1887

Chapter 12 : Glycolysis

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Glycolysis, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818388/9781555810535_Chap12-1.gif /docserver/preview/fulltext/10.1128/9781555818388/9781555810535_Chap12-2.gif

Abstract:

In eubacteria , the glycolytic pathway is the central and constitutive route of carbohydrate metabolism. The reactions of glycolysis have been extensively summarized for and . The enzymic reactions of glycolysis and associated pathways are shown in this chapter. The transport of glucose by the phosphotransferase system (PTS) system yields glucose 6-phosphate as the intracellular precursor(s) for all subsequent steps in glycolysis. Glucose induces a specific permease. The capacity for this induction declines after exponential growth ceases in nutrient sporulation medium (NSM). Therefore, glucose has to be present during growth to repress sporulation; if added at the onset of stationary phase or later, no inhibitory action of glucose is observed. As expected, enzyme I-deficient mutants do not grow on the sugars transported by the PTS system, and their sporulation in complex media is not inhibited by these sugars.

Citation: Fortnagel P. 1993. Glycolysis, p 171-180. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch12

Key Concept Ranking

Acetyl Coenzyme A
0.5092593
0.5092593
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Glycolytic pathway and side reactions in Numbers represent the mutants available in the Ernst Freese strain collection. The Freese mutant nomenclature is used throughout, although some of the mutants originated in different laboratories. Acetyl-CoA, acetyl coenzyme A.

Citation: Fortnagel P. 1993. Glycolysis, p 171-180. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch12
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Influence of glucose and malate added to NSM on growth of 3-phosphoglycerate mutant 61 111. The growth rate increased and growth reached a higher optical density in NSM plus 10 mM malate (□) than in NSM alone (●), but lysis occurred after the end of growth. In NSM supplemented with 10 mM malate and 50 mM glucose (○), this lysis did not occur. Addition to NSM of 50 mM glucose alone (Δ)caused a twofold reduction in the growth rate. OD578, optical density at 578 nm.

