1887

Chapter 13 : The Krebs Citric Acid Cycle

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

The Krebs Citric Acid Cycle, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818388/9781555810535_Chap13-1.gif /docserver/preview/fulltext/10.1128/9781555818388/9781555810535_Chap13-2.gif

Abstract:

The citric acid cycle (CAC) has several functions in aerobic bacteria. Together with the pyruvate dehydrogenase multienzyme complex (PDHC), it completely oxidizes pyruvate and provides membrane-bound respiratory systems with reducing equivalents. An overview of the biochemistry and genetics of CAC enzymes in is presented in this chapter. , being a strict aerobe, runs a complete CAC, as is demonstrated by enzyme activity measurements with cell extracts or purified enzymes and by the ability of this bacterium to grow on most of the intermediates of the CAC as sole carbon source. 2-oxoglutarate dehydrogenase multienzyme complex (ODHC) belongs to the same family of enzymes as PDHC. Present knowledge of this enzyme, has been acquired from studies involving various mutants. The prosthetic groups of SQR and some of their properties are presented in this chapter. The occurrence of larger and smaller types of malate dehydrogenase seems not to be correlated with gram-positive or gram-negative bacteria as citrate synthase and succinate thiokinase are. Little information on the genetics of malate dehydrogenase in gram-positive bacteria is available, but mutants defective in this CAC enzyme have been isolated.

Citation: Hederstedt L. 1993. The Krebs Citric Acid Cycle, p 181-197. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch13

Key Concept Ranking

1H Nuclear Magnetic Resonance Spectroscopy
0.4323581
0.4323581
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Krebs CAC with anaplerotic reactions. ACN, aconitase; CS, citrate synthase; FUM, fumarase; ICDH, isocitrate dehydrogenase; MAL, malie enzyme; MDH, malate dehydro-genase; ODHC, 2-oxoglutarate dehydrogenase complex; PDHC, pyravate dehydrogenase complex; PYC, pyruvate carboxylase; SDH, succinate dehydrogenase (succinate:men-aquinone reductase); STK, succinate thiokinase.

Citation: Hederstedt L. 1993. The Krebs Citric Acid Cycle, p 181-197. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Chromosomal localization of CAC genes in . See Table 1 for details and references.

Citation: Hederstedt L. 1993. The Krebs Citric Acid Cycle, p 181-197. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Reaction sequences of the 2-oxo acid dehydroge-nase multienzyme complexes. Lip, lipoic acid; TPP, thiamine PP; CoASH, free, reduced CoA; −SCoA, oxidized, covalently bound CoA; R, acyl group.

