dehydrogenase from Bacillus subtilis expressed in Escherichia coli. I. Purification, characterization and comparison with glucose dehydrogenase from Bacillus megaterium. Biochim. Biophys. Acta 1076: 298 304.
37. Hodgson, J. A.,, P. N. Lowe,, and R. N. Perham. 1983. Wild-type and mutant forms of the pyruvate dehydrogenase multienzyme complex from Bacillus subtilis. Bio-chem. J. 211: 463 472.
38. Holmberg, C.,, L. Beijer,, B. Rutberg,, and L. Rutberg. 1990. Glycerol catabolism in Bacillus subtilis: nucleotide sequence of the genes encoding glycerol kinase ( glpK) and glycerol-3-phosphate dehydrogenase (glpD). J. Gen. Microbiol. 136: 2367 2375.
39. Holmberg, C.,, and B. Rutberg. 1989. Cloning of the glycerol kinase gene of Bacillus subtilis. FEMS Microbiol. Lett. 58: 1151 1156.
39a.. Jin, S.,, and A. L. Sonenshein. Personal communication.
40. Klier, A. F.,, and G. Rapoport. 1988. Genetics and regulation of carbohydrate catabolism in Bacillus. Annu. Rev. Microbiol. 42: 65 95.
41. Klofat, W.,, G. Picciolo,, E. Chappelle,, and E. Freese. 1969. Production of adenosine triphosphate in normal cells and sporulation mutants of Bacillus subtilis. J. Biol. Chem. 244: 3270 3276.
42. Koch, J. P.,, S. Hayashi,, and E. C.. C. Lin. 1964. The control of dissimilation of glycerol and L-α -glycerolphos-phate in Escherichia coli. J. Biol. Chem. 239: 3106 3108.
43. Lampei, K. A.,, B. Uratani,, G. R. Chaudry,, R. F. Ramaley,, and S. Rudlkoff. 1986. Characterization of the developmentally regulated Bacillus subtilis glucose dehydrogenase gene. J. Bacteriol. 166: 238 243.
44. Lepesant, J.-A.,, and R. Dedonder. 1968. Transport du saccharose chez B. subtilis. CR. Acad. Sci. 267: 1109 1112.
45. Lin, E. C. C. 1970. The genetics of bacterial transport. Annu. Rev. Genet. 4: 225 262.
46. Lindgren, V.,, and L. Rutberg. 1974. Glycerol metabolism in Bacillus subtilis: gene enzyme relationships. J. Bacteriol. 119: 431 442.
47. Lopez, J.,, B. Thorns,, and P. Fortnagel. 1973. Mutants of Bacillus subtilis blocked in acetoin reductase. Eur. J. Biochem. 40: 479 483.
48. Marquet, M.,, M. C. Creignou,, and R. Dedonder. 1976. The phosphoenolpyruvate methyl-α -D-glycoside phosphotransferase system in Bacillus subtilis Marburg: purification and identification of the phosphocarrier protein (Hpr). Biochimie 58: 435 441.
49. Marquet, M.,, M. C. Wagner,, and R. Dedonder. 1971. Separation of components of the phosphoenolpyruvate-glucose-phosphotransferase system from Bacillus subtilis Marburg. Biochimie 53: 1131 1134.
50. Marquet, M.,, M.-C. Wagner,, A. Delobbe,, P. Gay,, and G. Rapoport. 1970. Mise en evidence de système de phosphotransferases dans le transport du glucose, du fructose et du saccharose chez B. subtilis. CR. Acad. Sci. 271: 449 452.
51. Mindich, L. 1968. Pathway for oxidative dissimilation of glycerol in Bacillus subtilis. J. Bacteriol. 96: 565 566.
52. Mlndich, L. 1970. Membrane synthesis in Bacillus subtilis: isolation and properties of strains bearing mutations in glycerol metabolism. J. Mol. Biol. 49: 415 432.
53. Mueller, J. P.,, and H. W. Taber,. 1988. Genetic regulation of cytochrome aa3 in Bacillus subtilis, p. 91. In A. T. Ganesan, and J. A. Hoch (ed.), The Genetics and Biotechnology of Bacilli. Academic Press, Inc., San Diego, Calif..
54. Niaudet, B.,, P. Gay,, and R. Dedonder. 1975. Identification of the structural gene of PEP-phosphotransferase enzyme I in Bacillus subtilis Marburg. Mol. Gen. Genet. 136: 337 349.