Citation: Fortnagel P. 1993. Glycolysis, p 171-180. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch12
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818388.chap12
1. Bach, J. A.,, and H. L. Sadoff. 1962. Aerobic sporulating bacteria. I. Glucose dehydrogenase of Bacillus cereus. J. Bacteriol. 83:699707.
2. Boudreaux, D. P.,, E. Eisenstadt,, T. Ijima,, and E. Freese. 1981. Biochemical and genetic characterization of an auxotroph of Bacillus subtilis altered in the acetyl-CoA: acyl-carrier-protein transacetylase. Eur. J. Biochem. 115: 175181.
3. Branlant, G.,, G. Flesch, and C. Branlant. 1983. Molecular cloning of the glyceraldehyde-3-phosphate dehydrogenase genes of Bacillus stearothermophilus and Escherichia coli and their expression in Escherichia coli. Gene 25:17.
4. Branlant, C.,, T. Oster,, and G. Branlant. 1989. Nucleotide sequence determination of the DNA region coding for Bacillus stearothermophilus glyceraldehyde-3-phosphate dehydrogenase and of the flanking DNA regions required for its expression in Escherichia coli. Gene 75:145155.
5. Buxton, R. S. 1978. A heat-sensitive lysis mutant of Bacillus subtilis 168 with a low activity of pyruvate carboxylase. J. Gen. Microbiol. 105:175185.
6. Chaudry, G. R.,, Y. S. Halpern,, C. Saunders,, N. Vasantha,, J. B. Schmidt,, and E. Freese. 1984. Mapping of the glucose dehydrogenase gene in Bacillus subtilis. J. Bacteriol. 160:607611.
7. Cozzarelli, N. R.,, W. B. Freedberg,, and E. C., C. Lin. 1968. Genetic control of the L-α -glycerolphosphate system in Escherichia coli. J. Mol. Biol. 31:371387.
8. Cozzarelli, N. R.,, and E. C., C. Lin. 1966. Chromosomal location of the structural gene for glycerol kinase in Escherichia coli. J. Bacteriol. 91:17631766.
9. Delobbe, A.,, R. Haguenauer,, and G. Rapoport. 1971. Studies on the transport of a-methyl-D-glucopyranoside in Bacillus subtilis 168. Biochimie 53:10151021.
10. Dhaese, P. Unpublished data.
11. Diesterhaft, M. D.,, and E. Freese. 1973. Role of pyruvate carboxylase, phosphoenol-pyruvate carboxykinase, and malic enzyme during growth and sporulation of Bacillus subtilis. J. Biol. Chem. 246:60626070.
12. Fortnagel, P.,, K. A. Lampei,, K.-D. Neitzke,, and E. Freese. 1986. Sequence homologies of glucose-dehydro-genase of Bacillus megaterium and Bacillus subtilis. J. Theor. Biol. 120:489497.
13. Fouet, A.,, A. Klier,, and G. Rapoport. 1986. Nucleotide sequence of the sucrase gene of Bacillus subtilis. Gene 45:221225.
14. Fraenkel, D. G., 1987. Glycolysis, pentose phosphate pathway, and Entner-Douderoff pathway, p. 142. In F. C. Neidhardt,, J. L. Ingraham,, K. B. Low,, B. Magasanik,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, vol. 1. American Society for Microbiology, Washington, D.C..
15. Freese, E.,, and U. Fortnagel. 1969. Growth and sporulation of Bacillus subtilis mutants blocked in the pyruvate dehydrogenase complex. J. Bacteriol. 99:745756.
16. Freese, E.,, and J. E. Heinze,. 1984. Metabolic and genetic control of bacterial sporulation, p. 101173. In A. Hurst,, G. Gould,, and J. Dring (ed.), The Bacterial Spore, vol. 2. Academic Press, Inc., New York.
17. Freese, E.,, T. Ichikawa,, K. Y. Oh,, E. B. Freese,, and C. Prasad. 1974. Deficiencies or excess of metabolites interfering with differentiation. Proc. Natl. Acad. Sci. USA 71:41884193.
18. Freese, E.,, W. Klofat,, and E. Galliërs. 1970. Commitment to sporulation and induction of glucose-phosphoenol-pyruvate transferase. Biochim. Biophys. Acta 222:265289.