Citation: Hederstedt L. 1993. The Krebs Citric Acid Cycle, p 181-197. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818388.chap13
1. Ackrell, B. A. C.,, M. K. Johnson,, R. P. Gunsalus,, and G. Cecchini,. 1992. Structure and function of succinate dehydrogenase and fumarate reductase, p. 229297. In F. Müller (ed.). Chemistry and Biochemistry of Flavoenzymes, vol III. CRC Press, Boca Raton, Fla..
2. Acuna, G.,, S. Ebeling,, and H. Hennecke. 1991. Cloning, sequencing, and mutational analysis of the Bradyrhizobium japonicum fumC-like gene: evidence for the existence of two different fumarases. J. Gen. Microbiol. 137:9911000.
3. Adler, L.-Å,, and S. Arvidson. 1988. Cloning and expression in Escherichia coli of genes encoding a multiprotein complex involved in secretion of proteins from Staphylococcus aureus. J. Bacteriol. 170:53375343.
4. Aevarsson, A.,, and L. Hederstedt. 1988. Ligands to the 2Fe iron-sulfur center in succinate dehydrogenase. FEBS Lett. 232:298302.
5. Allen, A. C.,, and R. N. Perham. 1991. Two lipoyl domains in the dihydrolipoamide acetyltransferase chain of the pyruvate dehydrogenase multienzyme complex of Streptococcus faecalis. FEBS Lett. 287:206210.
6. Allison, N.,, C. H. Williams, Jr.,, and J. R. Guest. 1988. Overexpression and mutagenesis of the lipoamide dehydrogenase of Escherichia coli. Biochem. J. 256:741749.
7. Amjad, M.,, J. M. Castro,, H. Sandoval,, J.-J. Wu,, M. Yang,, D. J. Henner,, and P. J. Piggot. 1990. An SfiI restriction map of the Bacillus subtilis 168 genome. Gene 101:1521.
8. Barnes, S. J.,, and P. D. J. Weitzman. 1986. Organization of citric acid cycle enzymes into a multienzyme cluster. FEBS Lett. 201:267270.
9. Beinert, H.,, and A. J. Thomson. 1983. Three-iron clusters in iron-sulfur proteins. Arch. Biochem. Biophys. 222:333361.
10. Birktoft, J. J.,, R. A. Bradshaw,, and L. J. Banaszak. 1987. Structure of porcine heart cytoplasmic malate dehydrogenase: combining X-ray diffraction and chemical sequence data in structural studies. Biochemistry 26:27222734.
11. Borges, A.,, C. F. Hawkins,, L. C. Packman,, and R. N. Perham. 1990. Cloning and sequence analysis of the genes encoding the dihydrolipoamide acetyltransferase and dihydrolipoamide dehydrogenase components of the pyruvate dehydrogenase multienzyme complex of Bacillus stearothermophilus. Eur. J. Biochem. 194:95102.
12. Bosma, H. J.,, A. de Kok,, A. H. Westphal,, and C. Veeger. 1984. The composition of the pyruvate dehydrogenase complex from Azotobacter vinelandii. Eur. J. Biochem. 142:541549.
13. Botsford, J. L.,, and J. G. Harman. 1992. Cyclic AMP in procaryotes. Microbiol. Rev. 56:100122.
13a.. Boudreaux, D. P.,, E. Eisenstadt,, T. Iijima,, and E. Freese. 1981. Biochemical and genetic characterization of an auxotroph of Bacillus subtilis altered in the acyl-CoA:acyl-carrier-protein transacylase. Eur. J. Biochem. 115:175181.
14. Brookfield, D. E.,, J. Green,, S. T. Ali,, R. S. Machado,, and J. R. Guest. 1991. Evidence for two protein-lipoyl activities in Escherichia coli. FEBS Lett. 295:1316.
14a.. Buxton, R. S. 1978. A heat-sensitive lysis mutant of Bacillus subtilis 168 with low activity of pyruvate carboxylase. J. Gen. Microbiol. 105:175185.
15. Carls, R. A.,, and R. S. Hanson. 1971. Isolation and characterization of tricarboxylic acid cycle mutants of Bacillus subtilis. J. Bacteriol. 106:848855.
16. Carlsson, P.,, and L. Hederstedt. 1986. In vitro complementation of Bacillus subtilis and Escherichia coli 2-oxoglutarate dehydrogenase complex mutants and genetic mapping of B. subtilis citK and citM mutations. FEMS Microbiol. Lett. 37:373378.
17. Carlsson, P.,, and L. Hederstedt. 1987. Bacillus subtilis citM, the structural gene for dihydrolipoamide transsuccinylase: cloning and expression in Escherichia coli. Gene 61:217224.
18. Carlsson, P.,, and L. Hederstedt. 1989. Genetic characterization of Bacillus subtilis odhA and odhB, encoding 2-oxoglutarate dehydrogenase and dihydrolipoamide transsuccinylase, respectively. J. Bacteriol. 171:36673672.
19. Carlsson, P.,, and L. Hederstedt. Unpublished data.
20. Chen, N.-Y.,, F.-M. Hu,, and H. Paulus. 1987. Nucleotide sequence of the overlapping genes for the subunits of Bacillus subtilis aspartokinase II and their control genes. J. Biol. Chem. 262:87878798.
21. Chen, N.-Y.,, J.-J. Zhang,, and H. Paulus. 1989. Chromosomal location of the Bacillus subtilis aspartokinase II gene and nucleotide sequence of the adjacent genes homologous to uvrC and trx of Escherichia coli. J. Gen. Microbiol. 135:29312940.
22. Crowe, B. A.,, and P. Owen. 1983. Molecular properties of succinate dehydrogenase isolated from Micrococcus luteus (lysodeikticus). J. Bacteriol. 153:14931501.
23. Crowe, B. A.,, P. Owen,, D. S. Patil,, and R. Cammack. 1983. Characterization of succinate dehydrogenase from Micrococcus luteus (lysodeikticus) by electron-spin-resonance spectroscopy. Eur. J. Biochem. 137:191196.