55. Nlmmo, H. G., 1987. The tricarboxylic acid cycle and anapleurotic reactions, p. 156. In F. C. Neidhardt,, J. L. Ingraham,, K. B. Low,, B. Magasanik,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, vol. 1. American Society for Microbiology, Washington, D.C..
56. Oh, Y.,, and E. Freese. 1976. Manganese requirement of phosphoglycerate mutase and its consequence for growth and sporulation of Bacillus subtilis. J. Bacteriol. 127: 739 746.
57. Oh, Y.,, E. B. Freese,, and E. Freese. 1973. Abnormal septation and inhibition of sporulation by accumulation of L-a-glycerolphosphate in Bacillus subtilis mutants. J. Bacteriol. 113: 1034 1045.
58. Oppenheim, D. J.,, and R. W. Bernlohr. 1975. Purification and regulation of fructose-1,6-bisphosphatase from Bacillus licheniformis. J. Biol. Chem. 250: 3024 3033.
59. Pauly, H. E.,, and G. Pfleiderer. 1975. D-Glucose dehydrogenase from Bacillus megaterium M1286. Purification, properties, and structure. Hoppe Seyler's Physiol. Chem. 365: 1613 1623.
60. Perret, J.,, and P. Gay. 1979. Kinetic study of a phospho-ryl exchange reaction between fructose and fructose-1-phosphate catalysed by the membrane bound enzyme II of the phosphoenolpyruvate:fructose-l phosphotransferase system of Bacillus subtilis. Eur. J. Biochem. 102: 237 246.
61. Piggot, P. J., 1989. Revised genetic map of Bacillus subtilis 168, p. 1. In I. Smith,, R. A. Slepecky,, and P. Setlow (ed.), Regulation of Procaryotic Development. American Society for Microbiology, Washington, D.C..
62. Piggot, P. J.,, M. Amjad,, J.-J. Wu,, H. Sandoval,, and J. Castro,. 1990. Genetic and physical maps of Bacillus subtilis, p. 493. In C. R. Harwood, and S. M. Cutting (ed.), Molecular Biological Methods for Bacillus. Wiley, Chichester, England.
63. Pooley, H. M.,, D. Paschoud,, and D. Karamata. 1987. The gtaB marker in Bacillus subtilis 168 is associated with a deficiency in UDP-glucose pyrophosphorylase. J. Gen. Microbiol. 133: 3481 3493.
64. Poolman, B.,, B. Bosman,, J. Klers,, and W. X. Konings. 1987. Control of glycolysis by glyceraldehyde-3-phos-phate dehydrogenase in Streptococcus cremoris and Streptococcus lactis. J. Bacteriol. 169: 5887 5890.
65. Postma, P. W., 1987. Phosphotransferase system for glucose and other sugars, p. 127. In F. C. Neidhardt,, L. J. Ingraham,, K. B. Low,, B. Magasanik,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, vol. 1. American Society for Microbiology, Washington, D.C..
66. Prasad, C.,, M. Diesterhaft,, and E. Freese. 1972. Initiation of spore germination in glycolytic mutants of Bacillus subtilis. J. Bacteriol. 110: 321 328.
67. Prasad, C.,, and E. Freese. 1974. Cell lysis of Bacillus subtilis caused by intracellular accumulation of glucose-1-phosphate. J. Bacteriol. 118: 1111 1122.
68. Ramaley, R. F.,, and N. Vasantha. 1983. Glycerol protection and purification of Bacillus subtilis glucose dehydrogenase. J. Biol. Chem. 258: 12558 12565.
69. Reizer, A.,, J. Deutsche,, M. H. Saler,, and J. Reizer. 1991. Analysis of the gluconate ( gnt) operon of Bacillus subtilis. Mol. Microbiol. 5: 1081 1089.
70. Reizer, J.,, M. J. Novotny,, I. Stuiver,, and M. H. Saier, Jr. 1984. Regulation of glycerol uptake by the phosphoenol-pyruvate sugar phosphotransferase system in Bacillus subtilis. J. Bacteriol. 159: 243 250.
71. Saheb, S. A. 1972. Etude de deux mutants du metabolisme du glycerol chez Bacillus subtilis. Can. J. Microbiol. 18: 1315 1325.
72. Saheb, S. A. 1972. Permeation du glycerol et sporulation chez Bacillus subtilis. Can. J. Microbiol. 18: 1307 1313.