19. Freese, E.,, Y. K. Oh,, E. B. Freese,, M. D. Diesterhaft,, and C. Prasad,. 1972. Suppression of sporulation of Bacillus subtilis, p. 212. In H. O. Halvorson,, R. S. Hanson,, and L. L. Campbell (ed.), Spores V. American Society for Microbiology, Washington, D.C..
20. Freese, E. B.,, R. M. Cole,, W. Klofat,, and E. Freese. 1970. Growth, sporulation, and enzyme defects of glucosamine mutants of Bacillus subtilis. J. Bacteriol. 101:10461062.
21. Freese, E. B.,, and Y. K. Oh. 1974. Adenosine 5'-triphos-phate release and membrane collapse in glycerol-requir-ing mutants of Bacillus subtilis. J. Bacteriol. 120:507515.
22. Freese, E. B.,, N. Vasantha,, and E. Freese. 1979. Induction of sporulation in developmental mutants of Bacillus subtilis. Mol. Gen. Genet. 170:6774.
23. French, A.,, and S. Chang. 1978. The phosphoenolpyru-vate:methyl-α -D-glucoside phosphotransferase system in Bacillus subtilis Marburg: kinetic studies of enzyme II and evidence for a phosphoryl enzyme II intermediate. Biochimie 60:12831287.
24. Fujita, Y.,, and E. Freese. 1979. Purification and properties of fructose-1,6-bisphosphatase of Bacillus subtilis. J. Biol. Chem. 254:53405349.
25. Fujita, Y.,, and E. Freese. 1981. Isolation of a Bacillus subtilis mutant unable to produce fructose-bisphos-phatase. J. Bacteriol. 143:760767.
26. Fujita, Y.,, T. Fujita,, Y. Miwa,, J. Nihashi,, and Y. Aratani. 1986. Organization and transcription of the gluconate operon, gnt, of Bacillus subtilis. J. Biol. Chem. 261:1374413753.
27. Fujita, Y.,, R. Ramaley,, and E. Freese. 1977. Location and properties of glucose dehydrogenase in sporulating cells and spores of Bacillus subtilis. J. Bacteriol. 132:282293.
28. Gay, P.,, H. Chalumeau,, and M. Steinmetz. 1983. Chromosomal localization of gut, fruC, and pfk mutations affecting genes involved in Bacillus subtilis D-glucitol catabolism. J. Bacteriol. 153:11331137.
29. Gay, P.,, P. Cordier,, M. Marquet,, and A. Delobbe. 1973. Carbohydrate metabolism and transport in Bacillus subtilis. A study of ctr mutations. Mol. Gen. Genet. 121:355368.
30. Gay, P.,, and A. Delobbe. 1977. Fructose transport in Bacillus subtilis. Eur. J. Biochem. 79:363373.
31. Gay, P.,, and G. Rapoport. 1970. Etude des mutants dépourvus de fructose-1-phosphate-kinase chez B. subtilis. CR. Acad. Sci. 271:374377.
32. Gonzy-Tréboul, G.,, J. H. Dewaard,, M. Zagorec,, and P. W. Postma. 1991. The glucose permease of the phosphotransferase system of Bacillus subtilis—evidence for ligie and Hlglc domains. Mol. Microbiol. 5:12411249.
33. Gonzy-Tréboul, G.,, and M. Steinmetz. 1987. Phos-phoenolpyruvate:sugar phosphotransferase system of Bacillus subtilis: cloning of the region containing the ptsH and ptsl genes and evidence for a err-like gene. J. Bacteriol. 169:22872290.
34. Gonzy-Tréboul, G.,, M. Zagorec,, M.-C. Raln-Guion,, and M. Steinmetz. 1989. Phosphoenolpyruvate:sugar phosphotransferase system of Bacillus subtilis: nucleotide sequence of ptsX, ptsH and 5' -end of ptsl and evidence for a ptsHI operon. Mol. Microbiol. 3:103112.
35. 34a.Hemilfi, H. 1991. Lipoamide dehydrogenase of Staphylococcus aureus: nucleotide sequence and sequence analysis. Biochim. Biophys. Acta 1129:119123.
35. Hemilâ, H.,, A. Piava,, L. Paulin,, S. Arvidson,, and I. Piava. 1990. Secretory S complex of Bacillus subtilis: sequence analysis and identity to pyruvate dehydrogenase. J. Bacteriol. 172:50525063.