24. Cutting, S.,, and J. Mandelstam. 1986. The nucleotide sequence and transcription during sporulation of the gerE gene of Bacillus subtilis. J. Gen. Microbiol. 132:30133024.
25. Danson, M. J.,, S. C. Black,, D. L. Woodland,, and P. A. Wood. 1985. Citric acid cycle enzymes of the archae-bacteria: citrate synthase and succinate thiokinase. FEBS Lett. 179:120124.
26. Dardel, F.,, E. D. Laue,, and R. N. Perham. 1991. Sequence-specific 1H-NMR assignments and secondary structure of the lipoyl domain of the Bacillus stearothermophilus pyruvate dehydrogenase multienzyme complex. Eur. J. Biochem. 201:203209.
27. Dardel, F.,, L. C. Packman,, and R. N. Perham. 1990. Expression in Escherichia coli of a sub-gene encoding the lipoyl domain of the pyruvate dehydrogenase complex of Bacillus stearothermophilus. FEBS Lett. 264:206210.
28. Diesterhaft, M. D.,, and E. Freese. 1973. Role of pyruvate carboxylase, phosphoenolpyruvate carboxykinase, and malic enzyme during growth and sporulation of Bacillus subtilis. J. Biol. Chem. 248:60626070.
29. Dingman, D. W.,, M. Rosenkrantz,, and A. L. Sonenshein. 1987. Relationship between aconitase gene expression and sporulation in Bacillus subtilis. J. Bacteriol. 169:30683075.
30. Dingman, D. W.,, and A. L. Sonenshein. 1987. Purification of aconitase from Bacillus subtilis and correlation of its N-terminal amino acid sequence with the sequence of the citB gene. J. Bacteriol. 169:30623067.
31. Donald, L. J.,, G. F. Molgat,, and H. W. Duckworth. 1989. Cloning, sequencing and expression of the gene for NADH-sensitive citrate synthase of Pseudomonas aeruginosa. J. Bacteriol. 171:55425550.
32. Feavers, I. M.,, J. S. Miles,, and A. Moir. 1985. The nucleotide sequence of a spore germination gene (gerA) of Bacillus subtilis 168. Gene 38:95102.
33. Feavers, I. M.,, V. Price,, and A. Moir. 1988. The regulation of the fumarase (citG) gene of Bacillus subtilis 168. Mol. Gen. Genet. 211:465471.
34. Fisher, S. H.,, and B. Magasanik. 1984. Synthesis of oxaloacetate in Bacillus subtilis mutants lacking the 2-ketoglutarate dehydrogenase enzymatic complex. J. Bacteriol. 158:5562.
35. Fisher, S. H.,, and B. Magasanik. 1984. 2-Ketoglutarate and the regulation of aconitase and histidase formation in Bacillus subtilis. J. Bacteriol. 158:379382.
36. Fisher, S. H.,, and A. L. Sonenshein. 1991. Control of carbon and nitrogen metabolism in Bacillus subtilis. Annu. Rev. Microbiol. 45:107135.
37. Flechtner, V. R.,, and R. S. Hanson. 1969. Coarse and fine control of citrate synthase from Bacillus subtilis. Biochem. Biophys. Acta 184:252262.
38. Flechtner, V. R.,, and R. S. Hanson. 1970. Regulation of the tricarboxylic acid cycle in bacteria. A comparison of citrate synthases from different bacteria. Biochem. Biophys. Acta 222:253264.
39. Fortnagel, P.,, and E. Freese. 1968. Analysis of sporulation mutants. II. Mutants blocked in the citric acid cycle. J. Bacteriol. 95:14311438.
40. Fortnagel, P.,, and E. Freese. 1968. Inhibition of aconitase by chelation of transition metals causing inhibition of sporulation in Bacillus subtilis. J. Biol. Chem. 243:52895295.
41. Fouet, A.,, S.-F. Jin,, G. Raffel,, and A. L. Sonenshein. 1990. Multiple regulatory sites in the Bacillus subtilis citB promoter region. J. Bacteriol. 172:54085415.
42. Fouet, A.,, and A. L. Sonenshein. 1990. A target for carbon source-dependent negative regulation of the citB promoter of Bacillus subtilis. J. Bacteriol. 172:835844.
43. Freese, E.,, and P. Fortnagel. 1967. Analysis of sporulation mutants. I. Response of uracil incorporation to carbon sources, and other mutant properties. J. Bacteriol. 94:19571969.
43a.. Freese, E.,, and U. Fortnagel. 1969. Growth and sporulation of Bacillus subtilis mutants blocked in the pyruvate dehydrogenase complex. J. Bacteriol. 99:745756.
44. Fridén, H.,, M. R. Cheesman,, L. Hederstedt,, K. K. Andersson,, and A. J. Thomson. 1990. Low temperature EPR and MCD studies on cytochrome b-558 of the Bacillus subtilis succinate:quinone oxidoreductase indicate bis-histidine coordination of the heme iron. Biochem. Biophys. Acta 1041:207215.
45. Fridén, H.,, and L. Hederstedt. 1990. Role of His residues in Bacillus subtilis cytochrome b558 for haem binding and assembly of succinate:quinone oxidoreductase (complex II). Mol. Microbiol. 4:10451056.
46. Fridén, H.,, L. Hederstedt,, and L. Rutberg. 1987. Deletion of the Bacillus subtilis sdh operon. FEMS Microbiol. Lett. 41:203206.
47. Fridén, H.,, L. Rutberg,, K. Magnusson,, and L. Hederstedt. 1987. Genetic and biochemical characterization of Bacillus subtilis mutants defective in expression and function of cytochrome b-558. Eur. J. Biochem. 168:695701.
48. Gangloff, S. P.,, D. Marguet,, and G. J.-M. Lauquin. 1990. Molecular cloning of the yeast mitochondrial aconitase gene (ACO1) and evidence of a synergistic regulation of expression by glucose plus glutamate. Mol. Cell. Biol. 10:35513561.