73. Saier, M. H. 1985. Mechanisms and regulation of carbohydrate transport in bacteria. Academic Press, Inc., New York.
74. Saier, M. H.,, R. D. Simoni,, and H. Roseman. 1970. The physiological behaviour of enzyme I and heat stable protein mutant of bacterial phosphotransferase system. J. Biol. Chem. 245: 5870 5875.
75. Singer, M.,, P. Rossmiessl,, B. M. Cali,, H. Liebke,, and C. A. Gross. 1991. The Escherichia coli ts8 mutation is an allele of fda, the gene encoding fructose-1,6-diphosphate aldolase. J. Bacteriol. 173: 6242 6248.
76. Singer, M.,, W. A. Walter,, B. M. Cali,, P. Rouviere,, H. H. Liebke,, R. L. Course,, and C. A. Gross. 1991. Physiological effects of the fructose-1,6-diphosphate aldolase ts8 mutation on stable RNA synthesis in Escherichia coli. J. Bacteriol. 173: 6249 6257.
77. Singh, R. P.,, and P. Setlow. 1978. Enolase from spores and cells of Bacillus megaterium: two-step purification of the enzyme and some of its properties. J. Bacteriol. 134: 353 355.
78. Singh, R. P.,, and P. Setlow. 1978. Phosphoglycerate muíase in developing forespores of Bacillus megaterium may be regulated by the intrasporal level of free manganous ion. Biochem. Biophys. Res. Commun. 82: 1 5.
79. Singh, R. P.,, and P. Setlow. 1979. Regulation of phosphoglycerate phosphomutase in developing forespores and dormant and germinated spores of Bacillus megaterium by the level of free manganous ions. J. Bacteriol. 139: 889 898.
80. Singh, R. P.,, and P. Setlow. 1979. Purification and properties of phosphoglycerate phosphomutase from spores and cells of Bacillus megaterium. J. Bacteriol. 137: 1024 1027.
81. Smith, C. P.,, and K. F. Chater. 1988. Structure and regulation of controlling sequences for the Streptomyces coelicolor glycerol operon. J. Mol. Biol. 204: 569 580.
82. Sonenshein, A. L., 1989. Metabolic regulation of sporulation and other stationary phase phenomena, p. 109. In I. Smith,, R. A. Slepecky,, and P. Sedow (ed.), Regulation of Procaryotic Development. American Society for Microbiology, Washington, D.C..
83. Strauss, N. 1983. Role of glucose dehydrogenase in germination of Bacillus subtilis. FEMS Microbiol. Lett. 20: 379 384.
84. Trach, K.,, J. W. Chapman,, P. Piggot,, D. LeCoq,, and J. A. Hoch. 1988. Complete sequence and transcriptional analysis of the spoOF region of the Bacillus subtilis chromosome. J. Bacteriol. 170: 4194 4208.
85. Uratani, B.,, K. A. Lampei,, R. H. Llpsky,, and E. Freese,. 1984. Characterization of the gene for glucose dehydrogenase and flanking genes of Bacillus subtilis, p. 71. In J. A. Hoch, and P. Sedow (ed.), Biology of Microbial Differentiation. American Society for Microbiology, Washington, D.C..
86. Vasantha, N.,, B. Uretani,, R. F. Ramaley,, and E. Freese. 1983. Isolation of a developmental gene of Bacillus subtilis and its expression in Escherichia coli. Proc. Natl. Acad. Sci. USA 80: 785 789.
87. Viaene, A.,, and P. Dhaese. 1989. Sequence of the glycer-aldehyde-3-phosphate dehydrogenase gene from Bacillus subtilis. Nucleic Acids Res. 17: 1251.
88. Watabe, K.,, and E. Freese. 1979. Purification and properties of the manganese-dependent phosphoglycerate mutase of Bacillus subtilis. J. Bacteriol. 137: 773 778.

Tables

Generic image for table
Table 1

Glycolytic enzymes and genes that encode them

Citation: Fortnagel P. 1993. Glycolysis, p 171-180. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch12

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error