36. Hilt, W.,, G. Pfieiderer,, and P. Fortnagel. 1991. Glucose dehydrogenase from Bacillus subtilis expressed in Escherichia coli. I. Purification, characterization and comparison with glucose dehydrogenase from Bacillus megaterium. Biochim. Biophys. Acta 1076:298304.
37. Hodgson, J. A.,, P. N. Lowe,, and R. N. Perham. 1983. Wild-type and mutant forms of the pyruvate dehydrogenase multienzyme complex from Bacillus subtilis. Bio-chem. J. 211:463472.
38. Holmberg, C.,, L. Beijer,, B. Rutberg,, and L. Rutberg. 1990. Glycerol catabolism in Bacillus subtilis: nucleotide sequence of the genes encoding glycerol kinase (glpK) and glycerol-3-phosphate dehydrogenase (glpD). J. Gen. Microbiol. 136:23672375.
39. Holmberg, C.,, and B. Rutberg. 1989. Cloning of the glycerol kinase gene of Bacillus subtilis. FEMS Microbiol. Lett. 58:11511156.
39a.. Jin, S.,, and A. L. Sonenshein. Personal communication.
40. Klier, A. F.,, and G. Rapoport. 1988. Genetics and regulation of carbohydrate catabolism in Bacillus. Annu. Rev. Microbiol. 42:6595.
41. Klofat, W.,, G. Picciolo,, E. Chappelle,, and E. Freese. 1969. Production of adenosine triphosphate in normal cells and sporulation mutants of Bacillus subtilis. J. Biol. Chem. 244:32703276.
42. Koch, J. P.,, S. Hayashi,, and E. C.. C. Lin. 1964. The control of dissimilation of glycerol and L-α -glycerolphos-phate in Escherichia coli. J. Biol. Chem. 239:31063108.
43. Lampei, K. A.,, B. Uratani,, G. R. Chaudry,, R. F. Ramaley,, and S. Rudlkoff. 1986. Characterization of the developmentally regulated Bacillus subtilis glucose dehydrogenase gene. J. Bacteriol. 166:238243.
44. Lepesant, J.-A.,, and R. Dedonder. 1968. Transport du saccharose chez B. subtilis. CR. Acad. Sci. 267:11091112.
45. Lin, E. C. C. 1970. The genetics of bacterial transport. Annu. Rev. Genet. 4:225262.
46. Lindgren, V.,, and L. Rutberg. 1974. Glycerol metabolism in Bacillus subtilis: gene enzyme relationships. J. Bacteriol. 119:431442.
47. Lopez, J.,, B. Thorns,, and P. Fortnagel. 1973. Mutants of Bacillus subtilis blocked in acetoin reductase. Eur. J. Biochem. 40:479483.
48. Marquet, M.,, M. C. Creignou,, and R. Dedonder. 1976. The phosphoenolpyruvate methyl-α -D-glycoside phosphotransferase system in Bacillus subtilis Marburg: purification and identification of the phosphocarrier protein (Hpr). Biochimie 58:435441.
49. Marquet, M.,, M. C. Wagner,, and R. Dedonder. 1971. Separation of components of the phosphoenolpyruvate-glucose-phosphotransferase system from Bacillus subtilis Marburg. Biochimie 53:11311134.
50. Marquet, M.,, M.-C. Wagner,, A. Delobbe,, P. Gay,, and G. Rapoport. 1970. Mise en evidence de système de phosphotransferases dans le transport du glucose, du fructose et du saccharose chez B. subtilis. CR. Acad. Sci. 271:449452.
51. Mindich, L. 1968. Pathway for oxidative dissimilation of glycerol in Bacillus subtilis. J. Bacteriol. 96:565566.
52. Mlndich, L. 1970. Membrane synthesis in Bacillus subtilis: isolation and properties of strains bearing mutations in glycerol metabolism. J. Mol. Biol. 49:415432.
53. Mueller, J. P.,, and H. W. Taber,. 1988. Genetic regulation of cytochrome aa3 in Bacillus subtilis, p. 91. In A. T. Ganesan, and J. A. Hoch (ed.), The Genetics and Biotechnology of Bacilli. Academic Press, Inc., San Diego, Calif..
54. Niaudet, B.,, P. Gay,, and R. Dedonder. 1975. Identification of the structural gene of PEP-phosphotransferase enzyme I in Bacillus subtilis Marburg. Mol. Gen. Genet. 136:337349.