49. Gass, K. B.,, and X. R. Cozzarelll. 1973. Further genetic and enzymological characterization of the three Bacillus subtilis deoxyribonucleic acid polymerases. J. Biol. Chem. 248:76887700.
50. Goldstein, B. J.,, and S. A. Zahler. 1976. Uptake of branched-chain α -keto acids in Bacillus subtilis. J. Bacteriol. 127:667670.
51. Griffin, T. A.,, R. M. Wynn,, and D. T. Chuang. 1990. Expression and assembly of mature apotransacylase (E2b) of bovine branched-chain α -keto acid dehydrogenase complex in Escherichia coli. J. Biol. Chem. 265:1210412110.
52. Grundy, F. J., andT. H. Henkln. 1992. Characterization of the Bacillus subtilis acsA gene, encoding acetyl-CoA synthetase. Poster abstr. no. 80. Eleventh International Spores Conference. Woods Hole, Mass..
53. Guest, J. R.,, and H. M. Lewis. 1985. Genetic reconstruction and functional analysis of repeating lipoyl domains in the pyruvate dehydrogenase multienzyme complex of Escherichia coli. J. Mol. Biol. 185:743754.
54. Guest, J. R.,, and G. C. Russell. 1992. Complexes and complexities of the citric acid cycle in Escherichia coli. Curr. Top. Cell. Regul. 33:231247.
55. Hägerhäll, C.,, R. Aasa,, C. von Wachenfeldt,, and L. Hederstedt. 1992. Two hemes in Bacillus subtilis succinate:menaquinone oxidoreductase (complex II). Bio-chemistry 31:74117421.
56. Hägerhäll, C.,, M. Jönsson,, and L. Hederstedt. Unpublished data.>
57. Hanamaaijer, R.,, A. Janssen,, A. de Kok, and C. Veeger. 1988. The dihydrolipoyltransacetylase component of the pyruvate dehydrogenase complex from Atotobacter vinelandii. Eur. J. Biochem. 174:593599.
58. Hanson, R. S.,, V. R. Srinivasan,, and H. O. Halvorson. 1963. Biochemistry of sporulation. II. Enzymatic changes during sporulation of Bacillus cereus. J. Bacteriol. 86:4550.
59. Hanson, R. S.,, V. R. Srinivasan,, and H. O. Halvorson. 1963. Biochemistry of sporulation. I. Metabolism of acetate by vegetative and sporulating cells. J. Bacteriol. 85:451460.
60. Hasnain, S.,, R. Sanunons,, I. Roberts,, and C. M. Thomas. 1985. Cloning and deletion analysis of a genomic segment of Bacillus subtilis coding for the sdhA, B, C (succinate dehydrogenase) and gerE (spore germination) loci. J. Gen. Microbiol. 131:22692279.
61. Hawkins, C. F.,, A. Borges,, and R. N. Perham. 1990. Cloning and sequence analysis of the gene encoding the α and β subunits of the E1 component of the pyruvate dehydrogenase multienzyme complex of Bacillus stearothermophilus. Eur. J. Biochem. 191:337346.
62. Hederstedt, L. 1980. Cytochrome b reducible by succinate in an isolated succinate dehydrogenase-cytochrome b complex from Bacillus subtilis. J. Bacteriol. 144:933940.
63. Hederstedt, L. 1983. Succinate dehydrogenase mutants of Bacillus subtilis lacking covalently bound flavin in the flavoprotein subunit. Eur. J. Biochem. 132:589593.
64. Hederstedt, L. 1986. Molecular properties, genetics, and biosynthesis of Bacillus subtilis succinate dehydrogenase complex. Methods Enzymol. 126:399414.
65. Hederstedt, L., 1987. Covalent binding of FAD to Bacillus subtilis succinate dehydrogenase, p. 729735. In D. E. Edmondson, and D. M. McCormick (ed.), Flavins and Flavoproteins. Walter de Gruyter & Co., Berlin.
66. Hederstedt, L.,, and K. K. Andersson. 1986. Electron-paramagnetic-resonance spectroscopy of Bacillus subtilis cytochrome b558 in Escherichia coli membranes and in succinate dehydrogenase complex from Bacillus subtilis membranes. J. Bacteriol. 167:735739.
67. Hederstedt, L.,, T. Bergman,, and H. Jörnvall. 1987. Processing of Bacillus subtilis succinate dehydrogenase and cytochrome b-558 polypeptides. FEBS Lett. 213:385390.
68. Hederstedt, L.,, C. Hägerhäll,, H. Fridén,, and R. Aasa. Unpublished data.
69. Hederstedt, L.,, and L.-O. Hedén. 1989. New properties of Bacillus subtilis succinate dehydrogenase altered at the active site. Biochem. J. 260:491497.
70. Hederstedt, L.,, E. Holmgren,, and L. Rutberg. 1979. Characterization of a succinate dehydrogenase complex solubilized from the cytoplasmic membrane of Bacillus subtilis with the nonionic detergent Triton X-100. J. Bacteriol. 138:370376.
71. Hederstedt, L.,, K. Magnusson,, and L. Rutberg. 1982. Reconstitution of succinate dehydrogenase in Bacillus subtilis by protoplast fusion. J. Bacteriol. 152:157165.
72. Hederstedt, L.,, J. J. Maguire,, A. J. Waring,, and T. Ohnishi. 1985. Characterization by electron paramagnetic resonance and studies on subunit location and assembly of the iron-sulfur clusters of Bacillus subtilis succinate dehydrogenase. J. Biol. Chem. 260:55545562.
73. Hederstedt, L.,, and T. Ohnishi,. 1992. Progress in succinate:quinone oxidoreductase research, p. 163198. In L. Ernster (ed.), Molecular Mechanisms in Bioenergetics, in press. Elsevier, Amsterdam.
74. Hederstedt, L.,, and L. Rutberg. 1980. Biosynthesis and membrane binding of succinate dehydrogenase in Bacillus subtilis. J. Bacteriol. 144:941951.