55. Nlmmo, H. G., 1987. The tricarboxylic acid cycle and anapleurotic reactions, p. 156. In F. C. Neidhardt,, J. L. Ingraham,, K. B. Low,, B. Magasanik,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, vol. 1. American Society for Microbiology, Washington, D.C..
56. Oh, Y.,, and E. Freese. 1976. Manganese requirement of phosphoglycerate mutase and its consequence for growth and sporulation of Bacillus subtilis. J. Bacteriol. 127:739746.
57. Oh, Y.,, E. B. Freese,, and E. Freese. 1973. Abnormal septation and inhibition of sporulation by accumulation of L-a-glycerolphosphate in Bacillus subtilis mutants. J. Bacteriol. 113:10341045.
58. Oppenheim, D. J.,, and R. W. Bernlohr. 1975. Purification and regulation of fructose-1,6-bisphosphatase from Bacillus licheniformis. J. Biol. Chem. 250:30243033.
59. Pauly, H. E.,, and G. Pfleiderer. 1975. D-Glucose dehydrogenase from Bacillus megaterium M1286. Purification, properties, and structure. Hoppe Seyler's Physiol. Chem. 365:16131623.
60. Perret, J.,, and P. Gay. 1979. Kinetic study of a phospho-ryl exchange reaction between fructose and fructose-1-phosphate catalysed by the membrane bound enzyme II of the phosphoenolpyruvate:fructose-l phosphotransferase system of Bacillus subtilis. Eur. J. Biochem. 102:237246.
61. Piggot, P. J., 1989. Revised genetic map of Bacillus subtilis 168, p. 1. In I. Smith,, R. A. Slepecky,, and P. Setlow (ed.), Regulation of Procaryotic Development. American Society for Microbiology, Washington, D.C..
62. Piggot, P. J.,, M. Amjad,, J.-J. Wu,, H. Sandoval,, and J. Castro,. 1990. Genetic and physical maps of Bacillus subtilis, p. 493. In C. R. Harwood, and S. M. Cutting (ed.), Molecular Biological Methods for Bacillus. Wiley, Chichester, England.
63. Pooley, H. M.,, D. Paschoud,, and D. Karamata. 1987. The gtaB marker in Bacillus subtilis 168 is associated with a deficiency in UDP-glucose pyrophosphorylase. J. Gen. Microbiol. 133:34813493.
64. Poolman, B.,, B. Bosman,, J. Klers,, and W. X. Konings. 1987. Control of glycolysis by glyceraldehyde-3-phos-phate dehydrogenase in Streptococcus cremoris and Streptococcus lactis. J. Bacteriol. 169:58875890.
65. Postma, P. W., 1987. Phosphotransferase system for glucose and other sugars, p. 127. In F. C. Neidhardt,, L. J. Ingraham,, K. B. Low,, B. Magasanik,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, vol. 1. American Society for Microbiology, Washington, D.C..
66. Prasad, C.,, M. Diesterhaft,, and E. Freese. 1972. Initiation of spore germination in glycolytic mutants of Bacillus subtilis. J. Bacteriol. 110:321328.
67. Prasad, C.,, and E. Freese. 1974. Cell lysis of Bacillus subtilis caused by intracellular accumulation of glucose-1-phosphate. J. Bacteriol. 118:11111122.
68. Ramaley, R. F.,, and N. Vasantha. 1983. Glycerol protection and purification of Bacillus subtilis glucose dehydrogenase. J. Biol. Chem. 258:1255812565.
69. Reizer, A.,, J. Deutsche,, M. H. Saler,, and J. Reizer. 1991. Analysis of the gluconate (gnt) operon of Bacillus subtilis. Mol. Microbiol. 5:10811089.
70. Reizer, J.,, M. J. Novotny,, I. Stuiver,, and M. H. Saier, Jr. 1984. Regulation of glycerol uptake by the phosphoenol-pyruvate sugar phosphotransferase system in Bacillus subtilis. J. Bacteriol. 159:243250.
71. Saheb, S. A. 1972. Etude de deux mutants du metabolisme du glycerol chez Bacillus subtilis. Can. J. Microbiol. 18:13151325.
72. Saheb, S. A. 1972. Permeation du glycerol et sporulation chez Bacillus subtilis. Can. J. Microbiol. 18:13071313.
73. Saier, M. H. 1985. Mechanisms and regulation of carbohydrate transport in bacteria. Academic Press, Inc., New York.
74. Saier, M. H.,, R. D. Simoni,, and H. Roseman. 1970. The physiological behaviour of enzyme I and heat stable protein mutant of bacterial phosphotransferase system. J. Biol. Chem. 245:58705875.
75. Singer, M.,, P. Rossmiessl,, B. M. Cali,, H. Liebke,, and C. A. Gross. 1991. The Escherichia coli ts8 mutation is an allele of fda, the gene encoding fructose-1,6-diphosphate aldolase. J. Bacteriol. 173:62426248.
76. Singer, M.,, W. A. Walter,, B. M. Cali,, P. Rouviere,, H. H. Liebke,, R. L. Course,, and C. A. Gross. 1991. Physiological effects of the fructose-1,6-diphosphate aldolase ts8 mutation on stable RNA synthesis in Escherichia coli. J. Bacteriol. 173:62496257.
77. Singh, R. P.,, and P. Setlow. 1978. Enolase from spores and cells of Bacillus megaterium: two-step purification of the enzyme and some of its properties. J. Bacteriol. 134:353355.
78. Singh, R. P.,, and P. Setlow. 1978. Phosphoglycerate muíase in developing forespores of Bacillus megaterium may be regulated by the intrasporal level of free manganous ion. Biochem. Biophys. Res. Commun. 82:15.
79. Singh, R. P.,, and P. Setlow. 1979. Regulation of phosphoglycerate phosphomutase in developing forespores and dormant and germinated spores of Bacillus megaterium by the level of free manganous ions. J. Bacteriol. 139:889898.
80. Singh, R. P.,, and P. Setlow. 1979. Purification and properties of phosphoglycerate phosphomutase from spores and cells of Bacillus megaterium. J. Bacteriol. 137:10241027.
81. Smith, C. P.,, and K. F. Chater. 1988. Structure and regulation of controlling sequences for the Streptomyces coelicolor glycerol operon. J. Mol. Biol. 204:569580.
82. Sonenshein, A. L., 1989. Metabolic regulation of sporulation and other stationary phase phenomena, p. 109. In I. Smith,, R. A. Slepecky,, and P. Sedow (ed.), Regulation of Procaryotic Development. American Society for Microbiology, Washington, D.C..
83. Strauss, N. 1983. Role of glucose dehydrogenase in germination of Bacillus subtilis. FEMS Microbiol. Lett. 20:379384.
84. Trach, K.,, J. W. Chapman,, P. Piggot,, D. LeCoq,, and J. A. Hoch. 1988. Complete sequence and transcriptional analysis of the spoOF region of the Bacillus subtilis chromosome. J. Bacteriol. 170:41944208.
85. Uratani, B.,, K. A. Lampei,, R. H. Llpsky,, and E. Freese,. 1984. Characterization of the gene for glucose dehydrogenase and flanking genes of Bacillus subtilis, p. 71. In J. A. Hoch, and P. Sedow (ed.), Biology of Microbial Differentiation. American Society for Microbiology, Washington, D.C..
86. Vasantha, N.,, B. Uretani,, R. F. Ramaley,, and E. Freese. 1983. Isolation of a developmental gene of Bacillus subtilis and its expression in Escherichia coli. Proc. Natl. Acad. Sci. USA 80:785789.
87. Viaene, A.,, and P. Dhaese. 1989. Sequence of the glycer-aldehyde-3-phosphate dehydrogenase gene from Bacillus subtilis. Nucleic Acids Res. 17:1251.
88. Watabe, K.,, and E. Freese. 1979. Purification and properties of the manganese-dependent phosphoglycerate mutase of Bacillus subtilis. J. Bacteriol. 137:773778.

Tables

Generic image for table
Table 1

Glycolytic enzymes and genes that encode them

Citation: Fortnagel P. 1993. Glycolysis, p 171-180. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch12

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error