75. Hederstedt, L.,, and L. Rutberg. 1981. Succinate dehydrogenase: a comparative review. Microbiol. Rev. 45:542555.
76. Hederstedt, L.,, and L. Rutberg. 1983. Orientation of succinate dehydrogenase and cytochrome b558 in the Bacillus subtilis cytoplasmic membrane. J. Bacteriol. 153:5765.
77. Hemilä, H. 1991. Lipoamide dehydrogenase of Staphylococcus aureus: nucleotide sequence and sequence analysis. Biochem. Biophys. Acta 1129:119123.
78. Hemilä, H. 1991. Sequence of a PAL-related lipoprotein from Bacillus subtilis. FEMS Microbiol. Lett. 82:3742.
79. Hemilä, H.,, A. Palva,, L. Paulin,, L. Adler,, S. Arvidson,, and I. Palva. 1991. Secretory S complex identified as pyruvate dehydrogenase. Res. Microbiol. 142:779785.
80. Hemilä, H.,, A. Palva,, L. Paulin,, S. Arvidson,, and I. Palva. 1990. Secretory S complex of Bacillus subtilis: sequence analysis and identity to pyruvate dehydrogenase. J. Bacteriol. 172:50525063.
81. Henderson, C. E.,, and R. N. Perham. 1980. Purification of the pyruvate dehydrogenase multienzyme complex of Bacillus stearothermophilus and resolution of its four component polypeptides. Biochem. J. 189:161172.
82. Hoch, J. A.,, and H. J. Coukoulis. 1978. Genetics of the α -ketoglutarate dehydrogenase complex of Bacillus subtilis. J. Bacteriol. 133:265269.
83. Hoch, J. A.,, and J. Mathews,. 1972. Genetic studies in Bacillus subtilis, p. 113116. In H. O. Halvorson,, R. Hanson,, and L. L. Campbell (ed.). Spores V. American Society for Microbiology, Washington, D.C..
84. Hodgson, J. A.,, P. N. Lowe,, and R. N. Perham. 1983. Wild-type and mutant forms of the pyruvate dehydrogenase multienzyme complex from Bacillus subtilis. Biochem. J. 211:463472.
85. Holmgren, E.,, L. Hederstedt,, and L. Rutberg. 1979. Role of heme in synthesis and membrane binding of succinic dehydrogenase in Bacillus subtilis. J. Bacteriol. 138:377382.
86. Howard, R. L.,, and R. R. Becker. 1970. Isolation and some properties of the triphosphopyridine nucleotide isocitrate dehydrogenase from Bacillus stearothermophilus. J. Biol. Chem. 245:31863194.
87. Itaya, M.,, and T. Tanaka. 1991. Complete physical map of the Bacillus subtilis 168 chromosome constructed by a gene-directed mutagenesis method. J. Mol. Biol. 220:631648.
88. Jin, S.,, and A. L. Sonenshein. Unpublished data.
89. Jin, S.,, and A. L. Sonenshein. 1992. Citrate synthase genes in Bacillus subtilis. Abstr. 84. Eleventh International Spores Conference. Woods Hole, Mass..
90. Johnson, D. E.,, and R. S. Hanson. 1974. Bacterial citrate synthases: purification, molecular weight and kinetic mechanism. Biochim. Biophys. Acta 350:336353.
91. Kay, J.,, and P. D. J. Weitzman (éd.). 1987. Krebs’ citric acid cycle—half a century and still turning. Biochem. Soc. Symp. 54:1198.
92. Koike, K.,, S. Ohta,, Y. Urata,, Y. Kagawa,, and M. Koike. 1988. Cloning and sequencing of cDNA encoding α and β subunits of human pyruvate dehydrogenase. Proc. Natl. Acad. Sci. USA 85:4145.
93. Lemma, E.,, C. Hägerhäll,, V. Geisler,, U. Brandt,, G. von Jagow,, and A. Kröger. 1991. Reactivity of the Bacillus subtilis succinate dehydrogenase complex with quinones. Biochim. Biophys. Ada 1059:281285.
94. Lowe, P. N.,, J. A. Hodgson,, and R. N. Perham. 1983. Dual role of a single multienzyme complex in the oxidative decarboxylation of pyruvate and branched-chain 2-oxo acids in Bacillus subtilis. Biochem. J. 215:133140.
95. Magnusson, K.,, L. Hederstedt,, and L. Rutberg. 1985. Cloning and expression in Escherichia coli of sdhA, the structural gene for cytochrome b558 of the Bacillus subtilis succinate dehydrogenase complex. J. Bacteriol. 162:11801185.
96. Magnusson, K.,, M. K. Phillips,, J. R. Guest,, and L. Rutberg. 1986. Nucleotide sequence of the gene for cytochrome b558 of the Bacillus subtilis succinate dehydrogenase complex. J. Bacteriol. 166:10671071.
97. Magnusson, K.,, B. Rutberg,, L. Hederstedt,, and L. Rutberg. 1983. Characterization of a pleiotropic succinate dehydrogenase-negative mutant of Bacillus subtilis. J. Gen. Microbiol. 129:917922.
98. Maguire, J. J.,, and L. Hederstedt. 1989. EPR characterization of soluble fragments of succinate dehydrogenase from mutant strains of Bacillus subtilis. FEBS Lett. 256:195199.
99. Maguire, J. J.,, K. Magnusson,, and L. Hederstedt. 1986. Bacillus subtilis mutant succinate dehydrogenase lacking covalently bound flavin: identification of the primary defect and studies on the iron-sulfur clusters in mutated and wild-type enzyme. Biochemistry 25:52025208.
100. Mat-Jan, F.,, C. R. Williams,, and D. P. Clark. 1989. Anaerobic growth defects resulting from gene fusions affecting succinyl-CoA synthetase in Escherichia coli K12. Mol. Gen. Genet. 215:276280.
101. Mattevi, A.,, G. Obmolova,, E. Schulze,, K. H. Kalk,, A. H. Westphal,, A. de Kok,, and W. G. J. Hoi. 1992. Atomic structure of the cubic core of the pyruvate dehydrogenase multienzyme complex. Science 255:15441550.
102. Mattevi, A.,, A. J. Schierbeek,, and W. G. J. Hoi. 1991. Refined crystal structure of lipoamide dehydrogenase from Azotobacter vinelandii at 2.2 Å resolution. J. Mol. Biol. 220:975994.
103. McAlister-Henn, A. 1988. Evolutionary relationships among the malate dehydrogenases. Trends Biochem. Soc. 13:178181.
104. Melin, L.,, H. Fridén,, E. Dehlin,, L. Rutberg,, and A. von Gabain. 1990. The importance of the 5' -region in regulating the stability of sdh mRNA in Bacillus subtilis. Mol. Microbiol. 4:18811889.
105. Melin, L.,, K. Magnusson,, and L. Rutberg. 1987. Identification of the promoter of the Bacillus subtilis sdh operon. J. Bacteriol. 169:32323236.
106. Melin, L.,, L. Rutberg,, and A. von Gabain. 1989. Transcriptional and posttranscriptional control of the Bacillus subtilis succinate dehydrogenase operon. J. Bacteriol. 171:21102115.
107. Miles, J. S.,, and J. R. Guest. 1985. Complete nucleotide sequence of the fumarase gene (citG) of Bacillus subtilis 168. Nucleic Acids Res. 13:131140.
108. Miles, J. S.,, and J. R. Guest. 1987. Molecular genetic aspects of the citric acid cycle of Escherichia coli. Biochem. Soc. Symp. 54:4565.
109. Mitchell, C. G.,, and P. D. J. Weitzman. 1986. Molecular size diversity of citrate synthases from Pseudomonas species. J. Gen. Microbiol. 132:737742.
110. Mitchell, C. G.,, S. O’Neil,, H. C. Reeves,, and P. D. J. Weitzman. 1986. Separation of isoenzymes of citrate synthase and isocitrate dehydrogenase by fast protein liquid chromatography. FEBS Lett. 196:211214.
111. Moir, A. 1983. The isolation of λ transducing phages carrying the citG and gerA genes of Bacillus subtilis. J. Gen. Microbiol. 129:303310.
112. Moir, A.,, I. M. Feavers,, and J. R. Guest. 1984. Characterization of the fumarase gene of Bacillus subtilis 168 cloned and expressed in Escherichia coli K12. J. Gen. Microbiol. 130:30093017.
113. Moir, A.,, and V. A. Price,. 1990. Sigma H-directed transcription from a citG promoter is metabolically regulated, p. 277286. In M. M. Zukowski,, A. T. Ganesan,, and J. A. Hoch (ed.), Genetics and Biotechnology of Bacilli. Academic Press, Inc., New York.
114. Mueller, J. P.,, and H. W. Taber. 1989. Isolation and sequence of ctaA, a gene required for cytochrome aa3 biosynthesis and sporulation in Bacillus subtilis. J. Bacteriol. 171:49674978.
115. Murphey, W. H.,, C. Barnaby,, F. J. Lin,, and N. O. Kaplan. 1967. Malate dehydrogenases. J. Biol. Chem. 242:15481559.
116. Nimmo, H. G., 1987. The tricarboxylic acid cycle and anaplerotic reactions, p. 156169. In J. L. Ingraham,, K. B. Low,, B. Magasanik,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, vol. 1. American Society for Microbiology, Washington, D.C..
117. Niu, X.-D.,, K. S. Browning,, R. H. Behal,, and L. J. Reed. 1988. Cloning and nucleotide sequence of the gene for dihydrolipoamide acetyltransferase from Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 85:75467550.
118. Ohné, M. 1974. Regulation of aconitase synthesis in Bacillus subtilis: induction, feedback repression, and catabolite repression. J. Bacteriol. 117:12951305.
119. Ohné, M. 1975. The citric acid cycle of Bacillus subtilis. Ph.D. thesis. Karolinska Institutet, Stockholm.
120. Ohné, M. 1975. Regulation of the dicarboxylic acid part of the citric acid cycle in Bacillus subtilis. J. Bacteriol. 122:224234.
121. Ohné, M., B. Rutberg, and J. A. Hoch. 1973. Genetic and biochemical characterization of mutants of Bacillus subtilis defective in succinate dehydrogenase. J. Bacteriol. 115:738745.
122. Oku, H.,, and T. Kaneda. 1988. Biosynthesis of branched-chain fatty acids in Bacillus subtilis. J. Biol. Chem. 263:1838618396.
123. Packman, L. C.,, A. Borges,, and R. N. Perham. 1988. Amino acid sequence analysis of the lipoyl and peripheral subunit-binding domains in the lipoate acetyl-transferase component of the pyruvate dehydrogenase complex from Bacillus stearothermophilus. Biochem. J. 252:7986.
124. Perham, R. N. 1991. Domains, motifs and linkers in 2-oxo acid dehydrogenase multienzyme complexes: a paradigm in the design of a multifunctional protein. Biochemistry 30:85018512.
125. Petricek, M.,, L. Rutberg,, and L. Hederstedt. 1989. The structural gene for aspartokinase II in Bacillus subtilis is closely linked to the sdh operon. FEMS Microbiol. Lett. 61:8588.
126. Phang, C.-H.,, and K. Jeyaseelan,. 1988. Isolation and characterization of citC gene of Bacillus subtilis, p. 97100. In A. T. Ganesan, and J. A. Hoch (ed.). Genetics and Biotechnology Bacilli, vol. 2. Academic Press, Inc., New York.
127. Phillips, M. K.,, L. Hederstedt,, S. Hasnain,, L. Rutberg,, and J. R. Guest. 1987. Nucleotide sequence encoding the flavoprotein and the iron-sulfur protein subunits of the Bacillus subtilis PY79 succinate dehydrogenase complex. J. Bacteriol. 169:864873.
128. Piggot, P. J., 1989. Revised genetic map of Bacillus subtilis 168, p. 141. In I. Smith,, R. A. Slepecky,, and P. Setlow (ed.), Regulation of Procaryotic Development. American Society for Microbiology, Washington, D.C..
129. Price, V. A.,, I. M. Feavers,, and A. Moir. 1989. Role of sigma H in expression of the fumarase gene (citG) in vegetative cells of Bacillus subtilis 168. J. Bacteriol. 171:59335939.
130. Prodromou, C.,, P. J. Artymiuk,, and J. R. Guest. 1992. The aconitase of Escherichia coli. Eur. J. Biochem. 204:599609.
131. Prodromou, C.,, M. J. Haynes,, and J. R. Guest. 1991. The aconitase of Escherichia coli: purification of the enzyme and molecular cloning and map location of the gene (acn). J. Gen. Microbiol. 137:25052515.
132. Ramaley, R. F.,, and M. O. Hudock. 1973. Purification and properties of isocitrate dehydrogenase (NADP) from Thermus aquaticus YT-1, Bacillus subtilis 168 and Chlamydomonas reinhardti Y-2. Biochim. Biophys. Acta 315:2236.
133. Reddy, T. L. P.,, and M. M. Weber. 1986. Solubilization, purification, and characterization of succinate dehydrogenase from membranes of Mycobacterium phlei. J. Bacteriol. 167:16.
134. Reed, L. J.,, F. R. Leach,, and M. Koike. 1958. Studies on a lipoic acid-activating system. J. Biol. Chem. 232:123142.
135. Reed, L. J.,, and S. J. Yeaman. 1987. Pyruvate dehydrogenase. Enzymes 18:7795.
136. Resnekov, O.,, L. Melin,, P. Carlsson,, M. Mannerlöv,, A. von Gabain,, and L. Hederstedt. 1992. Organization and regulation of the Bacillus subtilis odhAB operon, which encodes two of the subenzymes of the 2-oxoglutarate dehydrogenase complex. Mol. Gen. Genet. 234:285296.
137. Resnekov, O.,, L. Rutberg,, and A. von Gabain. 1990. Changes in the stability of specific mRNA species in response to growth stage in Bacillus subtilis. Proc. Natl. Acad. Sci. USA 87:83558359.
138. Rlcharme, G. 1989. Purification of a new dihydrolipoamide dehydrogenase from Escherichia coli. J. Bacteriol. 171:65806585.
139. Robblns, A. H.,, and C. D. Stout. 1989. Structure of activated aconitase: formation of the [4Fe-4S] cluster in the crystal. Proc. Natl. Acad. Sci. USA 86:36393643.
139a.. Robien, M. A.,, G. M. Clore,, J. G. Omichinski,, R. N. Perham,, E. Appelle,, K. Sakaguchi,, and A. M. Gronenborn. 1992. Three-dimensional solution structure of the E3-binding domain of the dihydrolipoamide succinyl-transferase core from the 2-oxoglutarate dehydrogenase multienzyme complex of Escherichia coli. Biochemistry 31:34633471.
140. Robinson, M. S.,, M. J. Danson,, and P. D. J. Weitzman. 1983. Citrate synthase from a Gram-positive bacterium. Biochem. J. 213:5359.
141. Roche, T. E.,, and M. S. Patel (ed.). 1989. Alpha-keto acid dehydrogenase complexes: organization, regulation and biomedical ramifications. Ann. N.Y. Acad. Sci. 573:1474.
142. Roderick, S. L.,, and L. J. Banaszak. 1986. The three-dimensional structure of porcine heart mitochondrial malate dehydrogenase at 3.0-Å resolution. J. Biol. Chem. 261:94619464.
143. Rosenkranz, M. S.,, D. W. Dingman,, and A. L. Sonenshein. 1985. Bacillus subtilis citB gene is regulated synergistically by glucose and glutamine. J. Bacteriol. 164:155164.
144. Rouault, T. A.,, C. D. Stout,, S. Kaptain,, J. B. Harford,, and R. D. Klausner. 1991. Structural relationship between an iron-regulated RNA-binding protein (IRE-BP) and aconitase: functional implications. Cell 64:881883.
145. Russell, G. C.,, and J. R. Guest. 1991. Sequence similarities within the family of dihydrolipoamide acyltransferases and discovery of a previously unidentified fungal gene. Biochem. Biophys. Acta 1076:225232.
146. Rutberg, B.,, L. Hederstedt,, E. Holmgren,, and L. Rutberg. 1978. Characterization of succinic dehydrogenase mutants of Bacillus subtilis by crossed immunoelectrophoresis. J. Bacteriol. 136:304311.
147. Rutberg, B.,, and J. A. Hoch. 1970. Citric acid cycle: gene-enzyme relationships in Bacillus subtilis. J. Bacteriol. 104:826833.
148. Rydén, L.,, L.-G. Öfverstedt,, H. Belnert,, M. H. Emptage,, and M. C. Kennedy. 1984. Molecular weight of beef heart aconitase and stoichiometry of the components of its iron-sulfur cluster. J. Biol. Chem. 259:31413144.
149. Schendel, F. J.,, P. R. August,, R. Anderson,, R. S. Hanson,, and M. C. Flickinger. 1992. Cloning and nucleotide sequence of the gene coding for citrate synthase from a thermotolerant Bacillus sp. Appl. Environ. Microbiol. 58:335345.
150. Shikata, S.,, K. Ozakl,, S. Kawai,, S. Ito,, and K. Okamoto. 1988. Purification and characterization of NADP+-linked isocitrate dehydrogenase from an alkalophilic Bacillus. Biochim. Biophys. Acta 952:282289.
151. Snoep, J. L.,, A. H. Westphal,, J. A. E. Benen,, M. J. Telxeira de Mattes,, O. Neijssel,, and A. de Kok. 1992. Isolation and characterization of the pyruvate dehydrogenase complex of anaerobically grown Enterococcus faecalis NCTC 775. Eur. J. Biochem. 203:245250.
151a.. Sone, N. Personal communication.
152. Sonensheln, A. L., 1989. Metabolic regulation of sporulation and other stationary-phase phenomena, p. 109128. In I. Smith,, R. A. Slepecky,, and P. Setlow (ed.), Regulation of Procaryotic Development. American Society for Microbiology, Washington, D.C..
153. Spencer, M. E.,, and J. R. Guest. 1987. Regulation of citric acid cycle genes in facultative bacteria. Microbiol. Sci. 4:164168.
154. Srere, P. A. 1990. Citric acid cycle redux. Trends Biochem. Sci. 15:411412.
155. Tattl, K. M.,, H. L. Carter III,, A. Moir,, and C. P. Moran, Jr. 1989. Sigma H-directed transcription of citG in Bacillus subtilis. J. Bacteriol. 171:59285932.
156. Thauer, R. K. 1988. Citric-acid cycle, 50 years on. Modifications and an alternative pathway in anaerobic bacteria. Eur. J. Biochem. 176:497508.
157. Thekkumkara, T. J.,, L. Ho,, I. D. Wexler,, G. Pons,, T.-C. Liu,, and M. S. Patel. 1988. Nucleotide sequence of a cDNA for the dihydrolipoamide acetyltransferase component of human pyruvate dehydrogenase complex. FEBS Lett. 240:4548.
158. Uratani-Wong, B.,, J. M. Lopez,, and E. Freese. 1981. Induction of citric acid cycle enzymes during initiation of sporulation by guanine nucleotide deprivation. J. Bacteriol. 146:337344.
159. Utter, M. F.,, R. E. Barden,, and B. L. Taylor. 1975. Pyruvate carboxylase: an evaluation of the relationships between structure and mechanism and between structure and catalytic activity. Adv. Enzymol. 42:172.
160. Wallbrandt, P.,, V. Tegman,, B.-H. Jonsson, and Å. Wieslander. 1992. Identification and analysis of the genes coding for the putative pyruvate dehydrogenase enzyme complex of Acholeplasma laidlawii. J. Bacteriol. 174:13881396.
161. Weiss, A. S.,, and R. G. Wake. 1983. Restriction map of DNA spanning the replication terminus of the Bacillus subtilis chromosome. J. Mol. Biol. 171:119137.
162. Weltzman, P. D. J. 1981. Unity and diversity in some bacterial citric acid-cycle enzymes. Adv. Microb. Physiol. 22:185244.
163. Wexler, I. D.,, S. G. Hemalatha,, and M. S. Patel. 1991. Sequence conservation in the α and β subunits of pyruvate dehydrogenase and its similarity to branched-chain α-keto acid dehydrogenase. FEBS Lett. 282:209213.
164. Wiegand, G.,, and S. J. Remington. 1986. Citrate synthase: structure, control and mechanism. Annu. Rev. Biophys. Biophys. Chem. 15:97117.
164a.. Willecke, K.,, and A. B. Pardee. 1971. Fatty acid-requiring mutant of Bacillus subtilis defective in branched chain α -keto acid dehydrogenase. J. Biol. Chem. 246: 52645272.
165. Woods, S. A.,, J. S. Miles,, and J. R. Guest. 1988. Sequence homologies between argininosuccinase, aspartase and fumarase: a family of structurally-related enzymes. FEMS Microbiol. Lett. 51:181186.
166. Wu, M.,, and A. Tzagoloff. 1987. Mitochondrial and cytoplasmic fumarases in Saccharomyces cerevisiae are encoded by a single nuclear gene FUM1. J. Biol. Chem. 262:1227512282.
167. Yeaman, S. J. 1986. The mammalian 2-oxoacid dehydrogenases: a complex family. Trends Biochem. 11:293296.
168. Yoshida, A. 1965. Enzymic properties of malate dehydrogenase of Bacillus subtilis. J. Biol. Chem. 240:11181124.
169. Yoshida, A. 1965. Purification and chemical characterization of malate dehydrogenase of Bacillus subtilis. J. Biol. Chem. 240:11131117.
170. Zahler, S. A.,, R. Z. Korman,, R. Rosenthal,, and H. E. Hemphill. 1977. Bacillus subtilis bacteriophage SPβ : localization of the prophage attachment site and specialized transduction. J. Bacteriol. 129:556558.
171. Zheng, L.,, P. C. Andrews,, M. A. Hermodson,, J. E. Dixon,, and H. Zalkln. 1990. Cloning and structural characterization of porcine heart aconitase. J. Biol. Chem. 265:28142821.
172. Zuberi, A. R.,, A. Moir,, and I. M. Feavers. 1987. The nucleotide sequence and gene organization of the gerA spore germination operon of Bacillus subtilis 168. Gene 51:111.

Tables

Generic image for table
Table 1

Genes for CAC enzymes of

Citation: Hederstedt L. 1993. The Krebs Citric Acid Cycle, p 181-197. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch13
Generic image for table
Table 2

Properties of PDHC from different organisms

Citation: Hederstedt L. 1993. The Krebs Citric Acid Cycle, p 181-197. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch13
Generic image for table
Table 3

Molecular data on succinate:quinone reductase from gram-positive bacteria compared with data for and mammalian cells

Citation: Hederstedt L. 1993. The Krebs Citric Acid Cycle, p 181-197. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch13
Generic image for table
Table 4

Localization and characteristics of prosthetic groups of succinate:menaquinone reductase

Citation: Hederstedt L. 1993. The Krebs Citric Acid Cycle, p 181-197. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch13

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error